blob: 1835cda30ff97fc211bb274079758ce48b5fabe3 [file] [log] [blame]
/*
* Copyright (c) 2021 Stephanos Ioannidis <root@stephanos.io>
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/ztest.h>
#include <zephyr/kernel.h>
#include <stdlib.h>
#include <arm_math.h>
#include "../../common/test_common.h"
#include "unary_f64.pat"
#define SNR_ERROR_THRESH ((float32_t)120)
#define REL_ERROR_THRESH (1.0e-6)
#define ABS_ERROR_THRESH (1.0e-5)
#define SNR_ERROR_THRESH_CHOL ((float32_t)270)
#define REL_ERROR_THRESH_CHOL (1.0e-9)
#define ABS_ERROR_THRESH_CHOL (1.0e-9)
#define NUM_MATRICES (ARRAY_SIZE(in_dims) / 2)
#define MAX_MATRIX_DIM (40)
#define OP2_SUB (1)
#define OP1_TRANS (1)
static void test_op2(int op, const uint64_t *ref, size_t length)
{
size_t index;
uint16_t *dims = (uint16_t *)in_dims;
float64_t *tmp1, *tmp2, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f64 mat_in1;
arm_matrix_instance_f64 mat_in2;
arm_matrix_instance_f64 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
tmp2 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp2, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = malloc(length * sizeof(float64_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
mat_in1.pData = tmp1;
mat_in2.pData = tmp2;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < NUM_MATRICES; index++) {
rows = *dims++;
columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_in2.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_in2.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData, in_com1,
rows * columns * sizeof(float64_t));
memcpy(mat_in2.pData, in_com2,
rows * columns * sizeof(float64_t));
/* Run test function */
switch (op) {
case OP2_SUB:
status = arm_mat_sub_f64(&mat_in1, &mat_in2,
&mat_out);
break;
default:
zassert_unreachable("invalid operation");
}
/* Validate status */
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f64(length, output, (float64_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f64(length, output, (float64_t *)ref,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(tmp2);
free(output);
}
DEFINE_TEST_VARIANT3(matrix_unary_f64,
op2, arm_mat_sub_f64, OP2_SUB,
ref_sub, ARRAY_SIZE(ref_sub));
static void test_op1(int op, const uint64_t *ref, size_t length,
bool transpose)
{
size_t index;
uint16_t *dims = (uint16_t *)in_dims;
float64_t *tmp1, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f64 mat_in1;
arm_matrix_instance_f64 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = malloc(length * sizeof(float64_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
mat_in1.pData = tmp1;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < NUM_MATRICES; index++) {
rows = *dims++;
columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = rows;
mat_in1.numCols = columns;
mat_out.numRows = transpose ? columns : rows;
mat_out.numCols = transpose ? rows : columns;
/* Load matrix data */
memcpy(mat_in1.pData, in_com1,
rows * columns * sizeof(float64_t));
/* Run test function */
switch (op) {
case OP1_TRANS:
status = arm_mat_trans_f64(&mat_in1, &mat_out);
break;
default:
zassert_unreachable("invalid operation");
}
/* Validate status */
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f64(length, output, (float64_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f64(length, output, (float64_t *)ref,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(output);
}
DEFINE_TEST_VARIANT4(matrix_unary_f64,
op1, arm_mat_trans_f64, OP1_TRANS,
ref_trans, ARRAY_SIZE(ref_trans), true);
ZTEST(matrix_unary_f64, test_arm_mat_inverse_f64)
{
size_t index;
size_t length = ARRAY_SIZE(ref_inv);
uint16_t *dims = (uint16_t *)in_inv_dims;
float64_t *input, *tmp1, *output;
arm_status status;
uint16_t rows, columns;
arm_matrix_instance_f64 mat_in1;
arm_matrix_instance_f64 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = malloc(length * sizeof(float64_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
input = (float64_t *)in_inv;
mat_in1.pData = tmp1;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < ARRAY_SIZE(in_inv_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData, input,
rows * columns * sizeof(float64_t));
/* Run test function */
status = arm_mat_inverse_f64(&mat_in1, &mat_out);
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment pointers */
input += (rows * columns);
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f64(length, output, (float64_t *)ref_inv,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f64(length, output, (float64_t *)ref_inv,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(output);
}
ZTEST(matrix_unary_f64, test_arm_mat_cholesky_f64)
{
size_t index;
