| /* |
| * Copyright (c) 2010, 2012-2015 Wind River Systems, Inc. |
| * Copyright (c) 2020 Intel Corp. |
| * Copyright (c) 2021 Microchip Technology Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @brief Microchip XEC UART Serial Driver |
| * |
| * This is the driver for the Microchip XEC MCU UART. It is NS16550 compatible. |
| * |
| */ |
| |
| #define DT_DRV_COMPAT microchip_xec_uart |
| |
| #include <errno.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/arch/cpu.h> |
| #include <zephyr/types.h> |
| #include <soc.h> |
| |
| #include <zephyr/init.h> |
| #include <zephyr/toolchain.h> |
| #include <zephyr/linker/sections.h> |
| #ifdef CONFIG_SOC_SERIES_MEC172X |
| #include <zephyr/drivers/clock_control/mchp_xec_clock_control.h> |
| #include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h> |
| #endif |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/drivers/uart.h> |
| #include <zephyr/drivers/gpio.h> |
| #include <zephyr/sys/sys_io.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/irq.h> |
| #include <zephyr/pm/device.h> |
| #include <zephyr/pm/policy.h> |
| |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(uart_xec, CONFIG_UART_LOG_LEVEL); |
| |
| /* Clock source is 1.8432 MHz derived from PLL 48 MHz */ |
| #define XEC_UART_CLK_SRC_1P8M 0 |
| /* Clock source is PLL 48 MHz output */ |
| #define XEC_UART_CLK_SRC_48M 1 |
| /* Clock source is the UART_CLK alternate pin function. */ |
| #define XEC_UART_CLK_SRC_EXT_PIN 2 |
| |
| /* register definitions */ |
| |
| #define REG_THR 0x00 /* Transmitter holding reg. */ |
| #define REG_RDR 0x00 /* Receiver data reg. */ |
| #define REG_BRDL 0x00 /* Baud rate divisor (LSB) */ |
| #define REG_BRDH 0x01 /* Baud rate divisor (MSB) */ |
| #define REG_IER 0x01 /* Interrupt enable reg. */ |
| #define REG_IIR 0x02 /* Interrupt ID reg. */ |
| #define REG_FCR 0x02 /* FIFO control reg. */ |
| #define REG_LCR 0x03 /* Line control reg. */ |
| #define REG_MDC 0x04 /* Modem control reg. */ |
| #define REG_LSR 0x05 /* Line status reg. */ |
| #define REG_MSR 0x06 /* Modem status reg. */ |
| #define REG_SCR 0x07 /* scratch register */ |
| #define REG_LD_ACTV 0x330 /* Logical Device activate */ |
| #define REG_LD_CFG 0x3f0 /* Logical Device configuration */ |
| |
| /* equates for interrupt enable register */ |
| |
| #define IER_RXRDY 0x01 /* receiver data ready */ |
| #define IER_TBE 0x02 /* transmit bit enable */ |
| #define IER_LSR 0x04 /* line status interrupts */ |
| #define IER_MSI 0x08 /* modem status interrupts */ |
| |
| /* equates for interrupt identification register */ |
| |
| #define IIR_MSTAT 0x00 /* modem status interrupt */ |
| #define IIR_NIP 0x01 /* no interrupt pending */ |
| #define IIR_THRE 0x02 /* transmit holding register empty interrupt */ |
| #define IIR_RBRF 0x04 /* receiver buffer register full interrupt */ |
| #define IIR_LS 0x06 /* receiver line status interrupt */ |
| #define IIR_MASK 0x07 /* interrupt id bits mask */ |
| #define IIR_ID 0x06 /* interrupt ID mask without NIP */ |
| |
| /* equates for FIFO control register */ |
| |
| #define FCR_FIFO 0x01 /* enable XMIT and RCVR FIFO */ |
| #define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */ |
| #define FCR_XMITCLR 0x04 /* clear XMIT FIFO */ |
| |
| /* |
| * Per PC16550D (Literature Number: SNLS378B): |
| * |
| * RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in |
| * the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1 |
| * character in the RCVR FIFO or RCVR holding register, the |
| * RXRDY pin (29) will be low active. Once it is activated the |
| * RXRDY pin will go inactive when there are no more charac- |
| * ters in the FIFO or holding register. |
| * |
| * RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the |
| * FCR3 = 1 and the trigger level or the timeout has been |
