blob: fe97936915efa0b4dc007ae2e7e989eee2798f6e [file] [log] [blame]
/*
* Copyright (c) 2018 Workaround GmbH
* Copyright (c) 2018 Allterco Robotics
* Copyright (c) 2018 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*
* Source file for the STM32 RTC driver
*
*/
#define DT_DRV_COMPAT st_stm32_rtc
#include <time.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_cortex.h>
#include <stm32_ll_exti.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_rtc.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/sys/timeutil.h>
#include <zephyr/pm/device.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <stm32_backup_domain.h>
#include <stm32_hsem.h>
LOG_MODULE_REGISTER(counter_rtc_stm32, CONFIG_COUNTER_LOG_LEVEL);
#if defined(CONFIG_SOC_SERIES_STM32F1X) || defined(CONFIG_SOC_SERIES_STM32F2X) || \
(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SUBSECOND_SUPPORT))
/* subsecond counting is not supported by some STM32L1x MCUs (Cat.1) & by STM32F1x/2x SoC series */
#define HW_SUBSECOND_SUPPORT 0
#else
#define HW_SUBSECOND_SUPPORT 1
#endif
/* Seconds from 1970-01-01T00:00:00 to 2000-01-01T00:00:00 */
#define T_TIME_OFFSET 946684800
#if defined(CONFIG_SOC_SERIES_STM32L4X)
#define RTC_EXTI_LINE LL_EXTI_LINE_18
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
|| defined(CONFIG_SOC_SERIES_STM32G0X)
#define RTC_EXTI_LINE LL_EXTI_LINE_19
#elif defined(CONFIG_SOC_SERIES_STM32F4X) \
|| defined(CONFIG_SOC_SERIES_STM32F0X) \
|| defined(CONFIG_SOC_SERIES_STM32F1X) \
|| defined(CONFIG_SOC_SERIES_STM32F2X) \
|| defined(CONFIG_SOC_SERIES_STM32F3X) \
|| defined(CONFIG_SOC_SERIES_STM32F7X) \
|| defined(CONFIG_SOC_SERIES_STM32WBX) \
|| defined(CONFIG_SOC_SERIES_STM32G4X) \
|| defined(CONFIG_SOC_SERIES_STM32L0X) \
|| defined(CONFIG_SOC_SERIES_STM32L1X) \
|| defined(CONFIG_SOC_SERIES_STM32L5X) \
|| defined(CONFIG_SOC_SERIES_STM32H7X) \
|| defined(CONFIG_SOC_SERIES_STM32H5X) \
|| defined(CONFIG_SOC_SERIES_STM32WLX)
#define RTC_EXTI_LINE LL_EXTI_LINE_17
#endif
#if defined(CONFIG_SOC_SERIES_STM32F1X)
#define COUNTER_NO_DATE
#endif
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI
/* LSI */
#define RTCCLK_FREQ STM32_LSI_FREQ
#else
/* LSE */
#define RTCCLK_FREQ STM32_LSE_FREQ
#endif /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI */
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
#define RTC_ASYNCPRE BIT_MASK(7)
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
/* Get the highest possible clock for the subsecond register */
#define RTC_ASYNCPRE 1
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else /* CONFIG_SOC_SERIES_STM32F1X */
#define RTC_ASYNCPRE (RTCCLK_FREQ - 1)
#endif /* CONFIG_SOC_SERIES_STM32F1X */
/* Timeout in microseconds used to wait for flags */
#define RTC_TIMEOUT 1000
/* Adjust the second sync prescaler to get 1Hz on ck_spre */
#define RTC_SYNCPRE ((RTCCLK_FREQ / (1 + RTC_ASYNCPRE)) - 1)
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
typedef uint32_t tick_t;
#else
typedef uint64_t tick_t;
#endif
struct rtc_stm32_config {
struct counter_config_info counter_info;
uint32_t async_prescaler;
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
uint32_t sync_prescaler;
#endif /* !CONFIG_SOC_SERIES_STM32F1X */
const struct stm32_pclken *pclken;
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
uint32_t hse_prescaler;
#endif
};
struct rtc_stm32_data {
counter_alarm_callback_t callback;
uint32_t ticks;
void *user_data;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
bool irq_on_late;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
};
static inline void ll_func_clear_alarm_flag(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_ClearFlag_ALR(rtc);
#else
LL_RTC_ClearFlag_ALRA(rtc);
#endif
}
static inline uint32_t ll_func_is_active_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_IsActiveFlag_ALR(rtc);
#else
return LL_RTC_IsActiveFlag_ALRA(rtc);
#endif
}
static inline void ll_func_enable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_EnableIT_ALR(rtc);
#else
LL_RTC_EnableIT_ALRA(rtc);
#endif
}
static inline void ll_func_disable_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_DisableIT_ALR(rtc);
#else
LL_RTC_DisableIT_ALRA(rtc);
#endif
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static inline uint32_t ll_func_isenabled_interrupt_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
return LL_RTC_IsEnabledIT_ALR(rtc);
#else
return LL_RTC_IsEnabledIT_ALRA(rtc);
#endif
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
static inline void ll_func_enable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
ARG_UNUSED(rtc);
#else
LL_RTC_ALMA_Enable(rtc);
#endif
}
static inline void ll_func_disable_alarm(RTC_TypeDef *rtc)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
ARG_UNUSED(rtc);
#else
LL_RTC_ALMA_Disable(rtc);
#endif
}
static void rtc_stm32_irq_config(const struct device *dev);
/* When no error occurs, this function disables the RTC write protection and should be balanced
* with a call to rtc_stm32_exit_init_mode (which enables RTC write protection).
