| /* ieee802154_nrf5.c - nRF5 802.15.4 driver */ |
| |
| /* |
| * Copyright (c) 2017 Nordic Semiconductor ASA |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT nordic_nrf_ieee802154 |
| |
| #define LOG_MODULE_NAME ieee802154_nrf5 |
| #if defined(CONFIG_IEEE802154_DRIVER_LOG_LEVEL) |
| #define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL |
| #else |
| #define LOG_LEVEL LOG_LEVEL_NONE |
| #endif |
| |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(LOG_MODULE_NAME); |
| |
| #include <errno.h> |
| |
| #include <zephyr/kernel.h> |
| #include <zephyr/arch/cpu.h> |
| #include <zephyr/debug/stack.h> |
| |
| #include <soc.h> |
| #include <soc_secure.h> |
| #include <zephyr/device.h> |
| #include <zephyr/init.h> |
| #include <zephyr/debug/stack.h> |
| #include <zephyr/net/net_if.h> |
| #include <zephyr/net/net_pkt.h> |
| |
| #if defined(CONFIG_NET_L2_OPENTHREAD) |
| #include <zephyr/net/openthread.h> |
| #endif |
| |
| #include <zephyr/sys/byteorder.h> |
| #include <string.h> |
| #include <zephyr/random/rand32.h> |
| |
| #include <zephyr/net/ieee802154_radio.h> |
| #include <zephyr/irq.h> |
| |
| #include "ieee802154_nrf5.h" |
| #include "nrf_802154.h" |
| #include "nrf_802154_const.h" |
| |
| #if defined(CONFIG_NRF_802154_SER_HOST) |
| #include "nrf_802154_serialization_error.h" |
| #endif |
| |
| struct nrf5_802154_config { |
| void (*irq_config_func)(const struct device *dev); |
| }; |
| |
| static struct nrf5_802154_data nrf5_data; |
| |
| #define ACK_REQUEST_BYTE 1 |
| #define ACK_REQUEST_BIT (1 << 5) |
| #define FRAME_PENDING_BYTE 1 |
| #define FRAME_PENDING_BIT (1 << 4) |
| |
| #define DRX_SLOT_RX 0 /* Delayed reception window ID */ |
| |
| #if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE) |
| #if defined(CONFIG_SOC_NRF5340_CPUAPP) |
| #if defined(CONFIG_TRUSTED_EXECUTION_NONSECURE) |
| #error "NRF_UICR->OTP is not supported to read from non-secure" |
| #else |
| #define EUI64_ADDR (NRF_UICR->OTP) |
| #endif /* CONFIG_TRUSTED_EXECUTION_NONSECURE */ |
| #else |
| #define EUI64_ADDR (NRF_UICR->CUSTOMER) |
| #endif /* CONFIG_SOC_NRF5340_CPUAPP */ |
| #endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */ |
| |
| #if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE) |
| #define EUI64_ADDR_HIGH CONFIG_IEEE802154_NRF5_UICR_EUI64_REG |
| #define EUI64_ADDR_LOW (CONFIG_IEEE802154_NRF5_UICR_EUI64_REG + 1) |
| #else |
| #define EUI64_ADDR_HIGH 0 |
| #define EUI64_ADDR_LOW 1 |
| #endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */ |
| |
| /* Convenience defines for RADIO */ |
| #define NRF5_802154_DATA(dev) \ |
| ((struct nrf5_802154_data * const)(dev)->data) |
| |
| #define NRF5_802154_CFG(dev) \ |
| ((const struct nrf5_802154_config * const)(dev)->config) |
| |
| #if CONFIG_IEEE802154_VENDOR_OUI_ENABLE |
| #define IEEE802154_NRF5_VENDOR_OUI CONFIG_IEEE802154_VENDOR_OUI |
| #else |
| #define IEEE802154_NRF5_VENDOR_OUI (uint32_t)0xF4CE36 |
| #endif |
| |
| static void nrf5_get_eui64(uint8_t *mac) |
| { |
| uint64_t factoryAddress; |
| uint32_t index = 0; |
| |
| #if !defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE) |
| uint32_t deviceid[2]; |
| |
| /* Set the MAC Address Block Larger (MA-L) formerly called OUI. */ |
| mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 16) & 0xff; |
| mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 8) & 0xff; |
| mac[index++] = IEEE802154_NRF5_VENDOR_OUI & 0xff; |
| |
| soc_secure_read_deviceid(deviceid); |
| |
| factoryAddress = (uint64_t)deviceid[EUI64_ADDR_HIGH] << 32; |
| factoryAddress |= deviceid[EUI64_ADDR_LOW]; |
| #else |
| /* Use device identifier assigned during the production. */ |
| factoryAddress = (uint64_t)EUI64_ADDR[EUI64_ADDR_HIGH] << 32; |
| factoryAddress |= EUI64_ADDR[EUI64_ADDR_LOW]; |
| #endif |
| memcpy(mac + index, &factoryAddress, sizeof(factoryAddress) - index); |
| } |
| |
| static void nrf5_rx_thread(void *arg1, void *arg2, void *arg3) |
| { |
| struct nrf5_802154_data *nrf5_radio = (struct nrf5_802154_data *)arg1; |
| struct net_pkt *pkt; |
| struct nrf5_802154_rx_frame *rx_frame; |
| uint8_t pkt_len; |
| uint8_t *psdu; |
| |
| ARG_UNUSED(arg2); |
| ARG_UNUSED(arg3); |
| |
| while (1) { |
| pkt = NULL; |
| rx_frame = NULL; |
| |
| LOG_DBG("Waiting for frame"); |
| |
| rx_frame = k_fifo_get(&nrf5_radio->rx_fifo, K_FOREVER); |
| |
| __ASSERT_NO_MSG(rx_frame->psdu); |
| |
| /* rx_mpdu contains length, psdu, fcs|lqi |
| * The last 2 bytes contain LQI or FCS, depending if |