| * reached, the RXRDY pin will go low active. Once it is acti- |
| * vated it will go inactive when there are no more characters |
| * in the FIFO or holding register. |
| * |
| * TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the |
| * FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac- |
| * ters in the XMIT FIFO or XMIT holding register, the TXRDY |
| * pin (24) will be low active. Once it is activated the TXRDY |
| * pin will go inactive after the first character is loaded into the |
| * XMIT FIFO or holding register. |
| * |
| * TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when |
| * FCR3 = 1 and there are no characters in the XMIT FIFO, the |
| * TXRDY pin will go low active. This pin will become inactive |
| * when the XMIT FIFO is completely full. |
| */ |
| #define FCR_MODE0 0x00 /* set receiver in mode 0 */ |
| #define FCR_MODE1 0x08 /* set receiver in mode 1 */ |
| |
| /* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */ |
| #define FCR_FIFO_1 0x00 /* 1 byte in RCVR FIFO */ |
| #define FCR_FIFO_4 0x40 /* 4 bytes in RCVR FIFO */ |
| #define FCR_FIFO_8 0x80 /* 8 bytes in RCVR FIFO */ |
| #define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */ |
| |
| /* constants for line control register */ |
| |
| #define LCR_CS5 0x00 /* 5 bits data size */ |
| #define LCR_CS6 0x01 /* 6 bits data size */ |
| #define LCR_CS7 0x02 /* 7 bits data size */ |
| #define LCR_CS8 0x03 /* 8 bits data size */ |
| #define LCR_2_STB 0x04 /* 2 stop bits */ |
| #define LCR_1_STB 0x00 /* 1 stop bit */ |
| #define LCR_PEN 0x08 /* parity enable */ |
| #define LCR_PDIS 0x00 /* parity disable */ |
| #define LCR_EPS 0x10 /* even parity select */ |
| #define LCR_SP 0x20 /* stick parity select */ |
| #define LCR_SBRK 0x40 /* break control bit */ |
| #define LCR_DLAB 0x80 /* divisor latch access enable */ |
| |
| /* constants for the modem control register */ |
| |
| #define MCR_DTR 0x01 /* dtr output */ |
| #define MCR_RTS 0x02 /* rts output */ |
| #define MCR_OUT1 0x04 /* output #1 */ |
| #define MCR_OUT2 0x08 /* output #2 */ |
| #define MCR_LOOP 0x10 /* loop back */ |
| #define MCR_AFCE 0x20 /* auto flow control enable */ |
| |
| /* constants for line status register */ |
| |
| #define LSR_RXRDY 0x01 /* receiver data available */ |
| #define LSR_OE 0x02 /* overrun error */ |
| #define LSR_PE 0x04 /* parity error */ |
| #define LSR_FE 0x08 /* framing error */ |
| #define LSR_BI 0x10 /* break interrupt */ |
| #define LSR_EOB_MASK 0x1E /* Error or Break mask */ |
| #define LSR_THRE 0x20 /* transmit holding register empty */ |
| #define LSR_TEMT 0x40 /* transmitter empty */ |
| |
| /* constants for modem status register */ |
| |
| #define MSR_DCTS 0x01 /* cts change */ |
| #define MSR_DDSR 0x02 /* dsr change */ |
| #define MSR_DRI 0x04 /* ring change */ |
| #define MSR_DDCD 0x08 /* data carrier change */ |
| #define MSR_CTS 0x10 /* complement of cts */ |
| #define MSR_DSR 0x20 /* complement of dsr */ |
| #define MSR_RI 0x40 /* complement of ring signal */ |
| #define MSR_DCD 0x80 /* complement of dcd */ |
| |
| #define IIRC(dev) (((struct uart_xec_dev_data *)(dev)->data)->iir_cache) |
| |
| enum uart_xec_pm_policy_state_flag { |
| UART_XEC_PM_POLICY_STATE_TX_FLAG, |
| UART_XEC_PM_POLICY_STATE_RX_FLAG, |
| UART_XEC_PM_POLICY_STATE_FLAG_COUNT, |
| }; |
| |
| /* device config */ |
| struct uart_xec_device_config { |
| struct uart_regs *regs; |
| uint32_t sys_clk_freq; |
| uint8_t girq_id; |
| uint8_t girq_pos; |
| uint8_t pcr_idx; |
| uint8_t pcr_bitpos; |
| const struct pinctrl_dev_config *pcfg; |
| #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) |
| uart_irq_config_func_t irq_config_func; |
| #endif |
| #ifdef CONFIG_PM_DEVICE |
| struct gpio_dt_spec wakerx_gpio; |
| bool wakeup_source; |
| #endif |
| }; |
| |
| /** Device data structure */ |