* In case of error, the write protection is enabled when leaving this function, so nothing more
* needs to be made.
*/
static int rtc_stm32_enter_init_mode(void)
{
#if defined(CONFIG_SOC_SERIES_STM32F1X)
/* Wait for RTC to be ready */
if (!WAIT_FOR(LL_RTC_IsActiveFlag_RTOF(RTC), RTC_TIMEOUT, NULL)) {
return -ETIMEDOUT;
}
LL_RTC_DisableWriteProtection(RTC);
#else
LL_RTC_DisableWriteProtection(RTC);
/* Check if the Initialization mode is set */
if (LL_RTC_IsActiveFlag_INIT(RTC) == 0U) {
/* Set the Initialization mode */
LL_RTC_EnableInitMode(RTC);
if (!WAIT_FOR(LL_RTC_IsActiveFlag_INIT(RTC), RTC_TIMEOUT, NULL)) {
LL_RTC_DisableInitMode(RTC);
LL_RTC_EnableWriteProtection(RTC);
return -ETIMEDOUT;
}
}
#endif
return 0;
}
static int rtc_stm32_exit_init_mode(void)
{
int status = 0;
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_EnableWriteProtection(RTC);
/* Wait for RTC to be ready */
if (!WAIT_FOR(LL_RTC_IsActiveFlag_RTOF(RTC), RTC_TIMEOUT, NULL)) {
status = -ETIMEDOUT;
}
#else
LL_RTC_DisableInitMode(RTC);
LL_RTC_EnableWriteProtection(RTC);
#endif
return status;
}
#if !defined(CONFIG_COUNTER_RTC_STM32_SAVE_VALUE_BETWEEN_RESETS)
static int rtc_stm32_wait_for_synchro(void)
{
int status = 0;
/* Clear RSF flag */
LL_RTC_ClearFlag_RS(RTC);
if (!WAIT_FOR(LL_RTC_IsActiveFlag_RS(RTC), RTC_TIMEOUT, NULL)) {
status = -ETIMEDOUT;
}
return status;
}
static int rtc_stm32_deinit(void)
{
int ret;
/* Set Initialization mode */
ret = rtc_stm32_enter_init_mode();
if (ret < 0) {
LOG_ERR("Failed to enter RTC init mode");
return ret;
}
#if defined(CONFIG_SOC_SERIES_STM32F1X)
WRITE_REG(RTC->CNTL, 0U);
WRITE_REG(RTC->CNTH, 0U);
WRITE_REG(RTC->PRLH, 0U);
WRITE_REG(RTC->PRLL, 0x8000U);
WRITE_REG(RTC->CRH, 0U);
WRITE_REG(RTC->CRL, 0x20U);
#else /* CONFIG_SOC_SERIES_STM32F1X */
WRITE_REG(RTC->CR, 0U);
WRITE_REG(RTC->TR, 0U);
#ifdef RTC_WUTR_WUT
WRITE_REG(RTC->WUTR, RTC_WUTR_WUT);
#endif /* RTC_WUTR_WUT */
WRITE_REG(RTC->DR, RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0);
WRITE_REG(RTC->PRER, RTC_PRER_PREDIV_A | 0xFFU);
WRITE_REG(RTC->ALRMAR, 0U);
#ifdef RTC_CR_ALRBE
WRITE_REG(RTC->ALRMBR, 0U);
#endif /* RTC_CR_ALRBE */
#if HW_SUBSECOND_SUPPORT
WRITE_REG(RTC->CALR, 0U);
WRITE_REG(RTC->SHIFTR, 0U);
WRITE_REG(RTC->ALRMASSR, 0U);
#ifdef RTC_CR_ALRBE
WRITE_REG(RTC->ALRMBSSR, 0U);
#endif /* RTC_CR_ALRBE */
#endif /* HW_SUBSECOND_SUPPORT */
#if defined(RTC_PRIVCFGR_PRIV)
WRITE_REG(RTC->PRIVCFGR, 0U);
#endif /* RTC_PRIVCFGR_PRIV */
#if defined(__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
WRITE_REG(RTC->SECCFGR, 0U);
#endif /* (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
/* Reset I(C)SR register and exit initialization mode */
#ifdef RTC_ICSR_INIT
WRITE_REG(RTC->ICSR, 0U);
#else
WRITE_REG(RTC->ISR, 0U);
#endif
#endif /* CONFIG_SOC_SERIES_STM32F1X */
/* Exit Initialization mode */
ret = rtc_stm32_exit_init_mode();
if (ret < 0) {
LOG_ERR("Failed to exit RTC init mode");
return ret;
}
return rtc_stm32_wait_for_synchro();
}
#endif
static int rtc_stm32_configure(const struct device *dev)
{
const struct rtc_stm32_config *cfg = dev->config;
int ret;
/* Set Initialization mode */
ret = rtc_stm32_enter_init_mode();
if (ret < 0) {
LOG_ERR("Failed to enter RTC init mode");
return ret;
}
#if defined(CONFIG_SOC_SERIES_STM32F1X)
LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler);
LL_RTC_SetOutputSource(BKP, LL_RTC_CALIB_OUTPUT_NONE);
#else
LL_RTC_SetHourFormat(RTC, LL_RTC_HOURFORMAT_24HOUR);
LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler);
LL_RTC_SetSynchPrescaler(RTC, cfg->sync_prescaler);
#endif
/* Exit Initialization mode */
ret = rtc_stm32_exit_init_mode();
if (ret < 0) {
LOG_ERR("Failed to exit RTC init mode");
}
return ret;
}
static int rtc_stm32_start(const struct device *dev)
{
#if defined(CONFIG_SOC_SERIES_STM32WBAX) || defined(CONFIG_SOC_SERIES_STM32U5X)
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("RTC clock enabling failed");
return -EIO;
}
#else
ARG_UNUSED(dev);
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
stm32_backup_domain_enable_access();
LL_RCC_EnableRTC();
stm32_backup_domain_disable_access();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif
return 0;
}
static int rtc_stm32_stop(const struct device *dev)
{
#if defined(CONFIG_SOC_SERIES_STM32WBAX) || defined(CONFIG_SOC_SERIES_STM32U5X)
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
/* Disable RTC bus clock */
if (clock_control_off(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("RTC clock disabling failed");
return -EIO;
}
#else
ARG_UNUSED(dev);
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
stm32_backup_domain_enable_access();
LL_RCC_DisableRTC();
stm32_backup_domain_disable_access();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif
return 0;
}
#if !defined(COUNTER_NO_DATE)
tick_t rtc_stm32_read(const struct device *dev)
{
struct tm now = { 0 };
time_t ts;
uint32_t rtc_date, rtc_time;
tick_t ticks;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
uint32_t rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
ARG_UNUSED(dev);
/* Read time and date registers. Make sure value of the previous register
* hasn't been changed while reading the next one.
*/
do {
rtc_date = LL_RTC_DATE_Get(RTC);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
do {
rtc_time = LL_RTC_TIME_Get(RTC);
rtc_subseconds = LL_RTC_TIME_GetSubSecond(RTC);
} while (rtc_time != LL_RTC_TIME_Get(RTC));
#else /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
rtc_time = LL_RTC_TIME_Get(RTC);
#endif
} while (rtc_date != LL_RTC_DATE_Get(RTC));
/* Convert calendar datetime to UNIX timestamp */
/* RTC start time: 1st, Jan, 2000 */
/* time_t start: 1st, Jan, 1970 */
now.tm_year = 100 +
__LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_YEAR(rtc_date));
/* tm_mon allowed values are 0-11 */
now.tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1;
now.tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date));
now.tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time));
now.tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time));
now.tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time));
ts = timeutil_timegm(&now);
/* Return number of seconds since RTC init */
ts -= T_TIME_OFFSET;
__ASSERT(sizeof(time_t) == 8, "unexpected time_t definition");
ticks = ts * counter_get_frequency(dev);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* The RTC counts up, except for the subsecond register which counts
* down starting from the sync prescaler value. Add already counted
* ticks.
