| /* |
| * Copyright (c) 2019 Intel Corporation |
| * Copyright (c) 2012-2014 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/kernel.h> |
| #include <zephyr/sys/printk.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/usb/usb_device.h> |
| |
| /* |
| * The hello world demo has two threads that utilize semaphores and sleeping |
| * to take turns printing a greeting message at a controlled rate. The demo |
| * shows both the static and dynamic approaches for spawning a thread; a real |
| * world application would likely use the static approach for both threads. |
| */ |
| |
| |
| /* size of stack area used by each thread */ |
| #define STACKSIZE (2048) |
| |
| /* scheduling priority used by each thread */ |
| #define PRIORITY 7 |
| |
| /* delay between greetings (in ms) */ |
| #define SLEEPTIME 500 |
| |
| |
| /* |
| * @param my_name thread identification string |
| * @param my_sem thread's own semaphore |
| * @param other_sem other thread's semaphore |
| */ |
| void helloLoop(const char *my_name, |
| struct k_sem *my_sem, struct k_sem *other_sem) |
| { |
| const char *tname; |
| |
| while (1) { |
| /* take my semaphore */ |
| k_sem_take(my_sem, K_FOREVER); |
| |
| /* say "hello" */ |
| tname = k_thread_name_get(k_current_get()); |
| if (tname == NULL) { |
| printk("%s: Hello World from %s!\n", |
| my_name, CONFIG_BOARD); |
| } else { |
| printk("%s: Hello World from %s!\n", |
| tname, CONFIG_BOARD); |
| } |
| |
| /* wait a while, then let other thread have a turn */ |
| k_msleep(SLEEPTIME); |
| k_sem_give(other_sem); |
| } |
| } |
| |
| /* define semaphores */ |
| |
| K_SEM_DEFINE(threadA_sem, 1, 1); /* starts off "available" */ |
| K_SEM_DEFINE(threadB_sem, 0, 1); /* starts off "not available" */ |
| |
| |
| /* threadB is a dynamic thread that is spawned by threadA */ |
| |
| void threadB(void *dummy1, void *dummy2, void *dummy3) |
| { |
| ARG_UNUSED(dummy1); |
| ARG_UNUSED(dummy2); |
| ARG_UNUSED(dummy3); |
| |
| /* invoke routine to ping-pong hello messages with threadA */ |
| helloLoop(__func__, &threadB_sem, &threadA_sem); |
| } |
| |
| K_THREAD_STACK_DEFINE(threadB_stack_area, STACKSIZE); |
| static struct k_thread threadB_data; |
| |
| /* threadA is a static thread that is spawned automatically */ |
| |
| void threadA(void *dummy1, void *dummy2, void *dummy3) |
| { |
| ARG_UNUSED(dummy1); |
| ARG_UNUSED(dummy2); |
| ARG_UNUSED(dummy3); |
| |
| #if defined(CONFIG_USB_DEVICE_STACK) |
| int ret; |
| |
| ret = usb_enable(NULL); |
| if (ret) { |
| printk("usb backend enable failed"); |
| return; |
| } |
| #endif /* CONFIG_USB_DEVICE_STACK */ |
| |
| /* spawn threadB */ |
| k_tid_t tid = k_thread_create(&threadB_data, threadB_stack_area, |
| STACKSIZE, threadB, NULL, NULL, NULL, |
| PRIORITY, 0, K_NO_WAIT); |
| |
| k_thread_name_set(tid, "thread_b"); |
| |
| /* invoke routine to ping-pong hello messages with threadB */ |
| helloLoop(__func__, &threadA_sem, &threadB_sem); |
| } |
| |
| K_THREAD_DEFINE(thread_a, STACKSIZE, threadA, NULL, NULL, NULL, |
| PRIORITY, 0, 0); |