| struct uart_xec_dev_data { |
| struct uart_config uart_config; |
| struct k_spinlock lock; |
| |
| uint8_t fcr_cache; /**< cache of FCR write only register */ |
| uint8_t iir_cache; /**< cache of IIR since it clears when read */ |
| #ifdef CONFIG_UART_INTERRUPT_DRIVEN |
| uart_irq_callback_user_data_t cb; /**< Callback function pointer */ |
| void *cb_data; /**< Callback function arg */ |
| #endif |
| }; |
| |
| #ifdef CONFIG_PM_DEVICE |
| ATOMIC_DEFINE(pm_policy_state_flag, UART_XEC_PM_POLICY_STATE_FLAG_COUNT); |
| #endif |
| |
| #if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED) |
| struct k_work_delayable rx_refresh_timeout_work; |
| #endif |
| |
| static const struct uart_driver_api uart_xec_driver_api; |
| |
| #ifdef CONFIG_PM_DEVICE |
| static void uart_xec_pm_policy_state_lock_get(enum uart_xec_pm_policy_state_flag flag) |
| { |
| if (atomic_test_and_set_bit(pm_policy_state_flag, flag) == 0) { |
| pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| } |
| } |
| |
| static void uart_xec_pm_policy_state_lock_put(enum uart_xec_pm_policy_state_flag flag) |
| { |
| if (atomic_test_and_clear_bit(pm_policy_state_flag, flag) == 1) { |
| pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_SOC_SERIES_MEC172X |
| |
| static void uart_clr_slp_en(const struct device *dev) |
| { |
| struct uart_xec_device_config const *dev_cfg = dev->config; |
| |
| z_mchp_xec_pcr_periph_sleep(dev_cfg->pcr_idx, dev_cfg->pcr_bitpos, 0); |
| } |
| |
| static inline void uart_xec_girq_clr(const struct device *dev) |
| { |
| struct uart_xec_device_config const *dev_cfg = dev->config; |
| |
| mchp_soc_ecia_girq_src_clr(dev_cfg->girq_id, dev_cfg->girq_pos); |
| } |
| |
| static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| mchp_xec_ecia_girq_src_en(girq_idx, girq_posn); |
| } |
| |
| #else |
| |
| static void uart_clr_slp_en(const struct device *dev) |
| { |
| struct uart_xec_device_config const *dev_cfg = dev->config; |
| |
| if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART0_POS) { |
| mchp_pcr_periph_slp_ctrl(PCR_UART0, 0); |
| } else if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART1_POS) { |
| mchp_pcr_periph_slp_ctrl(PCR_UART1, 0); |
| } else { |
| mchp_pcr_periph_slp_ctrl(PCR_UART2, 0); |
| } |
| } |
| |
| static inline void uart_xec_girq_clr(const struct device *dev) |
| { |
| struct uart_xec_device_config const *dev_cfg = dev->config; |
| |
| MCHP_GIRQ_SRC(dev_cfg->girq_id) = BIT(dev_cfg->girq_pos); |
| } |
| |
| static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn); |
| } |
| |
| #endif |
| |
| static void set_baud_rate(const struct device *dev, uint32_t baud_rate) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data * const dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| uint32_t divisor; /* baud rate divisor */ |
| uint8_t lcr_cache; |
| |
| if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) { |
| /* |
| * calculate baud rate divisor. a variant of |
| * (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5) |
| */ |
| divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3)) |
| / baud_rate) >> 4; |
| |
| /* set the DLAB to access the baud rate divisor registers */ |
| lcr_cache = regs->LCR; |
| regs->LCR = LCR_DLAB | lcr_cache; |
| regs->RTXB = (unsigned char)(divisor & 0xff); |
| /* bit[7]=0 1.8MHz clock source, =1 48MHz clock source */ |
| regs->IER = (unsigned char)((divisor >> 8) & 0x7f); |
| |
| /* restore the DLAB to access the baud rate divisor registers */ |
| regs->LCR = lcr_cache; |
| |
| dev_data->uart_config.baudrate = baud_rate; |
| } |
| } |
| |
| /* |
| * Configure UART. |
| * MCHP XEC UART defaults to reset if external Host VCC_PWRGD is inactive. |
| * We must change the UART reset signal to XEC VTR_PWRGD. Make sure UART |