*/
ticks += RTC_SYNCPRE - rtc_subseconds;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
return ticks;
}
#else /* defined(COUNTER_NO_DATE) */
tick_t rtc_stm32_read(const struct device *dev)
{
uint32_t ticks;
ARG_UNUSED(dev);
ticks = LL_RTC_TIME_Get(RTC);
return ticks;
}
#endif /* !defined(COUNTER_NO_DATE) */
static int rtc_stm32_get_value(const struct device *dev, uint32_t *ticks)
{
*ticks = (uint32_t)rtc_stm32_read(dev);
return 0;
}
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static int rtc_stm32_get_value_64(const struct device *dev, uint64_t *ticks)
{
*ticks = rtc_stm32_read(dev);
return 0;
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
static void rtc_stm32_set_int_pending(void)
{
NVIC_SetPendingIRQ(DT_INST_IRQN(0));
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
static int rtc_stm32_set_alarm(const struct device *dev, uint8_t chan_id,
const struct counter_alarm_cfg *alarm_cfg)
{
#if !defined(COUNTER_NO_DATE)
struct tm alarm_tm;
time_t alarm_val_s;
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
uint32_t alarm_val_ss;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
uint32_t remain;
#endif
struct rtc_stm32_data *data = dev->data;
int ret = 0;
tick_t now = rtc_stm32_read(dev);
tick_t ticks = alarm_cfg->ticks;
if (data->callback != NULL) {
LOG_DBG("Alarm busy");
return -EBUSY;
}
data->callback = alarm_cfg->callback;
data->user_data = alarm_cfg->user_data;
#if !defined(COUNTER_NO_DATE)
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
/* Add +1 in order to compensate the partially started tick.
* Alarm will expire between requested ticks and ticks+1.
* In case only 1 tick is requested, it will avoid
* that tick+1 event occurs before alarm setting is finished.
*/
ticks += now + 1;
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev)) + T_TIME_OFFSET;
} else {
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev));
}
gmtime_r(&alarm_val_s, &alarm_tm);
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
alarm_val_ss = ticks % counter_get_frequency(dev);
LOG_DBG("Set Alarm: %llu", ticks);
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
LOG_DBG("Set Alarm: %d", ticks);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#else
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) {
remain = ticks + now + 1;
} else {
remain = ticks;
}
/* In F1X, an interrupt occurs when the counter expires,
* not when the counter matches, so set -1
*/
remain--;
#endif
stm32_backup_domain_enable_access();
#if !defined(COUNTER_NO_DATE)
LL_RTC_DisableWriteProtection(RTC);
ll_func_disable_alarm(RTC);
/* Configure the Alarm registers */
LL_RTC_ALMA_DisableWeekday(RTC);
LL_RTC_ALMA_SetDay(RTC, __LL_RTC_CONVERT_BIN2BCD(alarm_tm.tm_mday));
LL_RTC_ALMA_ConfigTime(RTC, LL_RTC_TIME_FORMAT_AM_OR_24,
__LL_RTC_CONVERT_BIN2BCD(alarm_tm.tm_hour),
__LL_RTC_CONVERT_BIN2BCD(alarm_tm.tm_min),
__LL_RTC_CONVERT_BIN2BCD(alarm_tm.tm_sec));
LL_RTC_ALMA_SetMask(RTC, LL_RTC_ALMA_MASK_NONE);
LL_RTC_EnableWriteProtection(RTC);
#else
/* Set Initialization mode */
ret = rtc_stm32_enter_init_mode();
if (ret < 0) {
goto out_disable_bkup_access;
}
/* Set the alarm */
LL_RTC_ALARM_Set(RTC, remain);
ret = rtc_stm32_exit_init_mode();
if (ret < 0) {
goto out_disable_bkup_access;
}
#endif
LL_RTC_DisableWriteProtection(RTC);
#if HW_SUBSECOND_SUPPORT
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* Care about all bits of the subsecond register */
LL_RTC_ALMA_SetSubSecondMask(RTC, 0xF);
LL_RTC_ALMA_SetSubSecond(RTC, RTC_SYNCPRE - alarm_val_ss);
#else
LL_RTC_ALMA_SetSubSecondMask(RTC, 0);
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
#endif /* HW_SUBSECOND_SUPPORT */
ll_func_enable_alarm(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_enable_interrupt_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
#if defined(COUNTER_NO_DATE)
out_disable_bkup_access:
#endif
stm32_backup_domain_disable_access();
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* The reference manual says:
* "Each change of the RTC_CR register is taken into account after
* 1 to 2 RTCCLK clock cycles due to clock synchronization."
