blob: 9529d1304ecf3d653ef0df7d86e40160d033f8a0 [file] [log] [blame]
/*
* Copyright (c) 2019 Intel Corporation
* Copyright (c) 2021 Nordic Semiconductor
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <fcntl.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(net_sock_can, CONFIG_NET_SOCKETS_LOG_LEVEL);
#include <zephyr/kernel.h>
#include <zephyr/drivers/entropy.h>
#include <zephyr/sys/util.h>
#include <zephyr/net/net_context.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/socket.h>
#include <zephyr/syscall_handler.h>
#include <zephyr/sys/fdtable.h>
#include <zephyr/net/canbus.h>
#include <zephyr/net/socketcan.h>
#include <zephyr/net/socketcan_utils.h>
#include <zephyr/drivers/can.h>
#include "sockets_internal.h"
#define MEM_ALLOC_TIMEOUT K_MSEC(50)
struct can_recv {
struct net_if *iface;
struct net_context *ctx;
socketcan_id_t can_id;
socketcan_id_t can_mask;
};
static struct can_recv receivers[CONFIG_NET_SOCKETS_CAN_RECEIVERS];
extern const struct socket_op_vtable sock_fd_op_vtable;
static const struct socket_op_vtable can_sock_fd_op_vtable;
static inline int k_fifo_wait_non_empty(struct k_fifo *fifo,
k_timeout_t timeout)
{
struct k_poll_event events[] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY, fifo),
};
return k_poll(events, ARRAY_SIZE(events), timeout);
}
int zcan_socket(int family, int type, int proto)
{
struct net_context *ctx;
int fd;
int ret;
fd = z_reserve_fd();
if (fd < 0) {
return -1;
}
ret = net_context_get(family, type, proto, &ctx);
if (ret < 0) {
z_free_fd(fd);
errno = -ret;
return -1;
}
/* Initialize user_data, all other calls will preserve it */
ctx->user_data = NULL;
k_fifo_init(&ctx->recv_q);
/* Condition variable is used to avoid keeping lock for a long time
* when waiting data to be received
*/
k_condvar_init(&ctx->cond.recv);
z_finalize_fd(fd, ctx,
(const struct fd_op_vtable *)&can_sock_fd_op_vtable);
return fd;
}
static void zcan_received_cb(struct net_context *ctx, struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status, void *user_data)
{
/* The ctx parameter is not really relevant here. It refers to first
* net_context that was used when registering CAN socket.
* In practice there can be multiple sockets that are interested in
* same CAN id packets. That is why we need to implement the dispatcher
* which will give the packet to correct net_context(s).
*/
struct net_pkt *clone = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
struct can_frame *zframe =
(struct can_frame *)net_pkt_data(pkt);
struct socketcan_frame sframe;
if (!receivers[i].ctx ||
receivers[i].iface != net_pkt_iface(pkt)) {
continue;
}
socketcan_from_can_frame(zframe, &sframe);
if ((sframe.can_id & receivers[i].can_mask) !=
(receivers[i].can_id & receivers[i].can_mask)) {
continue;
}
/* If there are multiple receivers configured, we use the
* original net_pkt as a template, and just clone it to all
* recipients. This is done like this so that we avoid the
* original net_pkt being freed while we are cloning it.
*/
if (pkt != NULL && ARRAY_SIZE(receivers) > 1) {
/* There are multiple receivers, we need to clone
* the packet.
*/
clone = net_pkt_clone(pkt, MEM_ALLOC_TIMEOUT);
if (!clone) {
/* Sent the packet to at least one recipient
* if there is no memory to clone the packet.
*/
clone = pkt;
}
} else {
clone = pkt;
}
ctx = receivers[i].ctx;
/* To prevent the reader from missing the wake-up signal
* as described in commit 1184089 and implemented in sockets.c
*/
if (ctx->cond.lock) {
(void)k_mutex_lock(ctx->cond.lock, K_FOREVER);
}
NET_DBG("[%d] ctx %p pkt %p st %d", i, ctx, clone, status);
/* if pkt is NULL, EOF */
if (!clone) {
struct net_pkt *last_pkt =
k_fifo_peek_tail(&ctx->recv_q);
if (!last_pkt) {
/* If there're no packets in the queue,
* recv() may be blocked waiting on it to
* become non-empty, so cancel that wait.