size_t length = ARRAY_SIZE(ref_cholesky_dpo);
const uint16_t *dims = in_cholesky_dpo_dims;
float64_t *input, *tmp1, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f64 mat_in1;
arm_matrix_instance_f64 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = calloc(length, sizeof(float64_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
input = (float64_t *)in_cholesky_dpo;
mat_in1.pData = tmp1;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < ARRAY_SIZE(in_cholesky_dpo_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData,
input, rows * columns * sizeof(float64_t));
/* Run test function */
status = arm_mat_cholesky_f64(&mat_in1, &mat_out);
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment pointers */
input += (rows * columns);
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f64(length, output, (float64_t *)ref_cholesky_dpo,
SNR_ERROR_THRESH_CHOL),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f64(length, output, (float64_t *)ref_cholesky_dpo,
ABS_ERROR_THRESH_CHOL, REL_ERROR_THRESH_CHOL),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(output);
}
ZTEST(matrix_unary_f64, test_arm_mat_solve_upper_triangular_f64)
{
size_t index;
size_t length = ARRAY_SIZE(ref_uptriangular_dpo);
const uint16_t *dims = in_cholesky_dpo_dims;
float64_t *input1, *input2, *tmp1, *tmp2, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f64 mat_in1;
arm_matrix_instance_f64 mat_in2;
arm_matrix_instance_f64 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
tmp2 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp2, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = calloc(length, sizeof(float64_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
input1 = (float64_t *)in_uptriangular_dpo;
input2 = (float64_t *)in_rnda_dpo;
mat_in1.pData = tmp1;
mat_in2.pData = tmp2;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < ARRAY_SIZE(in_cholesky_dpo_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_in2.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_in2.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData, input1,
rows * columns * sizeof(float64_t));
memcpy(mat_in2.pData, input2,
rows * columns * sizeof(float64_t));
/* Run test function */
status = arm_mat_solve_upper_triangular_f64(&mat_in1, &mat_in2,
&mat_out);
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
input1 += (rows * columns);
input2 += (rows * columns);
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f64(length, output,
(float64_t *)ref_uptriangular_dpo,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f64(length, output,
(float64_t *)ref_uptriangular_dpo,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(tmp2);
free(output);
}
ZTEST(matrix_unary_f64, test_arm_mat_solve_lower_triangular_f64)
{
size_t index;
size_t length = ARRAY_SIZE(ref_lotriangular_dpo);
const uint16_t *dims = in_cholesky_dpo_dims;
float64_t *input1, *input2, *tmp1, *tmp2, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f64 mat_in1;
arm_matrix_instance_f64 mat_in2;
arm_matrix_instance_f64 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
tmp2 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float64_t));
zassert_not_null(tmp2, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = calloc(length, sizeof(float64_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
input1 = (float64_t *)in_lotriangular_dpo;
input2 = (float64_t *)in_rnda_dpo;
mat_in1.pData = tmp1;
mat_in2.pData = tmp2;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < ARRAY_SIZE(in_cholesky_dpo_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_in2.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_in2.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData, input1,
rows * columns * sizeof(float64_t));
memcpy(mat_in2.pData, input2,
rows * columns * sizeof(float64_t));
/* Run test function */
status = arm_mat_solve_lower_triangular_f64(&mat_in1, &mat_in2,
&mat_out);
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
input1 += (rows * columns);
input2 += (rows * columns);
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f64(length, output,
(float64_t *)ref_lotriangular_dpo,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f64(length, output,
(float64_t *)ref_lotriangular_dpo,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(tmp2);
free(output);
}
/*
* NOTE: arm_mat_ldlt_f64 tests are not implemented for now because they
* require on-device test pattern generation which defeats the purpose
* of on-device testing. Add these tests when the upstream testsuite is
* updated to use pre-generated test patterns.
*/
ZTEST_SUITE(matrix_unary_f64, NULL, NULL, NULL, NULL, NULL);