blob: 32b1dd8e072b5254d8f165efc8245f2f77c0eb72 [file] [log] [blame]
/*
* Copyright (c) 2021 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/printk.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/util.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/gap.h>
#include <zephyr/bluetooth/direction.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/hci_vs.h>
#define DEVICE_NAME CONFIG_BT_DEVICE_NAME
#define DEVICE_NAME_LEN (sizeof(DEVICE_NAME) - 1)
#define NAME_LEN 30
#define PEER_NAME_LEN_MAX 30
/* BT Core 5.3 Vol 6, Part B section 4.4.5.1 Periodic Advertising Trains allows controller to wait
* 6 periodic advertising events for synchronization establishment, hence timeout must be longer
* than that.
*/
#define SYNC_CREATE_TIMEOUT_INTERVAL_NUM 7
/* Maximum length of advertising data represented in hexadecimal format */
#define ADV_DATA_HEX_STR_LEN_MAX (BT_GAP_ADV_MAX_EXT_ADV_DATA_LEN * 2 + 1)
static struct bt_le_per_adv_sync_param sync_create_param;
static struct bt_le_per_adv_sync *sync;
static bt_addr_le_t per_addr;
static bool per_adv_found;
static bool scan_enabled;
static bool sync_wait;
static bool sync_terminated;
static uint8_t per_sid;
static uint32_t sync_create_timeout_ms;
static K_SEM_DEFINE(sem_per_adv, 0, 1);
static K_SEM_DEFINE(sem_per_sync, 0, 1);
static K_SEM_DEFINE(sem_per_sync_lost, 0, 1);
#if defined(CONFIG_BT_DF_CTE_RX_AOA)
const static uint8_t ant_patterns[] = { 0x1, 0x2, 0x3, 0x4, 0x5,
0x6, 0x7, 0x8, 0x9, 0xA };
#endif /* CONFIG_BT_DF_CTE_RX_AOA */
static bool data_cb(struct bt_data *data, void *user_data);
static void create_sync(void);
static void scan_recv(const struct bt_le_scan_recv_info *info,
struct net_buf_simple *buf);
static void sync_cb(struct bt_le_per_adv_sync *sync,
struct bt_le_per_adv_sync_synced_info *info);
static void term_cb(struct bt_le_per_adv_sync *sync,
const struct bt_le_per_adv_sync_term_info *info);
static void recv_cb(struct bt_le_per_adv_sync *sync,
const struct bt_le_per_adv_sync_recv_info *info,
struct net_buf_simple *buf);
static void scan_recv(const struct bt_le_scan_recv_info *info,
struct net_buf_simple *buf);
static void scan_disable(void);
static void cte_recv_cb(struct bt_le_per_adv_sync *sync,
struct bt_df_per_adv_sync_iq_samples_report const *report);
static struct bt_le_per_adv_sync_cb sync_callbacks = {
.synced = sync_cb,
.term = term_cb,
.recv = recv_cb,
.cte_report_cb = cte_recv_cb,
};
static struct bt_le_scan_cb scan_callbacks = {
.recv = scan_recv,
};
static uint32_t sync_create_timeout_get(uint16_t interval)
{
return BT_GAP_PER_ADV_INTERVAL_TO_MS(interval) * SYNC_CREATE_TIMEOUT_INTERVAL_NUM;
}
static const char *phy2str(uint8_t phy)
{
switch (phy) {
case 0: return "No packets";
case BT_GAP_LE_PHY_1M: return "LE 1M";
case BT_GAP_LE_PHY_2M: return "LE 2M";
case BT_GAP_LE_PHY_CODED: return "LE Coded";
default: return "Unknown";
}
}
static const char *cte_type2str(uint8_t type)
{
switch (type) {
case BT_DF_CTE_TYPE_AOA: return "AOA";
case BT_DF_CTE_TYPE_AOD_1US: return "AOD 1 [us]";
case BT_DF_CTE_TYPE_AOD_2US: return "AOD 2 [us]";
case BT_DF_CTE_TYPE_NONE: return "";
default: return "Unknown";
}
}
static const char *sample_type2str(enum bt_df_iq_sample type)
{
switch (type) {
case BT_DF_IQ_SAMPLE_8_BITS_INT:
return "8 bits int";
case BT_DF_IQ_SAMPLE_16_BITS_INT:
return "16 bits int";
default:
return "Unknown";
}
}
static const char *pocket_status2str(uint8_t status)
{
switch (status) {
case BT_DF_CTE_CRC_OK: return "CRC OK";
case BT_DF_CTE_CRC_ERR_CTE_BASED_TIME: return "CRC not OK, CTE Info OK";
case BT_DF_CTE_CRC_ERR_CTE_BASED_OTHER: return "CRC not OK, Sampled other way";
