| /* |
| * Copyright (c) 2019 Alexander Wachter |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/drivers/can.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/sys/util.h> |
| #include <zephyr/logging/log.h> |
| |
| LOG_MODULE_REGISTER(can_common, CONFIG_CAN_LOG_LEVEL); |
| |
| /* Maximum acceptable deviation in sample point location (permille) */ |
| #define SAMPLE_POINT_MARGIN 50 |
| |
| /* CAN sync segment is always one time quantum */ |
| #define CAN_SYNC_SEG 1 |
| |
| struct can_tx_default_cb_ctx { |
| struct k_sem done; |
| int status; |
| }; |
| |
| static void can_tx_default_cb(const struct device *dev, int error, void *user_data) |
| { |
| struct can_tx_default_cb_ctx *ctx = user_data; |
| |
| ctx->status = error; |
| k_sem_give(&ctx->done); |
| } |
| |
| int z_impl_can_send(const struct device *dev, const struct can_frame *frame, |
| k_timeout_t timeout, can_tx_callback_t callback, |
| void *user_data) |
| { |
| const struct can_driver_api *api = (const struct can_driver_api *)dev->api; |
| |
| if (callback == NULL) { |
| struct can_tx_default_cb_ctx ctx; |
| int err; |
| |
| k_sem_init(&ctx.done, 0, 1); |
| |
| err = api->send(dev, frame, timeout, can_tx_default_cb, &ctx); |
| if (err != 0) { |
| return err; |
| } |
| |
| k_sem_take(&ctx.done, K_FOREVER); |
| |
| return ctx.status; |
| } |
| |
| return api->send(dev, frame, timeout, callback, user_data); |
| } |
| |
| static void can_msgq_put(const struct device *dev, struct can_frame *frame, void *user_data) |
| { |
| struct k_msgq *msgq = (struct k_msgq *)user_data; |
| int ret; |
| |
| ARG_UNUSED(dev); |
| |
| __ASSERT_NO_MSG(msgq); |
| |
| ret = k_msgq_put(msgq, frame, K_NO_WAIT); |
| if (ret) { |
| LOG_ERR("Msgq %p overflowed. Frame ID: 0x%x", msgq, frame->id); |
| } |
| } |
| |
| int z_impl_can_add_rx_filter_msgq(const struct device *dev, struct k_msgq *msgq, |
| const struct can_filter *filter) |
| { |
| const struct can_driver_api *api = dev->api; |
| |
| return api->add_rx_filter(dev, can_msgq_put, msgq, filter); |
| } |
| |
| /** |
| * @brief Update the timing given a total number of time quanta and a sample point. |
| * |
| * @code{.text} |
| * |
| * +---------------------------------------------------+ |
| * | Nominal bit time in time quanta (total_tq) | |
| * +--------------+----------+------------+------------+ |
| * | sync_seg | prop_seg | phase_seg1 | phase_seg2 | |
| * +--------------+----------+------------+------------+ |
| * | CAN_SYNG_SEG | tseg1 | tseg2 | |
| * +--------------+-----------------------+------------+ |
| * ^ |
| * sample_pnt |
| * @endcode |
| * |
| * @see @a can_timing |
| * |
| * @param total_tq Total number of time quanta. |
| * @param sample_pnt Sampling point in permill of the entire bit time. |
| * @param[out] res Result is written into the @a can_timing struct provided. |
| * @param max Maximum timing parameters values. |
| * @param min Minimum timing parameters values. |
| * @return Absolute sample point error. |
| */ |
| static int update_sampling_pnt(uint32_t total_tq, uint32_t sample_pnt, |
| struct can_timing *res, |
| const struct can_timing *max, |
| const struct can_timing *min) |
| { |
| uint16_t tseg1_max = max->phase_seg1 + max->prop_seg; |
| uint16_t tseg1_min = min->phase_seg1 + min->prop_seg; |
| uint32_t sample_pnt_res; |
| uint16_t tseg1, tseg2; |
| |