| * clock source is an internal clock and UART pins are not inverted. |
| */ |
| static int uart_xec_configure(const struct device *dev, |
| const struct uart_config *cfg) |
| { |
| struct uart_xec_dev_data * const dev_data = dev->data; |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_regs *regs = dev_cfg->regs; |
| uint8_t lcr_cache; |
| |
| /* temp for return value if error occurs in this locked region */ |
| int ret = 0; |
| |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| ARG_UNUSED(dev_data); |
| |
| dev_data->fcr_cache = 0U; |
| dev_data->iir_cache = 0U; |
| |
| /* XEC UART specific configuration and enable */ |
| regs->CFG_SEL &= ~(MCHP_UART_LD_CFG_RESET_VCC | |
| MCHP_UART_LD_CFG_EXTCLK | MCHP_UART_LD_CFG_INVERT); |
| /* set activate to enable clocks */ |
| regs->ACTV |= MCHP_UART_LD_ACTIVATE; |
| |
| set_baud_rate(dev, cfg->baudrate); |
| |
| /* Local structure to hold temporary values */ |
| struct uart_config uart_cfg; |
| |
| switch (cfg->data_bits) { |
| case UART_CFG_DATA_BITS_5: |
| uart_cfg.data_bits = LCR_CS5; |
| break; |
| case UART_CFG_DATA_BITS_6: |
| uart_cfg.data_bits = LCR_CS6; |
| break; |
| case UART_CFG_DATA_BITS_7: |
| uart_cfg.data_bits = LCR_CS7; |
| break; |
| case UART_CFG_DATA_BITS_8: |
| uart_cfg.data_bits = LCR_CS8; |
| break; |
| default: |
| ret = -ENOTSUP; |
| goto out; |
| } |
| |
| switch (cfg->stop_bits) { |
| case UART_CFG_STOP_BITS_1: |
| uart_cfg.stop_bits = LCR_1_STB; |
| break; |
| case UART_CFG_STOP_BITS_2: |
| uart_cfg.stop_bits = LCR_2_STB; |
| break; |
| default: |
| ret = -ENOTSUP; |
| goto out; |
| } |
| |
| switch (cfg->parity) { |
| case UART_CFG_PARITY_NONE: |
| uart_cfg.parity = LCR_PDIS; |
| break; |
| case UART_CFG_PARITY_EVEN: |
| uart_cfg.parity = LCR_EPS; |
| break; |
| default: |
| ret = -ENOTSUP; |
| goto out; |
| } |
| |
| dev_data->uart_config = *cfg; |
| |
| /* data bits, stop bits, parity, clear DLAB */ |
| regs->LCR = uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity; |
| |
| regs->MCR = MCR_OUT2 | MCR_RTS | MCR_DTR; |
| |
| /* |
| * Program FIFO: enabled, mode 0 |
| * generate the interrupt at 8th byte |
| * Clear TX and RX FIFO |
| */ |
| dev_data->fcr_cache = FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR | |
| FCR_XMITCLR; |
| regs->IIR_FCR = dev_data->fcr_cache; |
| |
| /* clear the port */ |
| lcr_cache = regs->LCR; |
| regs->LCR = LCR_DLAB | lcr_cache; |
| regs->SCR = regs->RTXB; |
| regs->LCR = lcr_cache; |
| |
| /* disable interrupts */ |
| regs->IER = 0; |
| |
| out: |
| k_spin_unlock(&dev_data->lock, key); |
| return ret; |
| }; |
| |
| #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
| static int uart_xec_config_get(const struct device *dev, |
| struct uart_config *cfg) |
| { |
| struct uart_xec_dev_data *data = dev->data; |
| |
| cfg->baudrate = data->uart_config.baudrate; |
| cfg->parity = data->uart_config.parity; |
| cfg->stop_bits = data->uart_config.stop_bits; |
| cfg->data_bits = data->uart_config.data_bits; |
| cfg->flow_ctrl = data->uart_config.flow_ctrl; |
| |
| return 0; |
| } |
| #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
| |
| #ifdef CONFIG_PM_DEVICE |
| |
| static void uart_xec_wake_handler(const struct device *gpio, struct gpio_callback *cb, |
| uint32_t pins) |
| { |
| /* Disable interrupts on UART RX pin to avoid repeated interrupts. */ |
| (void)gpio_pin_interrupt_configure(gpio, (find_msb_set(pins) - 1), |
| GPIO_INT_DISABLE); |
| /* Refresh console expired time */ |
| #ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED |
| k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT); |
| |
| uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG); |
| k_work_reschedule(&rx_refresh_timeout_work, delay); |
| #endif |
| } |
| |
| static int uart_xec_pm_action(const struct device *dev, |