case BT_DF_CTE_INSUFFICIENT_RESOURCES: return "No resources";
default: return "Unknown";
}
}
static bool data_cb(struct bt_data *data, void *user_data)
{
char *name = user_data;
uint8_t len;
switch (data->type) {
case BT_DATA_NAME_SHORTENED:
case BT_DATA_NAME_COMPLETE:
len = MIN(data->data_len, NAME_LEN - 1);
memcpy(name, data->data, len);
name[len] = '\0';
return false;
default:
return true;
}
}
static void sync_cb(struct bt_le_per_adv_sync *sync,
struct bt_le_per_adv_sync_synced_info *info)
{
char le_addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr));
printk("PER_ADV_SYNC[%u]: [DEVICE]: %s synced, "
"Interval 0x%04x (%u ms), PHY %s\n",
bt_le_per_adv_sync_get_index(sync), le_addr,
info->interval, info->interval * 5 / 4, phy2str(info->phy));
k_sem_give(&sem_per_sync);
}
static void term_cb(struct bt_le_per_adv_sync *sync,
const struct bt_le_per_adv_sync_term_info *info)
{
char le_addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr));
printk("PER_ADV_SYNC[%u]: [DEVICE]: %s sync terminated\n",
bt_le_per_adv_sync_get_index(sync), le_addr);
if (sync_wait) {
sync_terminated = true;
k_sem_give(&sem_per_sync);
} else {
k_sem_give(&sem_per_sync_lost);
}
}
static void recv_cb(struct bt_le_per_adv_sync *sync,
const struct bt_le_per_adv_sync_recv_info *info,
struct net_buf_simple *buf)
{
static char data_str[ADV_DATA_HEX_STR_LEN_MAX];
char le_addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr));
bin2hex(buf->data, buf->len, data_str, sizeof(data_str));
printk("PER_ADV_SYNC[%u]: [DEVICE]: %s, tx_power %i, "
"RSSI %i, CTE %s, data length %u, data: %s\n",
bt_le_per_adv_sync_get_index(sync), le_addr, info->tx_power,
info->rssi, cte_type2str(info->cte_type), buf->len, data_str);
}
static void cte_recv_cb(struct bt_le_per_adv_sync *sync,
struct bt_df_per_adv_sync_iq_samples_report const *report)
{
printk("CTE[%u]: samples type: %s, samples count %d, cte type %s, slot durations: %u [us], "
"packet status %s, RSSI %i\n",
bt_le_per_adv_sync_get_index(sync), sample_type2str(report->sample_type),
report->sample_count, cte_type2str(report->cte_type), report->slot_durations,
pocket_status2str(report->packet_status), report->rssi);
if (IS_ENABLED(CONFIG_DF_LOCATOR_APP_IQ_REPORT_PRINT_IQ_SAMPLES)) {
for (uint8_t idx = 0; idx < report->sample_count; idx++) {
if (report->sample_type == BT_DF_IQ_SAMPLE_8_BITS_INT) {
printk(" IQ[%d]: %d, %d\n", idx, report->sample[idx].i,
report->sample[idx].q);
} else if (IS_ENABLED(CONFIG_BT_DF_VS_CL_IQ_REPORT_16_BITS_IQ_SAMPLES)) {
printk(" IQ[%" PRIu8 "]: %d, %d\n", idx, report->sample16[idx].i,
report->sample16[idx].q);
} else {
printk("Unhandled vendor specific IQ samples type\n");
break;
}
}
}
}
static void scan_recv(const struct bt_le_scan_recv_info *info,
struct net_buf_simple *buf)
{
char le_addr[BT_ADDR_LE_STR_LEN];
char name[NAME_LEN];
(void)memset(name, 0, sizeof(name));
bt_data_parse(buf, data_cb, name);
bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr));
printk("[DEVICE]: %s, AD evt type %u, Tx Pwr: %i, RSSI %i %s C:%u S:%u "
"D:%u SR:%u E:%u Prim: %s, Secn: %s, Interval: 0x%04x (%u ms), "
"SID: %u\n",
le_addr, info->adv_type, info->tx_power, info->rssi, name,
(info->adv_props & BT_GAP_ADV_PROP_CONNECTABLE) != 0,
(info->adv_props & BT_GAP_ADV_PROP_SCANNABLE) != 0,
(info->adv_props & BT_GAP_ADV_PROP_DIRECTED) != 0,
(info->adv_props & BT_GAP_ADV_PROP_SCAN_RESPONSE) != 0,
(info->adv_props & BT_GAP_ADV_PROP_EXT_ADV) != 0,
phy2str(info->primary_phy), phy2str(info->secondary_phy),
info->interval, info->interval * 5 / 4, info->sid);
if (!per_adv_found && info->interval != 0) {
