blob: fee70588c7fa7e57c61a7486a5692f07f7e7a072 [file] [log] [blame]
/*
* Copyright 2019 Henrik Brix Andersen <henrik@brixandersen.dk>
* Copyright 2020, 2024-2025 NXP
*
* Heavily based on pwm_mcux_ftm.c, which is:
* Copyright (c) 2017, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_kinetis_tpm
#include <zephyr/drivers/clock_control.h>
#include <errno.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/irq.h>
#include <soc.h>
#include <fsl_tpm.h>
#include <fsl_clock.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#if defined(CONFIG_SOC_MIMX9596)
#include <zephyr/dt-bindings/clock/imx95_clock.h>
#endif
LOG_MODULE_REGISTER(pwm_mcux_tpm, CONFIG_PWM_LOG_LEVEL);
#define TPM_MAX_CHANNELS TPM_CnSC_COUNT
#define TPM_COMBINE_SHIFT (8U)
/* PWM capture operates on channel pairs */
#define TPM_MAX_CAPTURE_PAIRS (TPM_MAX_CHANNELS / 2U)
#define TPM_PAIR_FIRST_CH(pair) (pair * 2U)
#define TPM_PAIR_SECOND_CH(pair) (TPM_PAIR_FIRST_CH(pair) + 1)
#define TPM_WHICH_PAIR(ch) (ch / 2U)
#define DEV_CFG(_dev) ((const struct mcux_tpm_config *)(_dev)->config)
#define DEV_DATA(_dev) ((struct mcux_tpm_data *)(_dev)->data)
#define TPM_TYPE_BASE(dev, name) ((TPM_Type *)DEVICE_MMIO_NAMED_GET(dev, name))
struct mcux_tpm_config {
DEVICE_MMIO_NAMED_ROM(base);
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
tpm_clock_source_t tpm_clock_source;
tpm_clock_prescale_t prescale;
uint8_t channel_count;
tpm_pwm_mode_t mode;
const struct pinctrl_dev_config *pincfg;
#ifdef CONFIG_PWM_CAPTURE
void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_PWM_CAPTURE */
};
struct mcux_tpm_capture_data {
tpm_dual_edge_capture_param_t param;
pwm_capture_callback_handler_t callback;
void *user_data;
uint32_t first_edge_overflows;
uint32_t first_edge_cnt; /* Counter value after entering first edge interrupt */
uint32_t first_edge_cnv; /* CnV value When first edge is captured */
bool first_edge_overflow;
bool first_chan_captured;
bool pulse_capture;
bool continuous_capture;
};
struct mcux_tpm_data {
DEVICE_MMIO_NAMED_RAM(base);
uint32_t clock_freq;
uint32_t period_cycles;
tpm_chnl_pwm_signal_param_t channel[TPM_MAX_CHANNELS];
#ifdef CONFIG_PWM_CAPTURE
uint32_t overflows;
struct mcux_tpm_capture_data capture[TPM_MAX_CAPTURE_PAIRS];
#endif /* CONFIG_PWM_CAPTURE */
};
static int mcux_tpm_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
const struct mcux_tpm_config *config = dev->config;
struct mcux_tpm_data *data = dev->data;
TPM_Type *base = TPM_TYPE_BASE(dev, base);
#ifdef CONFIG_PWM_CAPTURE
uint32_t pair = TPM_WHICH_PAIR(channel);
uint32_t irqs;
#endif /* CONFIG_PWM_CAPTURE */
if (channel >= config->channel_count) {
LOG_ERR("Invalid channel");
return -ENOTSUP;
}
if (period_cycles == 0 || period_cycles == TPM_MAX_COUNTER_VALUE(base)) {
return -ENOTSUP;
}
if ((TPM_MAX_COUNTER_VALUE(base) == 0xFFFFU) &&
(pulse_cycles > TPM_MAX_COUNTER_VALUE(base))) {
return -ENOTSUP;
}
#ifdef CONFIG_PWM_CAPTURE
irqs = TPM_GetEnabledInterrupts(base);
if (irqs & BIT(TPM_PAIR_SECOND_CH(pair))) {
LOG_ERR("Cannot set PWM, capture in progress on pair %d", pair);
return -EBUSY;
}
#endif /* CONFIG_PWM_CAPTURE */
LOG_DBG("pulse_cycles=%d, period_cycles=%d, flags=%d", pulse_cycles, period_cycles, flags);
if (period_cycles != data->period_cycles) {
uint32_t pwm_freq;
status_t status;
if (data->period_cycles != 0) {
/* Only warn when not changing from zero */
LOG_WRN("Changing period cycles from %d to %d"
" affects all %d channels in %s",
data->period_cycles, period_cycles,
config->channel_count, dev->name);
}
data->period_cycles = period_cycles;
pwm_freq = (data->clock_freq >> config->prescale) /
period_cycles;
LOG_DBG("pwm_freq=%d, clock_freq=%d", pwm_freq,
data->clock_freq);
if (pwm_freq == 0U) {
LOG_ERR("Could not set up pwm_freq=%d", pwm_freq);
return -EINVAL;
}
TPM_StopTimer(base);
/* Set counter back to zero */
base->CNT = 0;
status = TPM_SetupPwm(base, data->channel,
config->channel_count, config->mode,
pwm_freq, data->clock_freq);
if (status != kStatus_Success) {
LOG_ERR("Could not set up pwm");
return -ENOTSUP;
}
TPM_StartTimer(base, config->tpm_clock_source);
}
if ((flags & PWM_POLARITY_INVERTED) == 0 &&
data->channel[channel].level != kTPM_HighTrue) {