| enum pm_device_action action) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_regs *regs = dev_cfg->regs; |
| int ret = 0; |
| |
| switch (action) { |
| case PM_DEVICE_ACTION_RESUME: |
| regs->ACTV = MCHP_UART_LD_ACTIVATE; |
| break; |
| case PM_DEVICE_ACTION_SUSPEND: |
| /* Enable UART wake interrupt */ |
| regs->ACTV = 0; |
| if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) { |
| ret = gpio_pin_interrupt_configure_dt(&dev_cfg->wakerx_gpio, |
| GPIO_INT_MODE_EDGE | GPIO_INT_TRIG_LOW); |
| if (ret < 0) { |
| LOG_ERR("Failed to configure UART wake interrupt (ret %d)", ret); |
| return ret; |
| } |
| } |
| break; |
| default: |
| return -ENOTSUP; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED |
| static void uart_xec_rx_refresh_timeout(struct k_work *work) |
| { |
| ARG_UNUSED(work); |
| |
| uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_RX_FLAG); |
| } |
| #endif |
| #endif /* CONFIG_PM_DEVICE */ |
| |
| /** |
| * @brief Initialize individual UART port |
| * |
| * This routine is called to reset the chip in a quiescent state. |
| * |
| * @param dev UART device struct |
| * |
| * @return 0 if successful, failed otherwise |
| */ |
| static int uart_xec_init(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| int ret; |
| |
| uart_clr_slp_en(dev); |
| |
| ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ret = uart_xec_configure(dev, &dev_data->uart_config); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| #ifdef CONFIG_UART_INTERRUPT_DRIVEN |
| dev_cfg->irq_config_func(dev); |
| #endif |
| |
| #ifdef CONFIG_PM_DEVICE |
| #ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED |
| k_work_init_delayable(&rx_refresh_timeout_work, uart_xec_rx_refresh_timeout); |
| #endif |
| if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) { |
| static struct gpio_callback uart_xec_wake_cb; |
| |
| gpio_init_callback(&uart_xec_wake_cb, uart_xec_wake_handler, |
| BIT(dev_cfg->wakerx_gpio.pin)); |
| |
| ret = gpio_add_callback(dev_cfg->wakerx_gpio.port, &uart_xec_wake_cb); |
| if (ret < 0) { |
| LOG_ERR("Failed to add UART wake callback (err %d)", ret); |
| return ret; |
| } |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Poll the device for input. |
| * |
| * @param dev UART device struct |
| * @param c Pointer to character |
| * |
| * @return 0 if a character arrived, -1 if the input buffer if empty. |
| */ |
| static int uart_xec_poll_in(const struct device *dev, unsigned char *c) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| int ret = -1; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| if ((regs->LSR & LSR_RXRDY) != 0) { |
| /* got a character */ |
| *c = regs->RTXB; |
| ret = 0; |
| } |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Output a character in polled mode. |
| * |
| * Checks if the transmitter is empty. If empty, a character is written to |
| * the data register. |
| * |
| * If the hardware flow control is enabled then the handshake signal CTS has to |
| * be asserted in order to send a character. |
| * |
| * @param dev UART device struct |
| * @param c Character to send |
| */ |
| static void uart_xec_poll_out(const struct device *dev, unsigned char c) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| while ((regs->LSR & LSR_THRE) == 0) { |
| ; |
| } |
| |
| regs->RTXB = c; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Check if an error was received |
| * |
| * @param dev UART device struct |
| * |
| * @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING, |
| * UART_BREAK if an error was detected, 0 otherwise. |
| */ |
| static int uart_xec_err_check(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| int check = regs->LSR & LSR_EOB_MASK; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return check >> 1; |
| } |
| |
| #if CONFIG_UART_INTERRUPT_DRIVEN |
| |
| /** |
| * @brief Fill FIFO with data |