| * automatic CRC handling is enabled or not, respectively. |
| */ |
| if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) { |
| pkt_len = rx_frame->psdu[0]; |
| } else { |
| pkt_len = rx_frame->psdu[0] - NRF5_FCS_LENGTH; |
| } |
| |
| __ASSERT_NO_MSG(pkt_len <= CONFIG_NET_BUF_DATA_SIZE); |
| |
| LOG_DBG("Frame received"); |
| |
| /* Block the RX thread until net_pkt is available, so that we |
| * don't drop already ACKed frame in case of temporary net_pkt |
| * scarcity. The nRF 802154 radio driver will accumulate any |
| * incoming frames until it runs out of internal buffers (and |
| * thus stops acknowledging consecutive frames). |
| */ |
| pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, pkt_len, |
| AF_UNSPEC, 0, K_FOREVER); |
| |
| if (net_pkt_write(pkt, rx_frame->psdu + 1, pkt_len)) { |
| goto drop; |
| } |
| |
| net_pkt_set_ieee802154_lqi(pkt, rx_frame->lqi); |
| net_pkt_set_ieee802154_rssi(pkt, rx_frame->rssi); |
| net_pkt_set_ieee802154_ack_fpb(pkt, rx_frame->ack_fpb); |
| |
| #if defined(CONFIG_NET_PKT_TIMESTAMP) |
| struct net_ptp_time timestamp = { |
| .second = rx_frame->time / USEC_PER_SEC, |
| .nanosecond = |
| (rx_frame->time % USEC_PER_SEC) * NSEC_PER_USEC |
| }; |
| |
| net_pkt_set_timestamp(pkt, ×tamp); |
| #endif |
| |
| LOG_DBG("Caught a packet (%u) (LQI: %u)", |
| pkt_len, rx_frame->lqi); |
| |
| if (net_recv_data(nrf5_radio->iface, pkt) < 0) { |
| LOG_ERR("Packet dropped by NET stack"); |
| goto drop; |
| } |
| |
| psdu = rx_frame->psdu; |
| rx_frame->psdu = NULL; |
| nrf_802154_buffer_free_raw(psdu); |
| |
| if (LOG_LEVEL >= LOG_LEVEL_DBG) { |
| log_stack_usage(&nrf5_radio->rx_thread); |
| } |
| |
| continue; |
| |
| drop: |
| psdu = rx_frame->psdu; |
| rx_frame->psdu = NULL; |
| nrf_802154_buffer_free_raw(psdu); |
| |
| net_pkt_unref(pkt); |
| } |
| } |
| |
| static void nrf5_get_capabilities_at_boot(void) |
| { |
| nrf_802154_capabilities_t caps = nrf_802154_capabilities_get(); |
| |
| nrf5_data.capabilities = |
| IEEE802154_HW_FCS | |
| IEEE802154_HW_PROMISC | |
| IEEE802154_HW_FILTER | |
| ((caps & NRF_802154_CAPABILITY_CSMA) ? IEEE802154_HW_CSMA : 0UL) | |
| IEEE802154_HW_2_4_GHZ | |
| IEEE802154_HW_TX_RX_ACK | |
| IEEE802154_HW_ENERGY_SCAN | |
| ((caps & NRF_802154_CAPABILITY_DELAYED_TX) ? IEEE802154_HW_TXTIME : 0UL) | |
| ((caps & NRF_802154_CAPABILITY_DELAYED_RX) ? IEEE802154_HW_RXTIME : 0UL) | |
| IEEE802154_HW_SLEEP_TO_TX | |
| ((caps & NRF_802154_CAPABILITY_SECURITY) ? IEEE802154_HW_TX_SEC : 0UL); |
| } |
| |
| /* Radio device API */ |
| |
| static enum ieee802154_hw_caps nrf5_get_capabilities(const struct device *dev) |
| { |
| return nrf5_data.capabilities; |
| } |
| |
| static int nrf5_cca(const struct device *dev) |
| { |
| struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); |
| |
| if (!nrf_802154_cca()) { |
| LOG_DBG("CCA failed"); |
| return -EBUSY; |
| } |
| |
| /* The nRF driver guarantees that a callback will be called once |
| * the CCA function is done, thus unlocking the semaphore. |
| */ |
| k_sem_take(&nrf5_radio->cca_wait, K_FOREVER); |
| |
| LOG_DBG("Channel free? %d", nrf5_radio->channel_free); |
| |
| return nrf5_radio->channel_free ? 0 : -EBUSY; |
| } |
| |
| static int nrf5_set_channel(const struct device *dev, uint16_t channel) |
| { |
| ARG_UNUSED(dev); |
| |
| LOG_DBG("%u", channel); |
| |
| if (channel < 11 || channel > 26) { |
| return -EINVAL; |
| } |
| |
| nrf_802154_channel_set(channel); |
| |
| return 0; |
| } |
| |
| static int nrf5_energy_scan_start(const struct device *dev, |
| uint16_t duration, |
| energy_scan_done_cb_t done_cb) |
| { |
| int err = 0; |
| |
| ARG_UNUSED(dev); |
| |
| if (nrf5_data.energy_scan_done == NULL) { |
| nrf5_data.energy_scan_done = done_cb; |
| |
| if (nrf_802154_energy_detection(duration * 1000) == false) { |
| nrf5_data.energy_scan_done = NULL; |
| err = -EPERM; |
| } |
| } else { |
| err = -EALREADY; |
| } |
| |
| return err; |
| } |
| |
| static int nrf5_set_pan_id(const struct device *dev, uint16_t pan_id) |
| { |
| uint8_t pan_id_le[2]; |
| |
| ARG_UNUSED(dev); |
| |
| sys_put_le16(pan_id, pan_id_le); |
| nrf_802154_pan_id_set(pan_id_le); |
| |
| LOG_DBG("0x%x", pan_id); |
| |
| return 0; |
| } |
| |
| static int nrf5_set_short_addr(const struct device *dev, uint16_t short_addr) |
| { |
| uint8_t short_addr_le[2]; |
| |
| ARG_UNUSED(dev); |
| |
| sys_put_le16(short_addr, short_addr_le); |
| nrf_802154_short_address_set(short_addr_le); |