* It means we need at least two cycles after programming the CR
* register. It is confirmed experimentally.
*
* It should happen only if one tick alarm is requested and a tick
* occurs while processing the function. Trigger the irq manually in
* this case.
*/
now = rtc_stm32_read(dev);
if ((ticks - now < 2) || (now > ticks)) {
data->irq_on_late = 1;
rtc_stm32_set_int_pending();
}
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
return ret;
}
static int rtc_stm32_cancel_alarm(const struct device *dev, uint8_t chan_id)
{
struct rtc_stm32_data *data = dev->data;
stm32_backup_domain_enable_access();
LL_RTC_DisableWriteProtection(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_disable_interrupt_alarm(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
stm32_backup_domain_disable_access();
data->callback = NULL;
return 0;
}
static uint32_t rtc_stm32_get_pending_int(const struct device *dev)
{
return ll_func_is_active_alarm(RTC) != 0;
}
static uint32_t rtc_stm32_get_top_value(const struct device *dev)
{
const struct counter_config_info *info = dev->config;
return info->max_top_value;
}
static int rtc_stm32_set_top_value(const struct device *dev,
const struct counter_top_cfg *cfg)
{
const struct counter_config_info *info = dev->config;
if ((cfg->ticks != info->max_top_value) ||
!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
return -ENOTSUP;
} else {
return 0;
}
}
void rtc_stm32_isr(const struct device *dev)
{
struct rtc_stm32_data *data = dev->data;
counter_alarm_callback_t alarm_callback = data->callback;
uint32_t now = rtc_stm32_read(dev);
if (ll_func_is_active_alarm(RTC) != 0
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
|| (data->irq_on_late && ll_func_isenabled_interrupt_alarm(RTC))
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
) {
stm32_backup_domain_enable_access();
LL_RTC_DisableWriteProtection(RTC);
ll_func_clear_alarm_flag(RTC);
ll_func_disable_interrupt_alarm(RTC);
ll_func_disable_alarm(RTC);
LL_RTC_EnableWriteProtection(RTC);
stm32_backup_domain_disable_access();
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
data->irq_on_late = 0;
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
if (alarm_callback != NULL) {
data->callback = NULL;
alarm_callback(dev, 0, now, data->user_data);
}
}
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
LL_C2_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \
|| defined(CONFIG_SOC_SERIES_STM32G0X) \
|| defined(CONFIG_SOC_SERIES_STM32L5X) \
|| defined(CONFIG_SOC_SERIES_STM32H5X)
LL_EXTI_ClearRisingFlag_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
/* in STM32U5 family RTC is not connected to EXTI */
#else
LL_EXTI_ClearFlag_0_31(RTC_EXTI_LINE);
#endif
}
static int rtc_stm32_init(const struct device *dev)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
struct rtc_stm32_data *data = dev->data;
int ret = -EIO;
data->callback = NULL;
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed");
return -EIO;
}
/* Enable Backup access */
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
stm32_backup_domain_enable_access();
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
/* Must be configured before selecting the RTC clock source */
LL_RCC_SetRTC_HSEPrescaler(cfg->hse_prescaler);
#endif
/* Enable RTC clock source */
if (clock_control_configure(clk,
(clock_control_subsys_t) &cfg->pclken[1],
NULL) != 0) {
LOG_ERR("clock configure failed");
goto out_disable_bkup_access;
}
#if !defined(CONFIG_SOC_SERIES_STM32WBAX)
LL_RCC_EnableRTC();
#endif
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#if !defined(CONFIG_COUNTER_RTC_STM32_SAVE_VALUE_BETWEEN_RESETS)
ret = rtc_stm32_deinit();
if (ret < 0) {
LOG_ERR("Failed to deinit RTC");
goto out_disable_bkup_access;
}
#endif
ret = rtc_stm32_configure(dev);
if (ret < 0) {
LOG_ERR("Failed to init RTC");
goto out_disable_bkup_access;
}
#ifdef RTC_CR_BYPSHAD
LL_RTC_DisableWriteProtection(RTC);
LL_RTC_EnableShadowRegBypass(RTC);