| * |
| * @param dev UART device struct |
| * @param tx_data Data to transmit |
| * @param size Number of bytes to send |
| * |
| * @return Number of bytes sent |
| */ |
| static int uart_xec_fifo_fill(const struct device *dev, const uint8_t *tx_data, |
| int size) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| int i; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| for (i = 0; (i < size) && (regs->LSR & LSR_THRE) != 0; i++) { |
| #ifdef CONFIG_PM_DEVICE |
| uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_TX_FLAG); |
| #endif |
| regs->RTXB = tx_data[i]; |
| } |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return i; |
| } |
| |
| /** |
| * @brief Read data from FIFO |
| * |
| * @param dev UART device struct |
| * @param rxData Data container |
| * @param size Container size |
| * |
| * @return Number of bytes read |
| */ |
| static int uart_xec_fifo_read(const struct device *dev, uint8_t *rx_data, |
| const int size) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| int i; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| for (i = 0; (i < size) && (regs->LSR & LSR_RXRDY) != 0; i++) { |
| rx_data[i] = regs->RTXB; |
| } |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return i; |
| } |
| |
| /** |
| * @brief Enable TX interrupt in IER |
| * |
| * @param dev UART device struct |
| */ |
| static void uart_xec_irq_tx_enable(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| regs->IER |= IER_TBE; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Disable TX interrupt in IER |
| * |
| * @param dev UART device struct |
| */ |
| static void uart_xec_irq_tx_disable(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| regs->IER &= ~(IER_TBE); |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Check if Tx IRQ has been raised |
| * |
| * @param dev UART device struct |
| * |
| * @return 1 if an IRQ is ready, 0 otherwise |
| */ |
| static int uart_xec_irq_tx_ready(const struct device *dev) |
| { |
| struct uart_xec_dev_data *dev_data = dev->data; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Check if nothing remains to be transmitted |
| * |
| * @param dev UART device struct |
| * |
| * @return 1 if nothing remains to be transmitted, 0 otherwise |
| */ |
| static int uart_xec_irq_tx_complete(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| int ret = ((regs->LSR & (LSR_TEMT | LSR_THRE)) |
| == (LSR_TEMT | LSR_THRE)) ? 1 : 0; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Enable RX interrupt in IER |
| * |
| * @param dev UART device struct |
| */ |
| static void uart_xec_irq_rx_enable(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| regs->IER |= IER_RXRDY; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Disable RX interrupt in IER |
| * |
| * @param dev UART device struct |
| */ |
| static void uart_xec_irq_rx_disable(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| regs->IER &= ~(IER_RXRDY); |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Check if Rx IRQ has been raised |
| * |
| * @param dev UART device struct |
| * |
| * @return 1 if an IRQ is ready, 0 otherwise |
| */ |
| static int uart_xec_irq_rx_ready(const struct device *dev) |
| { |
| struct uart_xec_dev_data *dev_data = dev->data; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Enable error interrupt in IER |
| * |
| * @param dev UART device struct |
| */ |
| static void uart_xec_irq_err_enable(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| regs->IER |= IER_LSR; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Disable error interrupt in IER |
| * |
| * @param dev UART device struct |
| * |
| * @return 1 if an IRQ is ready, 0 otherwise |
| */ |
| static void uart_xec_irq_err_disable(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| regs->IER &= ~(IER_LSR); |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Check if any IRQ is pending |
