blob: 573dcef58efaf5b511eaa1939f9c965f8868834f [file] [log] [blame]
/* main.c - Application main entry point */
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define NET_LOG_LEVEL CONFIG_NET_L2_ETHERNET_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(net_test, NET_LOG_LEVEL);
#include <zephyr/types.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <errno.h>
#include <zephyr/sys/printk.h>
#include <zephyr/linker/sections.h>
#include <zephyr/random/rand32.h>
#include <zephyr/ztest.h>
#include <zephyr/net/buf.h>
#include <zephyr/net/net_ip.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/ethernet.h>
#include <zephyr/net/dummy.h>
#include <zephyr/net/net_l2.h>
#include "ipv6.h"
#define NET_LOG_ENABLED 1
#include "net_private.h"
#if NET_LOG_LEVEL >= LOG_LEVEL_DBG
#define DBG(fmt, ...) printk(fmt, ##__VA_ARGS__)
#else
#define DBG(fmt, ...)
#endif
#define TEST_PORT 9999
static char *test_data = "Test data to be sent";
/* Interface 1 addresses */
static struct in6_addr my_addr1 = { { { 0x20, 0x01, 0x0d, 0xb8, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Interface 2 addresses */
static struct in6_addr my_addr2 = { { { 0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Destination address for test packets */
static struct in6_addr dst_addr = { { { 0x20, 0x01, 0x0d, 0xb8, 9, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0x1 } } };
/* Extra address is assigned to ll_addr */
static struct in6_addr ll_addr = { { { 0xfe, 0x80, 0x43, 0xb8, 0, 0, 0, 0,
0, 0, 0, 0xf2, 0xaa, 0x29, 0x02,
0x04 } } };
/* Keep track of all ethernet interfaces */
static struct net_if *eth_interfaces[2];
static struct net_context *udp_v6_ctx;
static bool test_failed;
static bool test_started;
static bool do_timestamp;
static bool timestamp_cb_called;
static struct net_if_timestamp_cb timestamp_cb;
static struct net_if_timestamp_cb timestamp_cb_2;
static struct net_if_timestamp_cb timestamp_cb_3;
static K_SEM_DEFINE(wait_data, 0, UINT_MAX);
#define WAIT_TIME K_SECONDS(1)
struct eth_context {
struct net_if *iface;
uint8_t mac_addr[6];
};
static struct eth_context eth_context;
static struct eth_context eth_context2;
static void eth_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct eth_context *context = dev->data;
net_if_set_link_addr(iface, context->mac_addr,
sizeof(context->mac_addr),
NET_LINK_ETHERNET);
ethernet_init(iface);
}
static int eth_tx(const struct device *dev, struct net_pkt *pkt)
{
if (!pkt->buffer) {
DBG("No data to send!\n");
return -ENODATA;
}
if (test_started) {
if (do_timestamp) {
/* Simulate the clock advancing */
pkt->timestamp.nanosecond = pkt->timestamp.second + 1;
net_if_add_tx_timestamp(pkt);
} else {
k_sem_give(&wait_data);
}
}
test_started = false;
return 0;
}
static enum ethernet_hw_caps eth_get_capabilities(const struct device *dev)
{
return 0;
}
static struct ethernet_api api_funcs = {
.iface_api.init = eth_iface_init,
.get_capabilities = eth_get_capabilities,
.send = eth_tx,
};
static void generate_mac(uint8_t *mac_addr)
{
/* 00-00-5E-00-53-xx Documentation RFC 7042 */
mac_addr[0] = 0x00;
mac_addr[1] = 0x00;
mac_addr[2] = 0x5E;
mac_addr[3] = 0x00;
mac_addr[4] = 0x53;
mac_addr[5] = sys_rand32_get();
}
static int eth_init(const struct device *dev)
{
struct eth_context *context = dev->data;
generate_mac(context->mac_addr);
return 0;
}
ETH_NET_DEVICE_INIT(eth_test, "eth_test", eth_init, NULL,
&eth_context, NULL, CONFIG_ETH_INIT_PRIORITY, &api_funcs,
NET_ETH_MTU);
ETH_NET_DEVICE_INIT(eth_test2, "eth_test2", eth_init, NULL,
&eth_context2, NULL, CONFIG_ETH_INIT_PRIORITY, &api_funcs,
NET_ETH_MTU);
static void timestamp_callback(struct net_pkt *pkt)
{
timestamp_cb_called = true;
if (do_timestamp) {
/* This is very artificial test but make sure that we
* have advanced the time a bit.