sync_create_timeout_ms = sync_create_timeout_get(info->interval);
per_adv_found = true;
per_sid = info->sid;
bt_addr_le_copy(&per_addr, info->addr);
k_sem_give(&sem_per_adv);
}
}
static void create_sync(void)
{
int err;
printk("Creating Periodic Advertising Sync...");
bt_addr_le_copy(&sync_create_param.addr, &per_addr);
sync_create_param.options = BT_LE_PER_ADV_SYNC_OPT_SYNC_ONLY_CONST_TONE_EXT;
sync_create_param.sid = per_sid;
sync_create_param.skip = 0;
sync_create_param.timeout = 0xa;
err = bt_le_per_adv_sync_create(&sync_create_param, &sync);
if (err != 0) {
printk("failed (err %d)\n", err);
return;
}
printk("success.\n");
}
static int delete_sync(void)
{
int err;
printk("Deleting Periodic Advertising Sync...");
err = bt_le_per_adv_sync_delete(sync);
if (err != 0) {
printk("failed (err %d)\n", err);
return err;
}
printk("success\n");
return 0;
}
static void enable_cte_rx(void)
{
int err;
const struct bt_df_per_adv_sync_cte_rx_param cte_rx_params = {
.max_cte_count = 5,
#if defined(CONFIG_BT_DF_CTE_RX_AOA)
.cte_types = BT_DF_CTE_TYPE_ALL,
.slot_durations = 0x2,
.num_ant_ids = ARRAY_SIZE(ant_patterns),
.ant_ids = ant_patterns,
#else
.cte_types = BT_DF_CTE_TYPE_AOD_1US | BT_DF_CTE_TYPE_AOD_2US,
#endif /* CONFIG_BT_DF_CTE_RX_AOA */
};
printk("Enable receiving of CTE...\n");
err = bt_df_per_adv_sync_cte_rx_enable(sync, &cte_rx_params);
if (err != 0) {
printk("failed (err %d)\n", err);
return;
}
printk("success. CTE receive enabled.\n");
}
static int scan_init(void)
{
printk("Scan callbacks register...");
bt_le_scan_cb_register(&scan_callbacks);
printk("success.\n");
printk("Periodic Advertising callbacks register...");
bt_le_per_adv_sync_cb_register(&sync_callbacks);
printk("success.\n");
return 0;
}
static int scan_enable(void)
{
struct bt_le_scan_param param = {
.type = BT_LE_SCAN_TYPE_ACTIVE,
.options = BT_LE_SCAN_OPT_FILTER_DUPLICATE,
.interval = BT_GAP_SCAN_FAST_INTERVAL,
.window = BT_GAP_SCAN_FAST_WINDOW,
.timeout = 0U, };
int err;
if (!scan_enabled) {
printk("Start scanning...");
err = bt_le_scan_start(&param, NULL);
if (err != 0) {
printk("failed (err %d)\n", err);
return err;
}
printk("success\n");
scan_enabled = true;
}
return 0;
}
static void scan_disable(void)
{
int err;
printk("Scan disable...");
err = bt_le_scan_stop();
if (err != 0) {
printk("failed (err %d)\n", err);
return;
}
printk("Success.\n");
scan_enabled = false;
}
void main(void)
{
int err;
printk("Starting Connectionless Locator Demo\n");
printk("Bluetooth initialization...");
err = bt_enable(NULL);
if (err != 0) {
printk("failed (err %d)\n", err);
}
printk("success\n");
scan_init();
scan_enabled = false;
do {
scan_enable();
printk("Waiting for periodic advertising...");
per_adv_found = false;
err = k_sem_take(&sem_per_adv, K_FOREVER);
if (err != 0) {
printk("failed (err %d)\n", err);
return;
}
printk("success. Found periodic advertising.\n");
sync_wait = true;
sync_terminated = false;
create_sync();
printk("Waiting for periodic sync...\n");
err = k_sem_take(&sem_per_sync, K_MSEC(sync_create_timeout_ms));
if (err != 0 || sync_terminated) {
if (err != 0) {
printk("failed (err %d)\n", err);
} else {
printk("terminated\n");
}
sync_wait = false;
err = delete_sync();
if (err != 0) {
return;
}
continue;
}
printk("success. Periodic sync established.\n");
sync_wait = false;
enable_cte_rx();
/* Disable scan to cleanup output */
scan_disable();
printk("Waiting for periodic sync lost...\n");
err = k_sem_take(&sem_per_sync_lost, K_FOREVER);
if (err != 0) {
printk("failed (err %d)\n", err);
return;
}
printk("Periodic sync lost.\n");
} while (true);
}