blob: 68692b5ecd6f9ee808dceaf7b731d51070346f92 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "posix_clock.h"
#include <zephyr/kernel.h>
#include <errno.h>
#include <zephyr/posix/time.h>
#include <zephyr/posix/sys/time.h>
#include <zephyr/posix/unistd.h>
#include <zephyr/internal/syscall_handler.h>
#include <zephyr/spinlock.h>
/*
* `k_uptime_get` returns a timestamp based on an always increasing
* value from the system start. To support the `CLOCK_REALTIME`
* clock, this `rt_clock_base` records the time that the system was
* started. This can either be set via 'clock_settime', or could be
* set from a real time clock, if such hardware is present.
*/
static struct timespec rt_clock_base;
static struct k_spinlock rt_clock_base_lock;
/**
* @brief Get clock time specified by clock_id.
*
* See IEEE 1003.1
*/
int z_impl___posix_clock_get_base(clockid_t clock_id, struct timespec *base)
{
switch (clock_id) {
case CLOCK_MONOTONIC:
base->tv_sec = 0;
base->tv_nsec = 0;
break;
case CLOCK_REALTIME:
K_SPINLOCK(&rt_clock_base_lock) {
*base = rt_clock_base;
}
break;
default:
errno = EINVAL;
return -1;
}
return 0;
}
#ifdef CONFIG_USERSPACE
int z_vrfy___posix_clock_get_base(clockid_t clock_id, struct timespec *ts)
{
K_OOPS(K_SYSCALL_MEMORY_WRITE(ts, sizeof(*ts)));
return z_impl___posix_clock_get_base(clock_id, ts);
}
#include <zephyr/syscalls/__posix_clock_get_base_mrsh.c>
#endif
int clock_gettime(clockid_t clock_id, struct timespec *ts)
{
struct timespec base;
switch (clock_id) {
case CLOCK_MONOTONIC:
base.tv_sec = 0;
base.tv_nsec = 0;
break;
case CLOCK_REALTIME:
(void)__posix_clock_get_base(clock_id, &base);
break;
default:
errno = EINVAL;
return -1;
}
uint64_t ticks = k_uptime_ticks();
uint64_t elapsed_secs = ticks / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
uint64_t nremainder = ticks - elapsed_secs * CONFIG_SYS_CLOCK_TICKS_PER_SEC;
ts->tv_sec = (time_t) elapsed_secs;
/* For ns 32 bit conversion can be used since its smaller than 1sec. */
ts->tv_nsec = (int32_t) k_ticks_to_ns_floor32(nremainder);
ts->tv_sec += base.tv_sec;
ts->tv_nsec += base.tv_nsec;
if (ts->tv_nsec >= NSEC_PER_SEC) {
ts->tv_sec++;
ts->tv_nsec -= NSEC_PER_SEC;
}
return 0;
}
int clock_getres(clockid_t clock_id, struct timespec *res)
{
BUILD_ASSERT(CONFIG_SYS_CLOCK_TICKS_PER_SEC > 0 &&
CONFIG_SYS_CLOCK_TICKS_PER_SEC <= NSEC_PER_SEC,
"CONFIG_SYS_CLOCK_TICKS_PER_SEC must be > 0 and <= NSEC_PER_SEC");
if (!(clock_id == CLOCK_MONOTONIC || clock_id == CLOCK_REALTIME ||
clock_id == CLOCK_PROCESS_CPUTIME_ID)) {
errno = EINVAL;
return -1;
}
if (res != NULL) {
*res = (struct timespec){
.tv_sec = 0,
.tv_nsec = NSEC_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC,
};
}
return 0;
}
/**
* @brief Set the time of the specified clock.
*
* See IEEE 1003.1.
*
* Note that only the `CLOCK_REALTIME` clock can be set using this
* call.