| |
| LOG_DBG("0x%x", short_addr); |
| |
| return 0; |
| } |
| |
| static int nrf5_set_ieee_addr(const struct device *dev, |
| const uint8_t *ieee_addr) |
| { |
| ARG_UNUSED(dev); |
| |
| LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", |
| ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4], |
| ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]); |
| |
| nrf_802154_extended_address_set(ieee_addr); |
| |
| return 0; |
| } |
| |
| static int nrf5_filter(const struct device *dev, bool set, |
| enum ieee802154_filter_type type, |
| const struct ieee802154_filter *filter) |
| { |
| LOG_DBG("Applying filter %u", type); |
| |
| if (!set) { |
| return -ENOTSUP; |
| } |
| |
| if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) { |
| return nrf5_set_ieee_addr(dev, filter->ieee_addr); |
| } else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) { |
| return nrf5_set_short_addr(dev, filter->short_addr); |
| } else if (type == IEEE802154_FILTER_TYPE_PAN_ID) { |
| return nrf5_set_pan_id(dev, filter->pan_id); |
| } |
| |
| return -ENOTSUP; |
| } |
| |
| static int nrf5_set_txpower(const struct device *dev, int16_t dbm) |
| { |
| ARG_UNUSED(dev); |
| |
| LOG_DBG("%d", dbm); |
| |
| nrf_802154_tx_power_set(dbm); |
| |
| return 0; |
| } |
| |
| static int handle_ack(struct nrf5_802154_data *nrf5_radio) |
| { |
| uint8_t ack_len; |
| struct net_pkt *ack_pkt; |
| int err = 0; |
| |
| if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) { |
| ack_len = nrf5_radio->ack_frame.psdu[0]; |
| } else { |
| ack_len = nrf5_radio->ack_frame.psdu[0] - NRF5_FCS_LENGTH; |
| } |
| |
| ack_pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, ack_len, |
| AF_UNSPEC, 0, K_NO_WAIT); |
| if (!ack_pkt) { |
| LOG_ERR("No free packet available."); |
| err = -ENOMEM; |
| goto free_nrf_ack; |
| } |
| |
| /* Upper layers expect the frame to start at the MAC header, skip the |
| * PHY header (1 byte). |
| */ |
| if (net_pkt_write(ack_pkt, nrf5_radio->ack_frame.psdu + 1, |
| ack_len) < 0) { |
| LOG_ERR("Failed to write to a packet."); |
| err = -ENOMEM; |
| goto free_net_ack; |
| } |
| |
| net_pkt_set_ieee802154_lqi(ack_pkt, nrf5_radio->ack_frame.lqi); |
| net_pkt_set_ieee802154_rssi(ack_pkt, nrf5_radio->ack_frame.rssi); |
| |
| #if defined(CONFIG_NET_PKT_TIMESTAMP) |
| struct net_ptp_time timestamp = { |
| .second = nrf5_radio->ack_frame.time / USEC_PER_SEC, |
| .nanosecond = (nrf5_radio->ack_frame.time % USEC_PER_SEC) * NSEC_PER_USEC |
| }; |
| |
| net_pkt_set_timestamp(ack_pkt, ×tamp); |
| #endif |
| |
| net_pkt_cursor_init(ack_pkt); |
| |
| if (ieee802154_radio_handle_ack(nrf5_radio->iface, ack_pkt) != NET_OK) { |
| LOG_INF("ACK packet not handled - releasing."); |
| } |
| |
| free_net_ack: |
| net_pkt_unref(ack_pkt); |
| |
| free_nrf_ack: |
| nrf_802154_buffer_free_raw(nrf5_radio->ack_frame.psdu); |
| nrf5_radio->ack_frame.psdu = NULL; |
| |
| return err; |
| } |
| |
| static void nrf5_tx_started(const struct device *dev, |
| struct net_pkt *pkt, |
| struct net_buf *frag) |
| { |
| ARG_UNUSED(pkt); |
| |
| if (nrf5_data.event_handler) { |
| nrf5_data.event_handler(dev, IEEE802154_EVENT_TX_STARTED, |
| (void *)frag); |
| } |
| } |
| |
| static bool nrf5_tx_immediate(struct net_pkt *pkt, uint8_t *payload, bool cca) |
| { |
| nrf_802154_transmit_metadata_t metadata = { |
| .frame_props = { |
| .is_secured = net_pkt_ieee802154_frame_secured(pkt), |
| .dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt), |
| }, |
| .cca = cca, |
| .tx_power = { |
| .use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER), |
| #if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER) |
| .power = net_pkt_ieee802154_txpwr(pkt), |
| #endif |
| }, |
| }; |
| |
| return nrf_802154_transmit_raw(payload, &metadata); |
| } |
| |
| #if NRF_802154_CSMA_CA_ENABLED |
| static bool nrf5_tx_csma_ca(struct net_pkt *pkt, uint8_t *payload) |
| { |
| nrf_802154_transmit_csma_ca_metadata_t metadata = { |
| .frame_props = { |
| .is_secured = net_pkt_ieee802154_frame_secured(pkt), |
| .dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt), |
| }, |
| .tx_power = { |
| .use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER), |
| #if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER) |
| .power = net_pkt_ieee802154_txpwr(pkt), |
| #endif |
| }, |
| }; |
| |
| return nrf_802154_transmit_csma_ca_raw(payload, &metadata); |
| } |
| #endif |
| |
| #if defined(CONFIG_NET_PKT_TXTIME) |