*/
sock_set_eof(ctx);
k_fifo_cancel_wait(&ctx->recv_q);
NET_DBG("Marked socket %p as peer-closed", ctx);
} else {
net_pkt_set_eof(last_pkt, true);
NET_DBG("Set EOF flag on pkt %p", ctx);
}
} else {
/* Normal packet */
net_pkt_set_eof(clone, false);
k_fifo_put(&ctx->recv_q, clone);
}
if (ctx->cond.lock) {
k_mutex_unlock(ctx->cond.lock);
}
k_condvar_signal(&ctx->cond.recv);
}
if (clone && clone != pkt) {
net_pkt_unref(pkt);
}
}
static int zcan_bind_ctx(struct net_context *ctx, const struct sockaddr *addr,
socklen_t addrlen)
{
struct sockaddr_can *can_addr = (struct sockaddr_can *)addr;
struct net_if *iface;
int ret;
if (addrlen != sizeof(struct sockaddr_can)) {
return -EINVAL;
}
iface = net_if_get_by_index(can_addr->can_ifindex);
if (!iface) {
return -ENOENT;
}
net_context_set_iface(ctx, iface);
ret = net_context_bind(ctx, addr, addrlen);
if (ret < 0) {
errno = -ret;
return -1;
}
/* For CAN socket, we expect to receive packets after call to bind().
*/
ret = net_context_recv(ctx, zcan_received_cb, K_NO_WAIT,
ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
ssize_t zcan_sendto_ctx(struct net_context *ctx, const void *buf, size_t len,
int flags, const struct sockaddr *dest_addr,
socklen_t addrlen)
{
struct sockaddr_can can_addr;
struct can_frame zframe;
k_timeout_t timeout = K_FOREVER;
int ret;
/* Setting destination address does not probably make sense here so
* ignore it. You need to use bind() to set the CAN interface.
*/
if (dest_addr) {
NET_DBG("CAN destination address ignored");
}
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else {
net_context_get_option(ctx, NET_OPT_SNDTIMEO, &timeout, NULL);
}
if (addrlen == 0) {
addrlen = sizeof(struct sockaddr_can);
}
if (dest_addr == NULL) {
memset(&can_addr, 0, sizeof(can_addr));
can_addr.can_ifindex = -1;
can_addr.can_family = AF_CAN;
dest_addr = (struct sockaddr *)&can_addr;
}
NET_ASSERT(len == sizeof(struct socketcan_frame));
socketcan_to_can_frame((struct socketcan_frame *)buf, &zframe);
ret = net_context_sendto(ctx, (void *)&zframe, sizeof(zframe),
dest_addr, addrlen, NULL, timeout,
ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
return len;
}
static ssize_t zcan_recvfrom_ctx(struct net_context *ctx, void *buf,
size_t max_len, int flags,
struct sockaddr *src_addr,
socklen_t *addrlen)
{
struct can_frame zframe;
size_t recv_len = 0;
k_timeout_t timeout = K_FOREVER;
struct net_pkt *pkt;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else {
net_context_get_option(ctx, NET_OPT_RCVTIMEO, &timeout, NULL);
}
if (flags & ZSOCK_MSG_PEEK) {
int ret;
ret = k_fifo_wait_non_empty(&ctx->recv_q, timeout);
/* EAGAIN when timeout expired, EINTR when cancelled */
if (ret && ret != -EAGAIN && ret != -EINTR) {
errno = -ret;
return -1;
}
pkt = k_fifo_peek_head(&ctx->recv_q);
} else {
/* Mechanism as in sockets.c to allow parallel rx/tx
*/
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
int res;
res = zsock_wait_data(ctx, &timeout);
if (res < 0) {
errno = -res;
return -1;
}
}
pkt = k_fifo_get(&ctx->recv_q, timeout);
}
if (!pkt) {
errno = EAGAIN;
return -1;
}
/* We do not handle any headers here, just pass the whole packet to
* the caller.
