blob: f3dd2bac9049e445a91305edc4314acf777e6248 [file] [log] [blame]
/*
* Copyright (c) 2016 BayLibre, SAS
* Copyright (c) 2017 Linaro Ltd
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_i2c.h>
#include <stm32_ll_rcc.h>
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include "i2c_ll_stm32.h"
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(i2c_ll_stm32);
#include "i2c-priv.h"
int i2c_stm32_runtime_configure(const struct device *dev, uint32_t config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t clock = 0U;
int ret;
#if defined(CONFIG_SOC_SERIES_STM32F3X) || defined(CONFIG_SOC_SERIES_STM32F0X)
LL_RCC_ClocksTypeDef rcc_clocks;
/*
* STM32F0/3 I2C's independent clock source supports only
* HSI and SYSCLK, not APB1. We force clock variable to
* SYSCLK frequency.
*/
LL_RCC_GetSystemClocksFreq(&rcc_clocks);
clock = rcc_clocks.SYSCLK_Frequency;
#else
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t *) &cfg->pclken, &clock) < 0) {
LOG_ERR("Failed call clock_control_get_rate");
return -EIO;
}
#endif /* CONFIG_SOC_SERIES_STM32F3X) || CONFIG_SOC_SERIES_STM32F0X */
data->dev_config = config;
k_sem_take(&data->bus_mutex, K_FOREVER);
LL_I2C_Disable(i2c);
LL_I2C_SetMode(i2c, LL_I2C_MODE_I2C);
ret = stm32_i2c_configure_timing(dev, clock);
k_sem_give(&data->bus_mutex);
return ret;
}
static inline int
i2c_stm32_transaction(const struct device *dev,
struct i2c_msg msg, uint8_t *next_msg_flags,
uint16_t periph)
{
/*
* Perform a I2C transaction, while taking into account the STM32 I2C
* peripheral has a limited maximum chunk size. Take appropriate action
* if the message to send exceeds that limit.
*
* The last chunk of a transmission uses this function's next_msg_flags
* parameter for its backend calls (_write/_read). Any previous chunks
* use a copy of the current message's flags, with the STOP and RESTART
* bits turned off. This will cause the backend to use reload-mode,
* which will make the combination of all chunks to look like one big
* transaction on the wire.
*/
const uint32_t i2c_stm32_maxchunk = 255U;
const uint8_t saved_flags = msg.flags;
uint8_t combine_flags =
saved_flags & ~(I2C_MSG_STOP | I2C_MSG_RESTART);
uint8_t *flagsp = NULL;
uint32_t rest = msg.len;
int ret = 0;
do { /* do ... while to allow zero-length transactions */
if (msg.len > i2c_stm32_maxchunk) {
msg.len = i2c_stm32_maxchunk;
msg.flags &= ~I2C_MSG_STOP;
flagsp = &combine_flags;
} else {
msg.flags = saved_flags;
flagsp = next_msg_flags;
}
if ((msg.flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
ret = stm32_i2c_msg_write(dev, &msg, flagsp, periph);
} else {
ret = stm32_i2c_msg_read(dev, &msg, flagsp, periph);
}
if (ret < 0) {
break;
}
rest -= msg.len;
msg.buf += msg.len;
msg.len = rest;
} while (rest > 0U);
return ret;
}
#define OPERATION(msg) (((struct i2c_msg *) msg)->flags & I2C_MSG_RW_MASK)
static int i2c_stm32_transfer(const struct device *dev, struct i2c_msg *msg,
uint8_t num_msgs, uint16_t slave)
{
struct i2c_stm32_data *data = dev->data;
struct i2c_msg *current, *next;
int ret = 0;
/* Check for validity of all messages, to prevent having to abort
* in the middle of a transfer