| /** |
| * @brief Convert 32-bit target time to absolute 64-bit target time. |
| */ |
| static uint64_t target_time_convert_to_64_bits(uint32_t target_time) |
| { |
| /** |
| * Target time is provided as two 32-bit integers defining a moment in time |
| * in microsecond domain. In order to use bit-shifting instead of modulo |
| * division, calculations are performed in microsecond domain, not in RTC ticks. |
| * |
| * The target time can point to a moment in the future, but can be overdue |
| * as well. In order to determine what's the case and correctly set the |
| * absolute target time, it's necessary to compare the least significant |
| * 32 bits of the current time, 64-bit time with the provided 32-bit target |
| * time. Let's assume that half of the 32-bit range can be used for specifying |
| * target times in the future, and the other half - in the past. |
| */ |
| uint64_t now_us = nrf_802154_time_get(); |
| uint32_t now_us_wrapped = (uint32_t)now_us; |
| uint32_t time_diff = target_time - now_us_wrapped; |
| uint64_t result = UINT64_C(0); |
| |
| if (time_diff < 0x80000000) { |
| /** |
| * Target time is assumed to be in the future. Check if a 32-bit overflow |
| * occurs between the current time and the target time. |
| */ |
| if (now_us_wrapped > target_time) { |
| /** |
| * Add a 32-bit overflow and replace the least significant 32 bits |
| * with the provided target time. |
| */ |
| result = now_us + UINT32_MAX + 1; |
| result &= ~(uint64_t)UINT32_MAX; |
| result |= target_time; |
| } else { |
| /** |
| * Leave the most significant 32 bits and replace the least significant |
| * 32 bits with the provided target time. |
| */ |
| result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time; |
| } |
| } else { |
| /** |
| * Target time is assumed to be in the past. Check if a 32-bit overflow |
| * occurs between the target time and the current time. |
| */ |
| if (now_us_wrapped > target_time) { |
| /** |
| * Leave the most significant 32 bits and replace the least significant |
| * 32 bits with the provided target time. |
| */ |
| result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time; |
| } else { |
| /** |
| * Subtract a 32-bit overflow and replace the least significant |
| * 32 bits with the provided target time. |
| */ |
| result = now_us - UINT32_MAX - 1; |
| result &= ~(uint64_t)UINT32_MAX; |
| result |= target_time; |
| } |
| } |
| |
| return result; |
| } |
| |
| static bool nrf5_tx_at(struct net_pkt *pkt, uint8_t *payload, bool cca) |
| { |
| nrf_802154_transmit_at_metadata_t metadata = { |
| .frame_props = { |
| .is_secured = net_pkt_ieee802154_frame_secured(pkt), |
| .dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt), |
| }, |
| .cca = cca, |
| .channel = nrf_802154_channel_get(), |
| .tx_power = { |
| .use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER), |
| #if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER) |
| .power = net_pkt_ieee802154_txpwr(pkt), |
| #endif |
| }, |
| }; |
| uint64_t tx_at = target_time_convert_to_64_bits(net_pkt_txtime(pkt) / NSEC_PER_USEC); |
| bool ret; |
| |
| ret = nrf_802154_transmit_raw_at(payload, |
| tx_at, |
| &metadata); |
| if (nrf5_data.event_handler) { |
| LOG_WRN("TX_STARTED event will be triggered without delay"); |
| } |
| return ret; |
| } |
| #endif /* CONFIG_NET_PKT_TXTIME */ |
| |
| static int nrf5_tx(const struct device *dev, |
| enum ieee802154_tx_mode mode, |
| struct net_pkt *pkt, |
| struct net_buf *frag) |
| { |
| struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); |
| uint8_t payload_len = frag->len; |
| uint8_t *payload = frag->data; |
| bool ret = true; |
| |
| LOG_DBG("%p (%u)", payload, payload_len); |
| |
| nrf5_radio->tx_psdu[0] = payload_len + NRF5_FCS_LENGTH; |
| memcpy(nrf5_radio->tx_psdu + 1, payload, payload_len); |
| |
| /* Reset semaphore in case ACK was received after timeout */ |
| k_sem_reset(&nrf5_radio->tx_wait); |
| |
| switch (mode) { |
| case IEEE802154_TX_MODE_DIRECT: |
| case IEEE802154_TX_MODE_CCA: |
| ret = nrf5_tx_immediate(pkt, nrf5_radio->tx_psdu, |
| mode == IEEE802154_TX_MODE_CCA); |
| break; |
| #if NRF_802154_CSMA_CA_ENABLED |
| case IEEE802154_TX_MODE_CSMA_CA: |
| ret = nrf5_tx_csma_ca(pkt, nrf5_radio->tx_psdu); |
| break; |
| #endif |
| #if defined(CONFIG_NET_PKT_TXTIME) |
| case IEEE802154_TX_MODE_TXTIME: |
| case IEEE802154_TX_MODE_TXTIME_CCA: |
| __ASSERT_NO_MSG(pkt); |
| ret = nrf5_tx_at(pkt, nrf5_radio->tx_psdu, |