*/
zassert_true(pkt->timestamp.nanosecond > pkt->timestamp.second,
"Timestamp not working ok (%d < %d)\n",
pkt->timestamp.nanosecond, pkt->timestamp.second);
}
/* The pkt was ref'ed in send_some_data()() */
net_pkt_unref(pkt);
if (do_timestamp) {
k_sem_give(&wait_data);
}
}
static void test_timestamp_setup(void)
{
struct net_if *iface;
struct net_pkt *pkt;
iface = eth_interfaces[0];
net_if_register_timestamp_cb(&timestamp_cb, NULL, iface,
timestamp_callback);
timestamp_cb_called = false;
do_timestamp = false;
pkt = net_pkt_alloc_on_iface(iface, K_FOREVER);
/* Make sure that the callback function is called */
net_if_call_timestamp_cb(pkt);
zassert_true(timestamp_cb_called, "Timestamp callback not called\n");
zassert_equal(atomic_get(&pkt->atomic_ref), 0, "Pkt %p not released\n");
}
static void timestamp_callback_2(struct net_pkt *pkt)
{
timestamp_cb_called = true;
if (do_timestamp) {
/* This is very artificial test but make sure that we
* have advanced the time a bit.
*/
zassert_true(pkt->timestamp.nanosecond > pkt->timestamp.second,
"Timestamp not working ok (%d < %d)\n",
pkt->timestamp.nanosecond, pkt->timestamp.second);
}
zassert_equal(eth_interfaces[1], net_pkt_iface(pkt),
"Invalid interface");
/* The pkt was ref'ed in send_some_data()() */
net_pkt_unref(pkt);
if (do_timestamp) {
k_sem_give(&wait_data);
}
}
static void test_timestamp_setup_2nd_iface(void)
{
struct net_if *iface;
struct net_pkt *pkt;
iface = eth_interfaces[1];
net_if_register_timestamp_cb(&timestamp_cb_2, NULL, iface,
timestamp_callback_2);
timestamp_cb_called = false;
do_timestamp = false;
pkt = net_pkt_alloc_on_iface(iface, K_FOREVER);
/* Make sure that the callback function is called */
net_if_call_timestamp_cb(pkt);
zassert_true(timestamp_cb_called, "Timestamp callback not called\n");
zassert_equal(atomic_get(&pkt->atomic_ref), 0, "Pkt %p not released\n");
}
static void test_timestamp_setup_all(void)
{
struct net_pkt *pkt;
net_if_register_timestamp_cb(&timestamp_cb_3, NULL, NULL,
timestamp_callback);
timestamp_cb_called = false;
do_timestamp = false;
pkt = net_pkt_alloc_on_iface(eth_interfaces[0], K_FOREVER);
/* The callback is called twice because we have two matching callbacks
* as the interface is set to NULL when registering cb. So we need to
* ref the pkt here because the callback releases pkt.
*/
net_pkt_ref(pkt);
/* Make sure that the callback function is called */
net_if_call_timestamp_cb(pkt);
zassert_true(timestamp_cb_called, "Timestamp callback not called\n");
zassert_equal(atomic_get(&pkt->atomic_ref), 0, "Pkt %p not released\n");
net_if_unregister_timestamp_cb(&timestamp_cb_3);
}
static void test_timestamp_cleanup(void)
{
struct net_if *iface;
struct net_pkt *pkt;
net_if_unregister_timestamp_cb(&timestamp_cb);
iface = eth_interfaces[0];
timestamp_cb_called = false;
do_timestamp = false;
pkt = net_pkt_alloc_on_iface(iface, K_FOREVER);
/* Make sure that the callback function is not called after unregister
*/
net_if_call_timestamp_cb(pkt);
zassert_false(timestamp_cb_called, "Timestamp callback called\n");
zassert_false(atomic_get(&pkt->atomic_ref) < 1, "Pkt %p released\n");
net_pkt_unref(pkt);
}
struct user_data {
int eth_if_count;
int total_if_count;
};
#if NET_LOG_LEVEL >= LOG_LEVEL_DBG
static const char *iface2str(struct net_if *iface)
{
#ifdef CONFIG_NET_L2_ETHERNET
if (net_if_l2(iface) == &NET_L2_GET_NAME(ETHERNET)) {
return "Ethernet";
}
#endif
return "<unknown type>";
}
#endif
static void iface_cb(struct net_if *iface, void *user_data)
{
struct user_data *ud = user_data;
DBG("Interface %p (%s) [%d]\n", iface, iface2str(iface),
net_if_get_by_iface(iface));
if (net_if_l2(iface) == &NET_L2_GET_NAME(ETHERNET)) {
if (ud->eth_if_count >= ARRAY_SIZE(eth_interfaces)) {
DBG("Invalid interface %p\n", iface);
return;
}
eth_interfaces[ud->eth_if_count++] = iface;