| * |
| * @param dev UART device struct |
| * |
| * @return 1 if an IRQ is pending, 0 otherwise |
| */ |
| static int uart_xec_irq_is_pending(const struct device *dev) |
| { |
| struct uart_xec_dev_data *dev_data = dev->data; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Update cached contents of IIR |
| * |
| * @param dev UART device struct |
| * |
| * @return Always 1 |
| */ |
| static int uart_xec_irq_update(const struct device *dev) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| IIRC(dev) = regs->IIR_FCR; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| |
| return 1; |
| } |
| |
| /** |
| * @brief Set the callback function pointer for IRQ. |
| * |
| * @param dev UART device struct |
| * @param cb Callback function pointer. |
| */ |
| static void uart_xec_irq_callback_set(const struct device *dev, |
| uart_irq_callback_user_data_t cb, |
| void *cb_data) |
| { |
| struct uart_xec_dev_data * const dev_data = dev->data; |
| k_spinlock_key_t key = k_spin_lock(&dev_data->lock); |
| |
| dev_data->cb = cb; |
| dev_data->cb_data = cb_data; |
| |
| k_spin_unlock(&dev_data->lock, key); |
| } |
| |
| /** |
| * @brief Interrupt service routine. |
| * |
| * This simply calls the callback function, if one exists. |
| * |
| * @param arg Argument to ISR. |
| */ |
| static void uart_xec_isr(const struct device *dev) |
| { |
| struct uart_xec_dev_data * const dev_data = dev->data; |
| #if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED) |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_regs *regs = dev_cfg->regs; |
| int rx_ready = 0; |
| |
| rx_ready = ((regs->LSR & LSR_RXRDY) == LSR_RXRDY) ? 1 : 0; |
| if (rx_ready) { |
| k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT); |
| |
| uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG); |
| k_work_reschedule(&rx_refresh_timeout_work, delay); |
| } |
| #endif |
| |
| if (dev_data->cb) { |
| dev_data->cb(dev, dev_data->cb_data); |
| } |
| |
| #ifdef CONFIG_PM_DEVICE |
| if (uart_xec_irq_tx_complete(dev)) { |
| uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_TX_FLAG); |
| } |
| #endif /* CONFIG_PM */ |
| |
| /* clear ECIA GIRQ R/W1C status bit after UART status cleared */ |
| uart_xec_girq_clr(dev); |
| } |
| |
| #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
| |
| #ifdef CONFIG_UART_XEC_LINE_CTRL |
| |
| /** |
| * @brief Manipulate line control for UART. |
| * |
| * @param dev UART device struct |
| * @param ctrl The line control to be manipulated |
| * @param val Value to set the line control |
| * |
| * @return 0 if successful, failed otherwise |
| */ |
| static int uart_xec_line_ctrl_set(const struct device *dev, |
| uint32_t ctrl, uint32_t val) |
| { |
| const struct uart_xec_device_config * const dev_cfg = dev->config; |
| struct uart_xec_dev_data *dev_data = dev->data; |
| struct uart_regs *regs = dev_cfg->regs; |
| uint32_t mdc, chg; |
| k_spinlock_key_t key; |
| |
| switch (ctrl) { |
| case UART_LINE_CTRL_BAUD_RATE: |
| set_baud_rate(dev, val); |
| return 0; |
| |
| case UART_LINE_CTRL_RTS: |
| case UART_LINE_CTRL_DTR: |
| key = k_spin_lock(&dev_data->lock); |
| mdc = regs->MCR; |
| |
| if (ctrl == UART_LINE_CTRL_RTS) { |
| chg = MCR_RTS; |
| } else { |
| chg = MCR_DTR; |
| } |
| |
| if (val) { |
| mdc |= chg; |
| } else { |
| mdc &= ~(chg); |
| } |
| regs->MCR = mdc; |
| k_spin_unlock(&dev_data->lock, key); |
| return 0; |
| } |
| |
| return -ENOTSUP; |
| } |
| |
| #endif /* CONFIG_UART_XEC_LINE_CTRL */ |
| |
| static const struct uart_driver_api uart_xec_driver_api = { |
| .poll_in = uart_xec_poll_in, |
| .poll_out = uart_xec_poll_out, |
| .err_check = uart_xec_err_check, |
| #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
| .configure = uart_xec_configure, |