| mode == IEEE802154_TX_MODE_TXTIME_CCA); |
| break; |
| #endif /* CONFIG_NET_PKT_TXTIME */ |
| default: |
| NET_ERR("TX mode %d not supported", mode); |
| return -ENOTSUP; |
| } |
| |
| if (!ret) { |
| LOG_ERR("Cannot send frame"); |
| return -EIO; |
| } |
| |
| nrf5_tx_started(dev, pkt, frag); |
| |
| LOG_DBG("Sending frame (ch:%d, txpower:%d)", |
| nrf_802154_channel_get(), nrf_802154_tx_power_get()); |
| |
| /* Wait for the callback from the radio driver. */ |
| k_sem_take(&nrf5_radio->tx_wait, K_FOREVER); |
| |
| LOG_DBG("Result: %d", nrf5_data.tx_result); |
| |
| #if defined(CONFIG_IEEE802154_2015) |
| /* |
| * When frame encryption by the radio driver is enabled, the frame stored in |
| * the tx_psdu buffer is: |
| * 1) authenticated and encrypted in place which causes that after an unsuccessful |
| * TX attempt, this frame must be propagated back to the upper layer for retransmission. |
| * The upper layer must ensure that the exact same secured frame is used for |
| * retransmission |
| * 2) frame counters are updated in place and for keeping the link frame counter up to date, |
| * this information must be propagated back to the upper layer |
| */ |
| memcpy(payload, nrf5_radio->tx_psdu + 1, payload_len); |
| #endif |
| net_pkt_set_ieee802154_frame_secured(pkt, nrf5_radio->tx_frame_is_secured); |
| net_pkt_set_ieee802154_mac_hdr_rdy(pkt, nrf5_radio->tx_frame_mac_hdr_rdy); |
| |
| switch (nrf5_radio->tx_result) { |
| case NRF_802154_TX_ERROR_NONE: |
| if (nrf5_radio->ack_frame.psdu == NULL) { |
| /* No ACK was requested. */ |
| return 0; |
| } |
| /* Handle ACK packet. */ |
| return handle_ack(nrf5_radio); |
| case NRF_802154_TX_ERROR_NO_MEM: |
| return -ENOBUFS; |
| case NRF_802154_TX_ERROR_BUSY_CHANNEL: |
| return -EBUSY; |
| case NRF_802154_TX_ERROR_INVALID_ACK: |
| case NRF_802154_TX_ERROR_NO_ACK: |
| return -ENOMSG; |
| case NRF_802154_TX_ERROR_ABORTED: |
| case NRF_802154_TX_ERROR_TIMESLOT_DENIED: |
| case NRF_802154_TX_ERROR_TIMESLOT_ENDED: |
| default: |
| return -EIO; |
| } |
| } |
| |
| static uint64_t nrf5_get_time(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| return nrf_802154_time_get(); |
| } |
| |
| static uint8_t nrf5_get_acc(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| return CONFIG_IEEE802154_NRF5_DELAY_TRX_ACC; |
| } |
| |
| static int nrf5_start(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| if (!nrf_802154_receive()) { |
| LOG_ERR("Failed to enter receive state"); |
| return -EIO; |
| } |
| |
| LOG_DBG("nRF5 802154 radio started (channel: %d)", |
| nrf_802154_channel_get()); |
| |
| return 0; |
| } |
| |
| static int nrf5_stop(const struct device *dev) |
| { |
| #if defined(CONFIG_IEEE802154_CSL_ENDPOINT) |
| if (nrf_802154_sleep_if_idle() != NRF_802154_SLEEP_ERROR_NONE) { |
| if (nrf5_data.event_handler) { |
| nrf5_data.event_handler(dev, IEEE802154_EVENT_SLEEP, NULL); |
| } else { |
| LOG_WRN("Transition to radio sleep cannot be handled."); |
| } |
| return 0; |
| } |
| #else |
| ARG_UNUSED(dev); |
| |
| if (!nrf_802154_sleep()) { |
| LOG_ERR("Error while stopping radio"); |
| return -EIO; |
| } |
| #endif |
| |
| LOG_DBG("nRF5 802154 radio stopped"); |
| |
| return 0; |
| } |
| |
| #if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT) |
| static void nrf5_radio_irq(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| nrf_802154_radio_irq_handler(); |
| } |
| #endif |
| |
| static void nrf5_irq_config(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| #if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT) |
| IRQ_CONNECT(RADIO_IRQn, NRF_802154_IRQ_PRIORITY, |
| nrf5_radio_irq, NULL, 0); |
| irq_enable(RADIO_IRQn); |
| #endif |
| } |
| |
| static int nrf5_init(const struct device *dev) |
| { |
| const struct nrf5_802154_config *nrf5_radio_cfg = NRF5_802154_CFG(dev); |
| struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); |
| |
| k_fifo_init(&nrf5_radio->rx_fifo); |
| k_sem_init(&nrf5_radio->tx_wait, 0, 1); |
| k_sem_init(&nrf5_radio->cca_wait, 0, 1); |
| |
| nrf_802154_init(); |
| |
| nrf5_get_capabilities_at_boot(); |
| |
| nrf5_radio_cfg->irq_config_func(dev); |
| |
| k_thread_create(&nrf5_radio->rx_thread, nrf5_radio->rx_stack, |
| CONFIG_IEEE802154_NRF5_RX_STACK_SIZE, |
| nrf5_rx_thread, nrf5_radio, NULL, NULL, |
| K_PRIO_COOP(2), 0, K_NO_WAIT); |
| |
| k_thread_name_set(&nrf5_radio->rx_thread, "nrf5_rx"); |
| |
| LOG_INF("nRF5 802154 radio initialized"); |
| |
| return 0; |
| } |