| /* Calculate number of time quanta in tseg2 for given sample point */ |
| tseg2 = total_tq - (total_tq * sample_pnt) / 1000; |
| tseg2 = CLAMP(tseg2, min->phase_seg2, max->phase_seg2); |
| |
| /* Calculate number of time quanta in tseg1 */ |
| tseg1 = total_tq - CAN_SYNC_SEG - tseg2; |
| if (tseg1 > tseg1_max) { |
| /* Sample point location must be decreased */ |
| tseg1 = tseg1_max; |
| tseg2 = total_tq - CAN_SYNC_SEG - tseg1; |
| if (tseg2 > max->phase_seg2) { |
| return -1; |
| } |
| } else if (tseg1 < tseg1_min) { |
| /* Sample point location must be increased */ |
| tseg1 = tseg1_min; |
| tseg2 = total_tq - CAN_SYNC_SEG - tseg1; |
| if (tseg2 < min->phase_seg2) { |
| return -1; |
| } |
| } |
| |
| res->phase_seg2 = tseg2; |
| |
| /* Attempt to distribute tseg1 evenly between prop_seq and phase_seg1 */ |
| res->prop_seg = CLAMP(tseg1 / 2, min->prop_seg, max->prop_seg); |
| res->phase_seg1 = tseg1 - res->prop_seg; |
| |
| if (res->phase_seg1 > max->phase_seg1) { |
| /* Even tseg1 distribution not possible, decrease phase_seg1 */ |
| res->phase_seg1 = max->phase_seg1; |
| res->prop_seg = tseg1 - res->phase_seg1; |
| } else if (res->phase_seg1 < min->phase_seg1) { |
| /* Even tseg1 distribution not possible, increase phase_seg1 */ |
| res->phase_seg1 = min->phase_seg1; |
| res->prop_seg = tseg1 - res->phase_seg1; |
| } |
| |
| /* Calculate the resulting sample point */ |
| sample_pnt_res = (CAN_SYNC_SEG + tseg1) * 1000 / total_tq; |
| |
| /* Return the absolute sample point error */ |
| return sample_pnt_res > sample_pnt ? |
| sample_pnt_res - sample_pnt : |
| sample_pnt - sample_pnt_res; |
| } |
| |
| /* Internal function to do the actual calculation */ |
| static int can_calc_timing_int(uint32_t core_clock, struct can_timing *res, |
| const struct can_timing *min, |
| const struct can_timing *max, |
| uint32_t bitrate, uint16_t sp) |
| { |
| uint32_t ts = max->prop_seg + max->phase_seg1 + max->phase_seg2 + |
| CAN_SYNC_SEG; |
| uint16_t sp_err_min = UINT16_MAX; |
| int sp_err; |
| struct can_timing tmp_res; |
| |
| if (bitrate == 0 || sp >= 1000) { |
| return -EINVAL; |
| } |
| |
| for (int prescaler = MAX(core_clock / (ts * bitrate), 1); |
| prescaler <= max->prescaler; ++prescaler) { |
| if (core_clock % (prescaler * bitrate)) { |
| /* No integer ts */ |
| continue; |
| } |
| |
| ts = core_clock / (prescaler * bitrate); |
| |
| sp_err = update_sampling_pnt(ts, sp, &tmp_res, |
| max, min); |
| if (sp_err < 0) { |
| /* No prop_seg, seg1, seg2 combination possible */ |
| continue; |
| } |
| |
| if (sp_err < sp_err_min) { |
| sp_err_min = sp_err; |
| res->prop_seg = tmp_res.prop_seg; |
| res->phase_seg1 = tmp_res.phase_seg1; |
| res->phase_seg2 = tmp_res.phase_seg2; |
| res->prescaler = (uint16_t)prescaler; |
| if (sp_err == 0) { |
| /* No better result than a perfect match*/ |
| break; |
| } |
| } |
| } |
| |
| if (sp_err_min) { |
| LOG_DBG("SP error: %d 1/1000", sp_err_min); |
| } |
| |
| return sp_err_min == UINT16_MAX ? -ENOTSUP : (int)sp_err_min; |
| } |
| |
| int z_impl_can_calc_timing(const struct device *dev, struct can_timing *res, |
| uint32_t bitrate, uint16_t sample_pnt) |
| { |
| const struct can_timing *min = can_get_timing_min(dev); |
| const struct can_timing *max = can_get_timing_max(dev); |
| uint32_t core_clock; |
| int ret; |
| |
| if (bitrate > 1000000) { |
| return -EINVAL; |
| } |
| |