*/
recv_len = net_pkt_get_len(pkt);
if (recv_len > max_len) {
recv_len = max_len;
}
if (net_pkt_read(pkt, (void *)&zframe, sizeof(zframe))) {
net_pkt_unref(pkt);
errno = EIO;
return -1;
}
NET_ASSERT(recv_len == sizeof(struct socketcan_frame));
socketcan_from_can_frame(&zframe, (struct socketcan_frame *)buf);
net_pkt_unref(pkt);
return recv_len;
}
static int zcan_getsockopt_ctx(struct net_context *ctx, int level, int optname,
void *optval, socklen_t *optlen)
{
if (!optval || !optlen) {
errno = EINVAL;
return -1;
}
return sock_fd_op_vtable.getsockopt(ctx, level, optname,
optval, optlen);
}
static int zcan_setsockopt_ctx(struct net_context *ctx, int level, int optname,
const void *optval, socklen_t optlen)
{
return sock_fd_op_vtable.setsockopt(ctx, level, optname,
optval, optlen);
}
static ssize_t can_sock_read_vmeth(void *obj, void *buffer, size_t count)
{
return zcan_recvfrom_ctx(obj, buffer, count, 0, NULL, 0);
}
static ssize_t can_sock_write_vmeth(void *obj, const void *buffer,
size_t count)
{
return zcan_sendto_ctx(obj, buffer, count, 0, NULL, 0);
}
static bool is_already_attached(struct socketcan_filter *sfilter,
struct net_if *iface,
struct net_context *ctx)
{
int i;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx != ctx && receivers[i].iface == iface &&
((receivers[i].can_id & receivers[i].can_mask) ==
(UNALIGNED_GET(&sfilter->can_id) &
UNALIGNED_GET(&sfilter->can_mask)))) {
return true;
}
}
return false;
}
static int close_socket(struct net_context *ctx)
{
const struct canbus_api *api;
struct net_if *iface;
const struct device *dev;
iface = net_context_get_iface(ctx);
dev = net_if_get_device(iface);
api = dev->api;
if (!api || !api->close) {
return -ENOTSUP;
}
api->close(dev, net_context_get_can_filter_id(ctx));
return 0;
}
static int can_close_socket(struct net_context *ctx)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx == ctx) {
struct socketcan_filter sfilter;
receivers[i].ctx = NULL;
sfilter.can_id = receivers[i].can_id;
sfilter.can_mask = receivers[i].can_mask;
if (!is_already_attached(&sfilter,
net_context_get_iface(ctx),
ctx)) {
/* We can detach now as there are no other
* sockets that have same filter.
*/
ret = close_socket(ctx);
if (ret < 0) {
return ret;
}
}
return 0;
}
}
return 0;
}
static int can_sock_close_vmeth(void *obj)
{
int ret;
ret = can_close_socket(obj);
if (ret < 0) {
NET_DBG("Cannot detach net_context %p (%d)", obj, ret);
errno = -ret;
ret = -1;
}
return ret;
}
static int can_sock_ioctl_vmeth(void *obj, unsigned int request, va_list args)
{
return sock_fd_op_vtable.fd_vtable.ioctl(obj, request, args);
}
/*
* TODO: A CAN socket can be bound to a network device using SO_BINDTODEVICE.
*/
static int can_sock_bind_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return zcan_bind_ctx(obj, addr, addrlen);
}
/* The connect() function is no longer necessary. */
static int can_sock_connect_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return 0;
}
/*
* The listen() and accept() functions are without any functionality,
* since the client-Server-Semantic is no longer present.
* When we use RAW-sockets we are sending unconnected packets.
*/
static int can_sock_listen_vmeth(void *obj, int backlog)
{
return 0;
}
static int can_sock_accept_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return 0;
}
static ssize_t can_sock_sendto_vmeth(void *obj, const void *buf, size_t len,
int flags,
const struct sockaddr *dest_addr,
socklen_t addrlen)
{
return zcan_sendto_ctx(obj, buf, len, flags, dest_addr, addrlen);
}
static ssize_t can_sock_recvfrom_vmeth(void *obj, void *buf, size_t max_len,
int flags, struct sockaddr *src_addr,
socklen_t *addrlen)
{
return zcan_recvfrom_ctx(obj, buf, max_len, flags,
src_addr, addrlen);
}
static int can_sock_getsockopt_vmeth(void *obj, int level, int optname,
void *optval, socklen_t *optlen)
{
if (level == SOL_CAN_RAW) {
const struct canbus_api *api;
struct net_if *iface;
const struct device *dev;
if (optval == NULL) {
errno = EINVAL;
return -1;
}
iface = net_context_get_iface(obj);
dev = net_if_get_device(iface);
api = dev->api;
if (!api || !api->getsockopt) {