| |
| static void nrf5_iface_init(struct net_if *iface) |
| { |
| const struct device *dev = net_if_get_device(iface); |
| struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); |
| |
| nrf5_get_eui64(nrf5_radio->mac); |
| net_if_set_link_addr(iface, nrf5_radio->mac, sizeof(nrf5_radio->mac), |
| NET_LINK_IEEE802154); |
| |
| nrf5_radio->iface = iface; |
| |
| ieee802154_init(iface); |
| } |
| |
| #if defined(CONFIG_IEEE802154_2015) |
| static void nrf5_config_mac_keys(struct ieee802154_key *mac_keys) |
| { |
| static nrf_802154_key_id_t stored_key_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE]; |
| static uint8_t stored_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE]; |
| uint8_t i; |
| |
| for (i = 0; i < NRF_802154_SECURITY_KEY_STORAGE_SIZE && stored_key_ids[i].p_key_id; i++) { |
| nrf_802154_security_key_remove(&stored_key_ids[i]); |
| stored_key_ids[i].p_key_id = NULL; |
| } |
| |
| i = 0; |
| for (struct ieee802154_key *keys = mac_keys; keys->key_value |
| && i < NRF_802154_SECURITY_KEY_STORAGE_SIZE; keys++, i++) { |
| nrf_802154_key_t key = { |
| .value.p_cleartext_key = keys->key_value, |
| .id.mode = keys->key_id_mode, |
| .id.p_key_id = &(keys->key_index), |
| .type = NRF_802154_KEY_CLEARTEXT, |
| .frame_counter = 0, |
| .use_global_frame_counter = !(keys->frame_counter_per_key), |
| }; |
| |
| __ASSERT_EVAL((void)nrf_802154_security_key_store(&key), |
| nrf_802154_security_error_t err = nrf_802154_security_key_store(&key), |
| err == NRF_802154_SECURITY_ERROR_NONE || |
| err == NRF_802154_SECURITY_ERROR_ALREADY_PRESENT, |
| "Storing key failed, err: %d", err); |
| |
| stored_ids[i] = *key.id.p_key_id; |
| stored_key_ids[i].mode = key.id.mode; |
| stored_key_ids[i].p_key_id = &stored_ids[i]; |
| }; |
| } |
| #endif /* CONFIG_IEEE802154_2015 */ |
| |
| #if defined(CONFIG_IEEE802154_CSL_ENDPOINT) |
| static void nrf5_receive_at(uint32_t start, uint32_t duration, uint8_t channel, uint32_t id) |
| { |
| /* |
| * Workaround until OpenThread (the only CSL user in Zephyr so far) is able to schedule |
| * RX windows using 64-bit time. |
| */ |
| uint64_t rx_time = target_time_convert_to_64_bits(start); |
| |
| nrf_802154_receive_at(rx_time, duration, channel, id); |
| } |
| |
| static void nrf5_config_csl_period(uint16_t period) |
| { |
| nrf_802154_csl_writer_period_set(period); |
| |
| /* Update the CSL anchor time to match the nearest requested CSL window, so that |
| * the proper CSL Phase in the transmitted CSL Information Elements can be injected. |
| */ |
| if (period > 0) { |
| nrf_802154_csl_writer_anchor_time_set(nrf5_data.csl_rx_time); |
| } |
| } |
| |
| static void nrf5_schedule_rx(uint8_t channel, uint32_t start, uint32_t duration) |
| { |
| nrf5_receive_at(start, duration, channel, DRX_SLOT_RX); |
| |
| /* Update the CSL anchor time to match the nearest requested CSL window, so that |
| * the proper CSL Phase in the transmitted CSL Information Elements can be injected. |
| * |
| * Note that even if the nrf5_schedule_rx function is not called in time (for example |
| * due to the call being blocked by higher priority threads) and the delayed reception |
| * window is not scheduled, the CSL phase will still be calculated as if the following |
| * reception windows were at times anchor_time + n * csl_period. The previously set |
| * anchor_time will be used for calculations. |
| */ |
| nrf_802154_csl_writer_anchor_time_set(nrf5_data.csl_rx_time); |
| } |
| #endif /* CONFIG_IEEE802154_CSL_ENDPOINT */ |
| |
| static int nrf5_configure(const struct device *dev, |
| enum ieee802154_config_type type, |
| const struct ieee802154_config *config) |
| { |
| ARG_UNUSED(dev); |
| |
| switch (type) { |
| case IEEE802154_CONFIG_AUTO_ACK_FPB: |
| if (config->auto_ack_fpb.enabled) { |
| switch (config->auto_ack_fpb.mode) { |
| case IEEE802154_FPB_ADDR_MATCH_THREAD: |
| nrf_802154_src_addr_matching_method_set( |
| NRF_802154_SRC_ADDR_MATCH_THREAD); |
| break; |
| |
| case IEEE802154_FPB_ADDR_MATCH_ZIGBEE: |
| nrf_802154_src_addr_matching_method_set( |
| NRF_802154_SRC_ADDR_MATCH_ZIGBEE); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| nrf_802154_auto_pending_bit_set(config->auto_ack_fpb.enabled); |
| break; |
| |
| case IEEE802154_CONFIG_ACK_FPB: |
| if (config->ack_fpb.enabled) { |
| if (!nrf_802154_pending_bit_for_addr_set( |
| config->ack_fpb.addr, |
| config->ack_fpb.extended)) { |
| return -ENOMEM; |
| } |
| |
| break; |
| } |
| |