| ret = can_get_core_clock(dev, &core_clock); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| return can_calc_timing_int(core_clock, res, min, max, bitrate, sample_pnt); |
| } |
| |
| #ifdef CONFIG_CAN_FD_MODE |
| int z_impl_can_calc_timing_data(const struct device *dev, struct can_timing *res, |
| uint32_t bitrate, uint16_t sample_pnt) |
| { |
| const struct can_timing *min = can_get_timing_data_min(dev); |
| const struct can_timing *max = can_get_timing_data_max(dev); |
| uint32_t core_clock; |
| int ret; |
| |
| if (bitrate > 8000000) { |
| return -EINVAL; |
| } |
| |
| ret = can_get_core_clock(dev, &core_clock); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| return can_calc_timing_int(core_clock, res, min, max, bitrate, sample_pnt); |
| } |
| #endif /* CONFIG_CAN_FD_MODE */ |
| |
| int can_calc_prescaler(const struct device *dev, struct can_timing *timing, |
| uint32_t bitrate) |
| { |
| uint32_t ts = timing->prop_seg + timing->phase_seg1 + timing->phase_seg2 + |
| CAN_SYNC_SEG; |
| uint32_t core_clock; |
| int ret; |
| |
| ret = can_get_core_clock(dev, &core_clock); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| timing->prescaler = core_clock / (bitrate * ts); |
| |
| return core_clock % (ts * timing->prescaler); |
| } |
| |
| /** |
| * @brief Get the sample point location for a given bitrate |
| * |
| * @param bitrate The bitrate in bits/second. |
| * @return The sample point in permille. |
| */ |
| uint16_t sample_point_for_bitrate(uint32_t bitrate) |
| { |
| uint16_t sample_pnt; |
| |
| if (bitrate > 800000) { |
| /* 75.0% */ |
| sample_pnt = 750; |
| } else if (bitrate > 500000) { |
| /* 80.0% */ |
| sample_pnt = 800; |
| } else { |
| /* 87.5% */ |
| sample_pnt = 875; |
| } |
| |
| return sample_pnt; |
| } |
| |
| int z_impl_can_set_bitrate(const struct device *dev, uint32_t bitrate) |
| { |
| struct can_timing timing; |
| uint32_t max_bitrate; |
| uint16_t sample_pnt; |
| int ret; |
| |
| ret = can_get_max_bitrate(dev, &max_bitrate); |
| if (ret == -ENOSYS) { |
| /* Maximum bitrate unknown */ |
| max_bitrate = 0; |
| } else if (ret < 0) { |
| return ret; |
| } |
| |
| if ((max_bitrate > 0) && (bitrate > max_bitrate)) { |
| return -ENOTSUP; |
| } |
| |
| sample_pnt = sample_point_for_bitrate(bitrate); |
| ret = can_calc_timing(dev, &timing, bitrate, sample_pnt); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (ret > SAMPLE_POINT_MARGIN) { |
| return -ERANGE; |
| } |
| |
| timing.sjw = CAN_SJW_NO_CHANGE; |
| |
| return can_set_timing(dev, &timing); |
| } |
| |
| #ifdef CONFIG_CAN_FD_MODE |
| int z_impl_can_set_bitrate_data(const struct device *dev, uint32_t bitrate_data) |
| { |
| struct can_timing timing_data; |
| uint32_t max_bitrate; |
| uint16_t sample_pnt; |
| int ret; |
| |
| ret = can_get_max_bitrate(dev, &max_bitrate); |
| if (ret == -ENOSYS) { |
| /* Maximum bitrate unknown */ |
| max_bitrate = 0; |
| } else if (ret < 0) { |
| return ret; |
| } |
| |
| if ((max_bitrate > 0) && (bitrate_data > max_bitrate)) { |
| return -ENOTSUP; |
| } |
| |
| sample_pnt = sample_point_for_bitrate(bitrate_data); |
| ret = can_calc_timing_data(dev, &timing_data, bitrate_data, sample_pnt); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (ret > SAMPLE_POINT_MARGIN) { |
| return -ERANGE; |
| } |
| |
| timing_data.sjw = CAN_SJW_NO_CHANGE; |
| |
| return can_set_timing_data(dev, &timing_data); |
| } |
| #endif /* CONFIG_CAN_FD_MODE */ |