errno = ENOTSUP;
return -1;
}
return api->getsockopt(dev, obj, level, optname, optval,
optlen);
}
return zcan_getsockopt_ctx(obj, level, optname, optval, optlen);
}
static int can_register_receiver(struct net_if *iface, struct net_context *ctx,
socketcan_id_t can_id, socketcan_id_t can_mask)
{
int i;
NET_DBG("Max %zu receivers", ARRAY_SIZE(receivers));
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx != NULL) {
continue;
}
receivers[i].ctx = ctx;
receivers[i].iface = iface;
receivers[i].can_id = can_id;
receivers[i].can_mask = can_mask;
return i;
}
return -ENOENT;
}
static void can_unregister_receiver(struct net_if *iface,
struct net_context *ctx,
socketcan_id_t can_id, socketcan_id_t can_mask)
{
int i;
for (i = 0; i < ARRAY_SIZE(receivers); i++) {
if (receivers[i].ctx == ctx &&
receivers[i].iface == iface &&
receivers[i].can_id == can_id &&
receivers[i].can_mask == can_mask) {
receivers[i].ctx = NULL;
return;
}
}
}
static int can_register_filters(struct net_if *iface, struct net_context *ctx,
const struct socketcan_filter *sfilters, int count)
{
int i, ret;
NET_DBG("Registering %d filters", count);
for (i = 0; i < count; i++) {
ret = can_register_receiver(iface, ctx, sfilters[i].can_id,
sfilters[i].can_mask);
if (ret < 0) {
goto revert;
}
}
return 0;
revert:
for (i = 0; i < count; i++) {
can_unregister_receiver(iface, ctx, sfilters[i].can_id,
sfilters[i].can_mask);
}
return ret;
}
static void can_unregister_filters(struct net_if *iface,
struct net_context *ctx,
const struct socketcan_filter *sfilters,
int count)
{
int i;
NET_DBG("Unregistering %d filters", count);
for (i = 0; i < count; i++) {
can_unregister_receiver(iface, ctx, sfilters[i].can_id,
sfilters[i].can_mask);
}
}
static int can_sock_setsockopt_vmeth(void *obj, int level, int optname,
const void *optval, socklen_t optlen)
{
const struct canbus_api *api;
struct net_if *iface;
const struct device *dev;
int ret;
if (level != SOL_CAN_RAW) {
return zcan_setsockopt_ctx(obj, level, optname, optval, optlen);
}
/* The application must use CAN_filter and then we convert
* it to zcan_filter as the CANBUS drivers expects that.
*/
if (optname == CAN_RAW_FILTER && optlen != sizeof(struct socketcan_filter)) {
errno = EINVAL;
return -1;
}
if (optval == NULL) {
errno = EINVAL;
return -1;
}
iface = net_context_get_iface(obj);
dev = net_if_get_device(iface);
api = dev->api;
if (!api || !api->setsockopt) {
errno = ENOTSUP;
return -1;
}
if (optname == CAN_RAW_FILTER) {
int count, i;
if (optlen % sizeof(struct socketcan_filter) != 0) {
errno = EINVAL;
return -1;
}
count = optlen / sizeof(struct socketcan_filter);
ret = can_register_filters(iface, obj, optval, count);
if (ret < 0) {
errno = -ret;
return -1;
}
for (i = 0; i < count; i++) {
struct socketcan_filter *sfilter;
struct can_filter zfilter;
bool duplicate;
sfilter = &((struct socketcan_filter *)optval)[i];
/* If someone has already attached the same filter to
* same interface, we do not need to do it here again.
*/
duplicate = is_already_attached(sfilter, iface, obj);
if (duplicate) {
continue;
}
socketcan_to_can_filter(sfilter, &zfilter);
ret = api->setsockopt(dev, obj, level, optname,
&zfilter, sizeof(zfilter));
if (ret < 0) {
break;
}
}
if (ret < 0) {
can_unregister_filters(iface, obj, optval, count);
errno = -ret;
return -1;
}
return 0;
}
return api->setsockopt(dev, obj, level, optname, optval, optlen);
}
static const struct socket_op_vtable can_sock_fd_op_vtable = {
.fd_vtable = {
.read = can_sock_read_vmeth,
.write = can_sock_write_vmeth,
.close = can_sock_close_vmeth,
.ioctl = can_sock_ioctl_vmeth,
},
.bind = can_sock_bind_vmeth,
.connect = can_sock_connect_vmeth,
.listen = can_sock_listen_vmeth,
.accept = can_sock_accept_vmeth,
.sendto = can_sock_sendto_vmeth,
.recvfrom = can_sock_recvfrom_vmeth,
.getsockopt = can_sock_getsockopt_vmeth,
.setsockopt = can_sock_setsockopt_vmeth,
};
static bool can_is_supported(int family, int type, int proto)
{
if (type != SOCK_RAW || proto != CAN_RAW) {
return false;
}
return true;
}
NET_SOCKET_REGISTER(af_can, NET_SOCKET_DEFAULT_PRIO, AF_CAN, can_is_supported,
zcan_socket);