LL_RTC_EnableWriteProtection(RTC);
#endif /* RTC_CR_BYPSHAD */
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4)
LL_C2_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX)
/* in STM32U5 family RTC is not connected to EXTI */
#else
LL_EXTI_EnableIT_0_31(RTC_EXTI_LINE);
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE);
#endif
out_disable_bkup_access:
stm32_backup_domain_disable_access();
if (ret == 0) {
rtc_stm32_irq_config(dev);
}
return ret;
}
static struct rtc_stm32_data rtc_data;
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0);
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
#if STM32_HSE_FREQ % MHZ(1) != 0
#error RTC clock source HSE frequency should be whole MHz
#elif STM32_HSE_FREQ < MHZ(16) && defined(LL_RCC_RTC_HSE_DIV_16)
#define RTC_HSE_PRESCALER LL_RCC_RTC_HSE_DIV_16
#define RTC_HSE_FREQUENCY (STM32_HSE_FREQ / 16)
#elif STM32_HSE_FREQ < MHZ(32) && defined(LL_RCC_RTC_HSE_DIV_32)
#define RTC_HSE_PRESCALER LL_RCC_RTC_HSE_DIV_32
#define RTC_HSE_FREQUENCY (STM32_HSE_FREQ / 32)
#elif STM32_HSE_FREQ < MHZ(64) && defined(LL_RCC_RTC_HSE_DIV_64)
#define RTC_HSE_PRESCALER LL_RCC_RTC_HSE_DIV_64
#define RTC_HSE_FREQUENCY (STM32_HSE_FREQ / 64)
#else
#error RTC does not support HSE frequency
#endif
#define RTC_HSE_ASYNC_PRESCALER 125
#define RTC_HSE_SYNC_PRESCALER (RTC_HSE_FREQUENCY / RTC_HSE_ASYNC_PRESCALER)
#endif /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE */
static const struct rtc_stm32_config rtc_config = {
.counter_info = {
.max_top_value = UINT32_MAX,
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
/* freq = 1Hz for not subsec based driver */
.freq = RTCCLK_FREQ / ((RTC_ASYNCPRE + 1) * (RTC_SYNCPRE + 1)),
#else /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.freq = RTCCLK_FREQ / (RTC_ASYNCPRE + 1),
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.flags = COUNTER_CONFIG_INFO_COUNT_UP,
.channels = 1,
},
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI || \
DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSE
.async_prescaler = DT_INST_PROP_OR(0, async_prescaler, RTC_ASYNCPRE),
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
.sync_prescaler = DT_INST_PROP_OR(0, sync_prescaler, RTC_SYNCPRE),
#endif /* !CONFIG_SOC_SERIES_STM32F1X */
#elif DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
.async_prescaler = DT_INST_PROP_OR(0, async_prescaler, _HSE_ASYNC_PRESCALER - 1),
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
.sync_prescaler = DT_INST_PROP_OR(0, hse_prescaler, RTC_HSE_SYNC_PRESCALER - 1),
#endif /* !CONFIG_SOC_SERIES_STM32F1X */
#else
#error Invalid RTC SRC
#endif
.pclken = rtc_clk,
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_HSE
.hse_prescaler = DT_INST_PROP_OR(0, hse_prescaler, RTC_HSE_PRESCALER),
#endif
};
#ifdef CONFIG_PM_DEVICE
static int rtc_stm32_pm_action(const struct device *dev,
enum pm_device_action action)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed");
return -EIO;
}
break;
case PM_DEVICE_ACTION_SUSPEND:
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
static DEVICE_API(counter, rtc_stm32_driver_api) = {
.start = rtc_stm32_start,
.stop = rtc_stm32_stop,
.get_value = rtc_stm32_get_value,
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS
.get_value_64 = rtc_stm32_get_value_64,
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */
.set_alarm = rtc_stm32_set_alarm,
.cancel_alarm = rtc_stm32_cancel_alarm,
.set_top_value = rtc_stm32_set_top_value,
.get_pending_int = rtc_stm32_get_pending_int,
.get_top_value = rtc_stm32_get_top_value,
};
PM_DEVICE_DT_INST_DEFINE(0, rtc_stm32_pm_action);
DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, PM_DEVICE_DT_INST_GET(0),
&rtc_data, &rtc_config, PRE_KERNEL_1,
CONFIG_COUNTER_INIT_PRIORITY, &rtc_stm32_driver_api);
static void rtc_stm32_irq_config(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
rtc_stm32_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
}