| .config_get = uart_xec_config_get, |
| #endif |
| #ifdef CONFIG_UART_INTERRUPT_DRIVEN |
| |
| .fifo_fill = uart_xec_fifo_fill, |
| .fifo_read = uart_xec_fifo_read, |
| .irq_tx_enable = uart_xec_irq_tx_enable, |
| .irq_tx_disable = uart_xec_irq_tx_disable, |
| .irq_tx_ready = uart_xec_irq_tx_ready, |
| .irq_tx_complete = uart_xec_irq_tx_complete, |
| .irq_rx_enable = uart_xec_irq_rx_enable, |
| .irq_rx_disable = uart_xec_irq_rx_disable, |
| .irq_rx_ready = uart_xec_irq_rx_ready, |
| .irq_err_enable = uart_xec_irq_err_enable, |
| .irq_err_disable = uart_xec_irq_err_disable, |
| .irq_is_pending = uart_xec_irq_is_pending, |
| .irq_update = uart_xec_irq_update, |
| .irq_callback_set = uart_xec_irq_callback_set, |
| |
| #endif |
| |
| #ifdef CONFIG_UART_XEC_LINE_CTRL |
| .line_ctrl_set = uart_xec_line_ctrl_set, |
| #endif |
| }; |
| |
| #define DEV_CONFIG_REG_INIT(n) \ |
| .regs = (struct uart_regs *)(DT_INST_REG_ADDR(n)), |
| |
| #ifdef CONFIG_UART_INTERRUPT_DRIVEN |
| #define DEV_CONFIG_IRQ_FUNC_INIT(n) \ |
| .irq_config_func = irq_config_func##n, |
| #define UART_XEC_IRQ_FUNC_DECLARE(n) \ |
| static void irq_config_func##n(const struct device *dev); |
| #define UART_XEC_IRQ_FUNC_DEFINE(n) \ |
| static void irq_config_func##n(const struct device *dev) \ |
| { \ |
| ARG_UNUSED(dev); \ |
| IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \ |
| uart_xec_isr, DEVICE_DT_INST_GET(n), \ |
| 0); \ |
| irq_enable(DT_INST_IRQN(n)); \ |
| uart_xec_girq_en(DT_INST_PROP_BY_IDX(n, girqs, 0), \ |
| DT_INST_PROP_BY_IDX(n, girqs, 1)); \ |
| } |
| #else |
| /* !CONFIG_UART_INTERRUPT_DRIVEN */ |
| #define DEV_CONFIG_IRQ_FUNC_INIT(n) |
| #define UART_XEC_IRQ_FUNC_DECLARE(n) |
| #define UART_XEC_IRQ_FUNC_DEFINE(n) |
| #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
| |
| #define DEV_DATA_FLOW_CTRL(n) \ |
| DT_INST_PROP_OR(n, hw_flow_control, UART_CFG_FLOW_CTRL_NONE) |
| |
| /* To enable wakeup on the UART, the DTS needs to have two entries defined |
| * in the corresponding UART node in the DTS specifying it as a wake source |
| * and specifying the UART_RX GPIO; example as below |
| * |
| * wakerx-gpios = <&gpio_140_176 25 GPIO_ACTIVE_HIGH>; |
| * wakeup-source; |
| */ |
| #ifdef CONFIG_PM_DEVICE |
| #define XEC_UART_PM_WAKEUP(n) \ |
| .wakeup_source = (uint8_t)DT_INST_PROP_OR(n, wakeup_source, 0), \ |
| .wakerx_gpio = GPIO_DT_SPEC_INST_GET_OR(n, wakerx_gpios, {0}), |
| #else |
| #define XEC_UART_PM_WAKEUP(index) /* Not used */ |
| #endif |
| |
| #define UART_XEC_DEVICE_INIT(n) \ |
| \ |
| PINCTRL_DT_INST_DEFINE(n); \ |
| \ |
| UART_XEC_IRQ_FUNC_DECLARE(n); \ |
| \ |
| static const struct uart_xec_device_config uart_xec_dev_cfg_##n = { \ |
| DEV_CONFIG_REG_INIT(n) \ |
| .sys_clk_freq = DT_INST_PROP(n, clock_frequency), \ |
| .girq_id = DT_INST_PROP_BY_IDX(n, girqs, 0), \ |
| .girq_pos = DT_INST_PROP_BY_IDX(n, girqs, 1), \ |
| .pcr_idx = DT_INST_PROP_BY_IDX(n, pcrs, 0), \ |
| .pcr_bitpos = DT_INST_PROP_BY_IDX(n, pcrs, 1), \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ |
| XEC_UART_PM_WAKEUP(n) \ |
| DEV_CONFIG_IRQ_FUNC_INIT(n) \ |
| }; \ |
| static struct uart_xec_dev_data uart_xec_dev_data_##n = { \ |
| .uart_config.baudrate = DT_INST_PROP_OR(n, current_speed, 0), \ |
| .uart_config.parity = UART_CFG_PARITY_NONE, \ |
| .uart_config.stop_bits = UART_CFG_STOP_BITS_1, \ |
| .uart_config.data_bits = UART_CFG_DATA_BITS_8, \ |
| .uart_config.flow_ctrl = DEV_DATA_FLOW_CTRL(n), \ |
| }; \ |
| PM_DEVICE_DT_INST_DEFINE(n, uart_xec_pm_action); \ |
| DEVICE_DT_INST_DEFINE(n, &uart_xec_init, \ |
| PM_DEVICE_DT_INST_GET(n), \ |
| &uart_xec_dev_data_##n, \ |
| &uart_xec_dev_cfg_##n, \ |
| PRE_KERNEL_1, \ |
| CONFIG_SERIAL_INIT_PRIORITY, \ |
| &uart_xec_driver_api); \ |
| UART_XEC_IRQ_FUNC_DEFINE(n) |
| |
| DT_INST_FOREACH_STATUS_OKAY(UART_XEC_DEVICE_INIT) |