| if (config->ack_fpb.addr != NULL) { |
| if (!nrf_802154_pending_bit_for_addr_clear( |
| config->ack_fpb.addr, |
| config->ack_fpb.extended)) { |
| return -ENOENT; |
| } |
| } else { |
| nrf_802154_pending_bit_for_addr_reset( |
| config->ack_fpb.extended); |
| } |
| |
| break; |
| |
| case IEEE802154_CONFIG_PAN_COORDINATOR: |
| nrf_802154_pan_coord_set(config->pan_coordinator); |
| break; |
| |
| case IEEE802154_CONFIG_PROMISCUOUS: |
| nrf_802154_promiscuous_set(config->promiscuous); |
| break; |
| |
| case IEEE802154_CONFIG_EVENT_HANDLER: |
| nrf5_data.event_handler = config->event_handler; |
| break; |
| |
| #if defined(CONFIG_IEEE802154_2015) |
| case IEEE802154_CONFIG_MAC_KEYS: |
| nrf5_config_mac_keys(config->mac_keys); |
| break; |
| |
| case IEEE802154_CONFIG_FRAME_COUNTER: |
| nrf_802154_security_global_frame_counter_set(config->frame_counter); |
| break; |
| #endif /* CONFIG_IEEE802154_2015 */ |
| |
| case IEEE802154_CONFIG_ENH_ACK_HEADER_IE: { |
| uint8_t short_addr_le[SHORT_ADDRESS_SIZE]; |
| uint8_t ext_addr_le[EXTENDED_ADDRESS_SIZE]; |
| |
| sys_put_le16(config->ack_ie.short_addr, short_addr_le); |
| /** |
| * The extended address field passed to this function starts |
| * with the most significant octet and ends with the least |
| * significant octet (i.e. big endian byte order). |
| * The IEEE 802.15.4 transmission order mandates this order to be |
| * reversed (i.e. little endian byte order) in a transmitted frame. |
| * |
| * The nrf_802154_ack_data_set expects extended address in transmission |
| * order. |
| */ |
| sys_memcpy_swap(ext_addr_le, config->ack_ie.ext_addr, EXTENDED_ADDRESS_SIZE); |
| |
| if (config->ack_ie.data_len > 0) { |
| nrf_802154_ack_data_set(short_addr_le, false, config->ack_ie.data, |
| config->ack_ie.data_len, NRF_802154_ACK_DATA_IE); |
| nrf_802154_ack_data_set(ext_addr_le, true, config->ack_ie.data, |
| config->ack_ie.data_len, NRF_802154_ACK_DATA_IE); |
| } else { |
| nrf_802154_ack_data_clear(short_addr_le, false, NRF_802154_ACK_DATA_IE); |
| nrf_802154_ack_data_clear(ext_addr_le, true, NRF_802154_ACK_DATA_IE); |
| } |
| } break; |
| |
| #if defined(CONFIG_IEEE802154_CSL_ENDPOINT) |
| case IEEE802154_CONFIG_CSL_RX_TIME: |
| nrf5_data.csl_rx_time = config->csl_rx_time; |
| break; |
| |
| case IEEE802154_CONFIG_RX_SLOT: |
| nrf5_schedule_rx(config->rx_slot.channel, config->rx_slot.start, |
| config->rx_slot.duration); |
| break; |
| |
| case IEEE802154_CONFIG_CSL_PERIOD: |
| nrf5_config_csl_period(config->csl_period); |
| break; |
| #endif /* CONFIG_IEEE802154_CSL_ENDPOINT */ |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* nRF5 radio driver callbacks */ |
| |
| void nrf_802154_received_timestamp_raw(uint8_t *data, int8_t power, uint8_t lqi, uint64_t time) |
| { |
| for (uint32_t i = 0; i < ARRAY_SIZE(nrf5_data.rx_frames); i++) { |
| if (nrf5_data.rx_frames[i].psdu != NULL) { |
| continue; |
| } |
| |
| nrf5_data.rx_frames[i].psdu = data; |
| nrf5_data.rx_frames[i].rssi = power; |
| nrf5_data.rx_frames[i].lqi = lqi; |
| |
| #if defined(CONFIG_NET_PKT_TIMESTAMP) |
| nrf5_data.rx_frames[i].time = nrf_802154_mhr_timestamp_get(time, data[0]); |
| #endif |
| |
| if (data[ACK_REQUEST_BYTE] & ACK_REQUEST_BIT) { |
| nrf5_data.rx_frames[i].ack_fpb = nrf5_data.last_frame_ack_fpb; |
| } else { |
| nrf5_data.rx_frames[i].ack_fpb = false; |
| } |
| |
| nrf5_data.last_frame_ack_fpb = false; |
| |
| k_fifo_put(&nrf5_data.rx_fifo, &nrf5_data.rx_frames[i]); |
| |
| return; |
| } |
| |
| __ASSERT(false, "Not enough rx frames allocated for 15.4 driver"); |
| } |
| |
| void nrf_802154_receive_failed(nrf_802154_rx_error_t error, uint32_t id) |
| { |
| const struct device *dev = net_if_get_device(nrf5_data.iface); |
| |
| #if defined(CONFIG_IEEE802154_CSL_ENDPOINT) |
| if (id == DRX_SLOT_RX) { |
| __ASSERT_NO_MSG(nrf5_data.event_handler); |
| nrf5_data.event_handler(dev, IEEE802154_EVENT_SLEEP, NULL); |
| if (error == NRF_802154_RX_ERROR_DELAYED_TIMEOUT) { |
| return; |
| } |
| } |
| #else |
| ARG_UNUSED(id); |
| #endif |
| |
| enum ieee802154_rx_fail_reason reason; |
| |
| switch (error) { |
| case NRF_802154_RX_ERROR_INVALID_FRAME: |
| case NRF_802154_RX_ERROR_DELAYED_TIMEOUT: |
| reason = IEEE802154_RX_FAIL_NOT_RECEIVED; |
| break; |
| |
| case NRF_802154_RX_ERROR_INVALID_FCS: |
| reason = IEEE802154_RX_FAIL_INVALID_FCS; |
| break; |
| |
| case NRF_802154_RX_ERROR_INVALID_DEST_ADDR: |
| reason = IEEE802154_RX_FAIL_ADDR_FILTERED; |
| break; |