*/
current = msg;
/*
* Set I2C_MSG_RESTART flag on first message in order to send start
* condition
*/
current->flags |= I2C_MSG_RESTART;
for (uint8_t i = 1; i <= num_msgs; i++) {
if (i < num_msgs) {
next = current + 1;
/*
* Restart condition between messages
* of different directions is required
*/
if (OPERATION(current) != OPERATION(next)) {
if (!(next->flags & I2C_MSG_RESTART)) {
ret = -EINVAL;
break;
}
}
/* Stop condition is only allowed on last message */
if (current->flags & I2C_MSG_STOP) {
ret = -EINVAL;
break;
}
} else {
/* Stop condition is required for the last message */
current->flags |= I2C_MSG_STOP;
}
current++;
}
if (ret) {
return ret;
}
/* Send out messages */
k_sem_take(&data->bus_mutex, K_FOREVER);
current = msg;
while (num_msgs > 0) {
uint8_t *next_msg_flags = NULL;
if (num_msgs > 1) {
next = current + 1;
next_msg_flags = &(next->flags);
}
ret = i2c_stm32_transaction(dev, *current, next_msg_flags, slave);
if (ret < 0) {
break;
}
current++;
num_msgs--;
}
k_sem_give(&data->bus_mutex);
return ret;
}
static const struct i2c_driver_api api_funcs = {
.configure = i2c_stm32_runtime_configure,
.transfer = i2c_stm32_transfer,
#if defined(CONFIG_I2C_TARGET)
.target_register = i2c_stm32_target_register,
.target_unregister = i2c_stm32_target_unregister,
#endif
};
static int i2c_stm32_init(const struct device *dev)
{
const struct device *clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct i2c_stm32_config *cfg = dev->config;
uint32_t bitrate_cfg;
int ret;
struct i2c_stm32_data *data = dev->data;
#ifdef CONFIG_I2C_STM32_INTERRUPT
k_sem_init(&data->device_sync_sem, 0, K_SEM_MAX_LIMIT);
cfg->irq_config_func(dev);
#endif
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("I2C pinctrl setup failed (%d)", ret);
return ret;
}
/*
* initialize mutex used when multiple transfers
* are taking place to guarantee that each one is
* atomic and has exclusive access to the I2C bus.
*/
k_sem_init(&data->bus_mutex, 1, 1);
if (clock_control_on(clock,
(clock_control_subsys_t *) &cfg->pclken) != 0) {
LOG_ERR("i2c: failure enabling clock");
return -EIO;
}
#if defined(CONFIG_SOC_SERIES_STM32F3X) || defined(CONFIG_SOC_SERIES_STM32F0X)
/*
* STM32F0/3 I2C's independent clock source supports only
* HSI and SYSCLK, not APB1. We force I2C clock source to SYSCLK.
* I2C2 on STM32F0 uses APB1 clock as I2C clock source
*/
switch ((uint32_t)cfg->i2c) {
#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c1), okay)
case DT_REG_ADDR(DT_NODELABEL(i2c1)):
LL_RCC_SetI2CClockSource(LL_RCC_I2C1_CLKSOURCE_SYSCLK);
break;
#endif
#if defined(CONFIG_SOC_SERIES_STM32F3X) && \
DT_NODE_HAS_STATUS(DT_NODELABEL(i2c2), okay)
case DT_REG_ADDR(DT_NODELABEL(i2c2)):
LL_RCC_SetI2CClockSource(LL_RCC_I2C2_CLKSOURCE_SYSCLK);
break;
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c3), okay)
case DT_REG_ADDR(DT_NODELABEL(i2c3)):
LL_RCC_SetI2CClockSource(LL_RCC_I2C3_CLKSOURCE_SYSCLK);
break;
#endif
}
#endif /* CONFIG_SOC_SERIES_STM32F3X) || CONFIG_SOC_SERIES_STM32F0X */
#if defined(CONFIG_SOC_SERIES_STM32F1X)
/*
* Force i2c reset for STM32F1 series.
* So that they can enter master mode properly.