}
/* By default all interfaces are down initially */
net_if_down(iface);
ud->total_if_count++;
}
static void test_address_setup(void)
{
struct net_if_addr *ifaddr;
struct net_if *iface1, *iface2;
struct user_data ud = { 0 };
net_if_foreach(iface_cb, &ud);
iface1 = eth_interfaces[0];
iface2 = eth_interfaces[1];
zassert_not_null(iface1, "Interface 1\n");
zassert_not_null(iface2, "Interface 2\n");
ifaddr = net_if_ipv6_addr_add(iface1, &my_addr1,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&my_addr1));
zassert_not_null(ifaddr, "addr1\n");
}
/* For testing purposes we need to set the addresses preferred */
ifaddr->addr_state = NET_ADDR_PREFERRED;
ifaddr = net_if_ipv6_addr_add(iface1, &ll_addr,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&ll_addr));
zassert_not_null(ifaddr, "ll_addr\n");
}
ifaddr->addr_state = NET_ADDR_PREFERRED;
ifaddr = net_if_ipv6_addr_add(iface2, &my_addr2,
NET_ADDR_MANUAL, 0);
if (!ifaddr) {
DBG("Cannot add IPv6 address %s\n",
net_sprint_ipv6_addr(&my_addr2));
zassert_not_null(ifaddr, "addr2\n");
}
ifaddr->addr_state = NET_ADDR_PREFERRED;
net_if_up(iface1);
net_if_up(iface2);
/* The interface might receive data which might fail the checks
* in the iface sending function, so we need to reset the failure
* flag.
*/
test_failed = false;
}
static bool add_neighbor(struct net_if *iface, struct in6_addr *addr)
{
struct net_linkaddr_storage llstorage;
struct net_linkaddr lladdr;
struct net_nbr *nbr;
llstorage.addr[0] = 0x01;
llstorage.addr[1] = 0x02;
llstorage.addr[2] = 0x33;
llstorage.addr[3] = 0x44;
llstorage.addr[4] = 0x05;
llstorage.addr[5] = 0x06;
lladdr.len = 6U;
lladdr.addr = llstorage.addr;
lladdr.type = NET_LINK_ETHERNET;
nbr = net_ipv6_nbr_add(iface, addr, &lladdr, false,
NET_IPV6_NBR_STATE_REACHABLE);
if (!nbr) {
DBG("Cannot add dst %s to neighbor cache\n",
net_sprint_ipv6_addr(addr));
return false;
}
return true;
}
static void send_some_data(struct net_if *iface)
{
struct sockaddr_in6 dst_addr6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(TEST_PORT),
};
struct sockaddr_in6 src_addr6 = {
.sin6_family = AF_INET6,
.sin6_port = 0,
};
int ret;
ret = net_context_get(AF_INET6, SOCK_DGRAM, IPPROTO_UDP,
&udp_v6_ctx);
zassert_equal(ret, 0, "Create IPv6 UDP context failed\n");
memcpy(&src_addr6.sin6_addr, &my_addr1, sizeof(struct in6_addr));
memcpy(&dst_addr6.sin6_addr, &dst_addr, sizeof(struct in6_addr));
ret = net_context_bind(udp_v6_ctx, (struct sockaddr *)&src_addr6,
sizeof(struct sockaddr_in6));
zassert_equal(ret, 0, "Context bind failure test failed\n");
ret = add_neighbor(iface, &dst_addr);
zassert_true(ret, "Cannot add neighbor\n");
ret = net_context_sendto(udp_v6_ctx, test_data, strlen(test_data),
(struct sockaddr *)&dst_addr6,
sizeof(struct sockaddr_in6),
NULL, K_NO_WAIT, NULL);
zassert_true(ret > 0, "Send UDP pkt failed\n");
net_context_unref(udp_v6_ctx);
}
static void test_check_timestamp_before_enabling(void)
{
test_started = true;
do_timestamp = false;
send_some_data(eth_interfaces[0]);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting interface data\n");
zassert_false(true, "Timeout\n");
}
}
static void test_check_timestamp_after_enabling(void)
{
test_started = true;
do_timestamp = true;
send_some_data(eth_interfaces[0]);
if (k_sem_take(&wait_data, WAIT_TIME)) {
DBG("Timeout while waiting interface data\n");
zassert_false(true, "Timeout\n");
}
}
void test_main(void)
{
ztest_test_suite(net_tx_timestamp_test,
ztest_unit_test(test_address_setup),
ztest_unit_test(test_check_timestamp_before_enabling),
ztest_unit_test(test_timestamp_setup),
ztest_unit_test(test_timestamp_setup_2nd_iface),
ztest_unit_test(test_timestamp_setup_all),
ztest_unit_test(test_check_timestamp_after_enabling),
ztest_unit_test(test_timestamp_cleanup)
);
ztest_run_test_suite(net_tx_timestamp_test);
}