| |
| default: |
| reason = IEEE802154_RX_FAIL_OTHER; |
| break; |
| } |
| |
| if (IS_ENABLED(CONFIG_IEEE802154_NRF5_LOG_RX_FAILURES)) { |
| LOG_INF("Rx failed, error = %d", error); |
| } |
| |
| nrf5_data.last_frame_ack_fpb = false; |
| if (nrf5_data.event_handler) { |
| nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_FAILED, (void *)&reason); |
| } |
| } |
| |
| void nrf_802154_tx_ack_started(const uint8_t *data) |
| { |
| nrf5_data.last_frame_ack_fpb = |
| data[FRAME_PENDING_BYTE] & FRAME_PENDING_BIT; |
| } |
| |
| void nrf_802154_transmitted_raw(uint8_t *frame, |
| const nrf_802154_transmit_done_metadata_t *metadata) |
| { |
| ARG_UNUSED(frame); |
| |
| nrf5_data.tx_result = NRF_802154_TX_ERROR_NONE; |
| nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured; |
| nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set; |
| nrf5_data.ack_frame.psdu = metadata->data.transmitted.p_ack; |
| |
| if (nrf5_data.ack_frame.psdu) { |
| nrf5_data.ack_frame.rssi = metadata->data.transmitted.power; |
| nrf5_data.ack_frame.lqi = metadata->data.transmitted.lqi; |
| |
| #if defined(CONFIG_NET_PKT_TIMESTAMP) |
| nrf5_data.ack_frame.time = |
| nrf_802154_mhr_timestamp_get( |
| metadata->data.transmitted.time, nrf5_data.ack_frame.psdu[0]); |
| #endif |
| } |
| |
| k_sem_give(&nrf5_data.tx_wait); |
| } |
| |
| void nrf_802154_transmit_failed(uint8_t *frame, |
| nrf_802154_tx_error_t error, |
| const nrf_802154_transmit_done_metadata_t *metadata) |
| { |
| ARG_UNUSED(frame); |
| |
| nrf5_data.tx_result = error; |
| nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured; |
| nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set; |
| |
| k_sem_give(&nrf5_data.tx_wait); |
| } |
| |
| void nrf_802154_cca_done(bool channel_free) |
| { |
| nrf5_data.channel_free = channel_free; |
| |
| k_sem_give(&nrf5_data.cca_wait); |
| } |
| |
| void nrf_802154_cca_failed(nrf_802154_cca_error_t error) |
| { |
| ARG_UNUSED(error); |
| |
| nrf5_data.channel_free = false; |
| |
| k_sem_give(&nrf5_data.cca_wait); |
| } |
| |
| void nrf_802154_energy_detected(uint8_t result) |
| { |
| if (nrf5_data.energy_scan_done != NULL) { |
| int16_t dbm; |
| energy_scan_done_cb_t callback = nrf5_data.energy_scan_done; |
| |
| nrf5_data.energy_scan_done = NULL; |
| dbm = nrf_802154_dbm_from_energy_level_calculate(result); |
| callback(net_if_get_device(nrf5_data.iface), dbm); |
| } |
| } |
| |
| void nrf_802154_energy_detection_failed(nrf_802154_ed_error_t error) |
| { |
| if (nrf5_data.energy_scan_done != NULL) { |
| energy_scan_done_cb_t callback = nrf5_data.energy_scan_done; |
| |
| nrf5_data.energy_scan_done = NULL; |
| callback(net_if_get_device(nrf5_data.iface), SHRT_MAX); |
| } |
| } |
| |
| #if defined(CONFIG_NRF_802154_SER_HOST) |
| void nrf_802154_serialization_error(const nrf_802154_ser_err_data_t *err) |
| { |
| __ASSERT(false, "802.15.4 serialization error: %d", err->reason); |
| } |
| #endif |
| |
| static const struct nrf5_802154_config nrf5_radio_cfg = { |
| .irq_config_func = nrf5_irq_config, |
| }; |
| |
| static struct ieee802154_radio_api nrf5_radio_api = { |
| .iface_api.init = nrf5_iface_init, |
| |
| .get_capabilities = nrf5_get_capabilities, |
| .cca = nrf5_cca, |
| .set_channel = nrf5_set_channel, |
| .filter = nrf5_filter, |
| .set_txpower = nrf5_set_txpower, |
| .start = nrf5_start, |
| .stop = nrf5_stop, |
| .tx = nrf5_tx, |
| .ed_scan = nrf5_energy_scan_start, |
| .get_time = nrf5_get_time, |
| .get_sch_acc = nrf5_get_acc, |
| .configure = nrf5_configure, |
| }; |
| |
| #if defined(CONFIG_NET_L2_IEEE802154) |
| #define L2 IEEE802154_L2 |
| #define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2) |
| #define MTU IEEE802154_MTU |
| #elif defined(CONFIG_NET_L2_OPENTHREAD) |
| #define L2 OPENTHREAD_L2 |
| #define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2) |
| #define MTU 1280 |
| #elif defined(CONFIG_NET_L2_CUSTOM_IEEE802154) |
| #define L2 CUSTOM_IEEE802154_L2 |
| #define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(CUSTOM_IEEE802154_L2) |
| #define MTU CONFIG_NET_L2_CUSTOM_IEEE802154_MTU |
| #endif |
| |
| #if defined(CONFIG_NET_L2_PHY_IEEE802154) |
| NET_DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg, |
| CONFIG_IEEE802154_NRF5_INIT_PRIO, &nrf5_radio_api, L2, |
| L2_CTX_TYPE, MTU); |
| #else |
| DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg, |
| POST_KERNEL, CONFIG_IEEE802154_NRF5_INIT_PRIO, |
| &nrf5_radio_api); |
| #endif |