* Issue described in ES096 2.14.7
*/
I2C_TypeDef * i2c = cfg->i2c;
LL_I2C_EnableReset(i2c);
LL_I2C_DisableReset(i2c);
#endif
bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate);
ret = i2c_stm32_runtime_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (ret < 0) {
LOG_ERR("i2c: failure initializing");
return ret;
}
return 0;
}
/* Macros for I2C instance declaration */
#ifdef CONFIG_I2C_STM32_INTERRUPT
#ifdef CONFIG_I2C_STM32_COMBINED_INTERRUPT
#define STM32_I2C_IRQ_CONNECT_AND_ENABLE(name) \
do { \
IRQ_CONNECT(DT_IRQN(DT_NODELABEL(name)), \
DT_IRQ(DT_NODELABEL(name), priority), \
stm32_i2c_combined_isr, \
DEVICE_DT_GET(DT_NODELABEL(name)), 0); \
irq_enable(DT_IRQN(DT_NODELABEL(name))); \
} while (false)
#else
#define STM32_I2C_IRQ_CONNECT_AND_ENABLE(name) \
do { \
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(name), event, irq),\
DT_IRQ_BY_NAME(DT_NODELABEL(name), event, \
priority),\
stm32_i2c_event_isr, \
DEVICE_DT_GET(DT_NODELABEL(name)), 0); \
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(name), event, irq));\
\
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(name), error, irq),\
DT_IRQ_BY_NAME(DT_NODELABEL(name), error, \
priority),\
stm32_i2c_error_isr, \
DEVICE_DT_GET(DT_NODELABEL(name)), 0); \
irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(name), error, irq));\
} while (false)
#endif /* CONFIG_I2C_STM32_COMBINED_INTERRUPT */
#define STM32_I2C_IRQ_HANDLER_DECL(name) \
static void i2c_stm32_irq_config_func_##name(const struct device *dev)
#define STM32_I2C_IRQ_HANDLER_FUNCTION(name) \
.irq_config_func = i2c_stm32_irq_config_func_##name,
#define STM32_I2C_IRQ_HANDLER(name) \
static void i2c_stm32_irq_config_func_##name(const struct device *dev) \
{ \
STM32_I2C_IRQ_CONNECT_AND_ENABLE(name); \
}
#else
#define STM32_I2C_IRQ_HANDLER_DECL(name)
#define STM32_I2C_IRQ_HANDLER_FUNCTION(name)
#define STM32_I2C_IRQ_HANDLER(name)
#endif /* CONFIG_I2C_STM32_INTERRUPT */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_i2c_v2)
#define DEFINE_TIMINGS(name) \
static const uint32_t i2c_timings_##name[] = \
DT_PROP_OR(DT_NODELABEL(name), timings, {});
#define USE_TIMINGS(name) \
.timings = (const struct i2c_config_timing *) i2c_timings_##name, \
.n_timings = ARRAY_SIZE(i2c_timings_##name),
#else /* V2 */
#define DEFINE_TIMINGS(name)
#define USE_TIMINGS(name)
#endif /* V2 */
#define STM32_I2C_INIT(name) \
STM32_I2C_IRQ_HANDLER_DECL(name); \
\
DEFINE_TIMINGS(name) \
\
PINCTRL_DT_DEFINE(DT_NODELABEL(name)); \
\
static const struct i2c_stm32_config i2c_stm32_cfg_##name = { \
.i2c = (I2C_TypeDef *)DT_REG_ADDR(DT_NODELABEL(name)), \
.pclken = { \
.enr = DT_CLOCKS_CELL(DT_NODELABEL(name), bits), \
.bus = DT_CLOCKS_CELL(DT_NODELABEL(name), bus), \
}, \
STM32_I2C_IRQ_HANDLER_FUNCTION(name) \
.bitrate = DT_PROP(DT_NODELABEL(name), clock_frequency), \
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(DT_NODELABEL(name)), \
USE_TIMINGS(name) \
}; \
\
static struct i2c_stm32_data i2c_stm32_dev_data_##name; \
\
I2C_DEVICE_DT_DEFINE(DT_NODELABEL(name), i2c_stm32_init, \
NULL, &i2c_stm32_dev_data_##name, \
&i2c_stm32_cfg_##name, \
POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&api_funcs); \
\
STM32_I2C_IRQ_HANDLER(name)
/* I2C instances declaration */
#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c1), okay)
STM32_I2C_INIT(i2c1);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c2), okay)
STM32_I2C_INIT(i2c2);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c3), okay)
STM32_I2C_INIT(i2c3);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c4), okay)
STM32_I2C_INIT(i2c4);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c5), okay)
STM32_I2C_INIT(i2c5);
#endif