*/
int clock_settime(clockid_t clock_id, const struct timespec *tp)
{
struct timespec base;
k_spinlock_key_t key;
if (clock_id != CLOCK_REALTIME) {
errno = EINVAL;
return -1;
}
if (tp->tv_nsec < 0 || tp->tv_nsec >= NSEC_PER_SEC) {
errno = EINVAL;
return -1;
}
uint64_t elapsed_nsecs = k_ticks_to_ns_floor64(k_uptime_ticks());
int64_t delta = (int64_t)NSEC_PER_SEC * tp->tv_sec + tp->tv_nsec
- elapsed_nsecs;
base.tv_sec = delta / NSEC_PER_SEC;
base.tv_nsec = delta % NSEC_PER_SEC;
key = k_spin_lock(&rt_clock_base_lock);
rt_clock_base = base;
k_spin_unlock(&rt_clock_base_lock, key);
return 0;
}
/**
* @brief Suspend execution for a nanosecond interval, or
* until some absolute time relative to the specified clock.
*
* See IEEE 1003.1
*/
int clock_nanosleep(clockid_t clock_id, int flags, const struct timespec *rqtp,
struct timespec *rmtp)
{
uint64_t ns;
uint64_t us;
uint64_t uptime_ns;
k_spinlock_key_t key;
const bool update_rmtp = rmtp != NULL;
if (!(clock_id == CLOCK_REALTIME || clock_id == CLOCK_MONOTONIC)) {
errno = EINVAL;
return -1;
}
if (rqtp == NULL) {
errno = EFAULT;
return -1;
}
if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= NSEC_PER_SEC) {
errno = EINVAL;
return -1;
}
if ((flags & TIMER_ABSTIME) == 0 &&
unlikely(rqtp->tv_sec >= ULLONG_MAX / NSEC_PER_SEC)) {
ns = rqtp->tv_nsec + NSEC_PER_SEC
+ k_sleep(K_SECONDS(rqtp->tv_sec - 1)) * NSEC_PER_MSEC;
} else {
ns = rqtp->tv_sec * NSEC_PER_SEC + rqtp->tv_nsec;
}
uptime_ns = k_cyc_to_ns_ceil64(k_cycle_get_32());
if (flags & TIMER_ABSTIME && clock_id == CLOCK_REALTIME) {
key = k_spin_lock(&rt_clock_base_lock);
ns -= rt_clock_base.tv_sec * NSEC_PER_SEC + rt_clock_base.tv_nsec;
k_spin_unlock(&rt_clock_base_lock, key);
}
if ((flags & TIMER_ABSTIME) == 0) {
ns += uptime_ns;
}
if (ns <= uptime_ns) {
goto do_rmtp_update;
}
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
do {
us = k_sleep(K_TIMEOUT_ABS_US(us)) * 1000;
} while (us != 0);
do_rmtp_update:
if (update_rmtp) {
rmtp->tv_sec = 0;
rmtp->tv_nsec = 0;
}
return 0;
}
/**
* @brief Get current real time.
*
* See IEEE 1003.1
*/
int gettimeofday(struct timeval *tv, void *tz)
{
struct timespec ts;
int res;
/* As per POSIX, "if tzp is not a null pointer, the behavior
* is unspecified." "tzp" is the "tz" parameter above. */
ARG_UNUSED(tz);
res = clock_gettime(CLOCK_REALTIME, &ts);
tv->tv_sec = ts.tv_sec;
tv->tv_usec = ts.tv_nsec / NSEC_PER_USEC;
return res;
}
int clock_getcpuclockid(pid_t pid, clockid_t *clock_id)
{
/* We don't allow any process ID but our own. */
if (pid != 0 && pid != getpid()) {
return EPERM;
}
*clock_id = CLOCK_PROCESS_CPUTIME_ID;
return 0;
}
#ifdef CONFIG_ZTEST
#include <zephyr/ztest.h>
static void reset_clock_base(void)
{
K_SPINLOCK(&rt_clock_base_lock) {
rt_clock_base = (struct timespec){0};
}
}
static void clock_base_reset_rule_after(const struct ztest_unit_test *test, void *data)
{
ARG_UNUSED(test);
ARG_UNUSED(data);
reset_clock_base();
}
ZTEST_RULE(clock_base_reset_rule, NULL, clock_base_reset_rule_after);
#endif /* CONFIG_ZTEST */