data->channel[channel].level = kTPM_HighTrue;
TPM_UpdateChnlEdgeLevelSelect(base, channel, kTPM_HighTrue);
} else if ((flags & PWM_POLARITY_INVERTED) != 0 &&
data->channel[channel].level != kTPM_LowTrue) {
data->channel[channel].level = kTPM_LowTrue;
TPM_UpdateChnlEdgeLevelSelect(base, channel, kTPM_LowTrue);
}
if (pulse_cycles == period_cycles) {
pulse_cycles = period_cycles + 1U;
}
base->CONTROLS[channel].CnV = pulse_cycles;
return 0;
}
#ifdef CONFIG_PWM_CAPTURE
static int mcux_tpm_configure_capture(const struct device *dev,
uint32_t channel, pwm_flags_t flags,
pwm_capture_callback_handler_t cb,
void *user_data)
{
TPM_Type *base = TPM_TYPE_BASE(dev, base);
struct mcux_tpm_data *data = dev->data;
tpm_dual_edge_capture_param_t *param;
uint32_t pair = TPM_WHICH_PAIR(channel);
if ((channel & 0x1U) == 0x1U) {
LOG_ERR("PWM capture only supported on even channels");
return -ENOTSUP;
}
if (pair >= ARRAY_SIZE(data->capture)) {
LOG_ERR("Invalid channel pair %d", pair);
return -EINVAL;
}
if ((TPM_GetEnabledInterrupts(base) & BIT(TPM_PAIR_SECOND_CH(pair))) != 0) {
LOG_ERR("Capture already active on channel pair %d", pair);
return -EBUSY;
}
if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
LOG_ERR("No capture type specified");
return -EINVAL;
}
if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) {
LOG_ERR("Cannot capture both period and pulse width");
return -ENOTSUP;
}
data->capture[pair].callback = cb;
data->capture[pair].user_data = user_data;
param = &data->capture[pair].param;
if ((flags & PWM_CAPTURE_MODE_MASK) == PWM_CAPTURE_MODE_CONTINUOUS) {
data->capture[pair].continuous_capture = true;
} else {
data->capture[pair].continuous_capture = false;
}
if (flags & PWM_CAPTURE_TYPE_PERIOD) {
data->capture[pair].pulse_capture = false;
if (flags & PWM_POLARITY_INVERTED) {
param->currChanEdgeMode = kTPM_FallingEdge;
param->nextChanEdgeMode = kTPM_FallingEdge;
} else {
param->currChanEdgeMode = kTPM_RisingEdge;
param->nextChanEdgeMode = kTPM_RisingEdge;
}
} else {
data->capture[pair].pulse_capture = true;
if (flags & PWM_POLARITY_INVERTED) {
param->currChanEdgeMode = kTPM_FallingEdge;
param->nextChanEdgeMode = kTPM_RisingEdge;
} else {
param->currChanEdgeMode = kTPM_RisingEdge;
param->nextChanEdgeMode = kTPM_FallingEdge;
}
}
return 0;
}
static int mcux_tpm_enable_capture(const struct device *dev, uint32_t channel)
{
TPM_Type *base = TPM_TYPE_BASE(dev, base);
struct mcux_tpm_data *data = dev->data;
uint32_t pair = TPM_WHICH_PAIR(channel);
if ((channel & 0x1U) == 0x1U) {
LOG_ERR("PWM capture only supported on even channels");
return -ENOTSUP;
}
if (pair >= ARRAY_SIZE(data->capture)) {
LOG_ERR("Invalid channel pair %d", pair);
return -EINVAL;
}
if (!data->capture[pair].callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
if ((TPM_GetEnabledInterrupts(base) & BIT(TPM_PAIR_SECOND_CH(pair))) != 0) {
LOG_ERR("Capture already active on channel pair %d", pair);
return -EBUSY;
}
TPM_ClearStatusFlags(base, BIT(TPM_PAIR_FIRST_CH(pair)) |
BIT(TPM_PAIR_SECOND_CH(pair)));
TPM_SetupDualEdgeCapture(base, pair, &data->capture[pair].param,
CONFIG_PWM_CAPTURE_MCUX_TPM_FILTER_VALUE);
TPM_EnableInterrupts(base, BIT(TPM_PAIR_FIRST_CH(pair)) |
BIT(TPM_PAIR_SECOND_CH(pair)));
return 0;
}
static int mcux_tpm_disable_capture(const struct device *dev, uint32_t channel)
{
TPM_Type *base = TPM_TYPE_BASE(dev, base);
struct mcux_tpm_data *data = dev->data;
uint32_t pair = TPM_WHICH_PAIR(channel);
if ((channel & 0x1U) == 0x1U) {
LOG_ERR("PWM capture only supported on even channels");
return -ENOTSUP;
}
if (pair >= ARRAY_SIZE(data->capture)) {
LOG_ERR("Invalid channel pair %d", pair);
return -EINVAL;
}
TPM_DisableInterrupts(base, BIT(TPM_PAIR_FIRST_CH(pair)) |
BIT(TPM_PAIR_SECOND_CH(pair)));
/* Disable input capture combine mode */
base->COMBINE &= ~(TPM_COMBINE_COMBINE0_MASK << ((TPM_COMBINE_SHIFT * pair)));
return 0;
}
static void mcux_tpm_capture_first_edge(const struct device *dev, uint32_t channel, uint32_t cnt,
bool overflow)
{
TPM_Type *base = TPM_TYPE_BASE(dev, base);
struct mcux_tpm_data *data = dev->data;
struct mcux_tpm_capture_data *capture;
uint32_t pair = TPM_WHICH_PAIR(channel);
__ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture));
capture = &data->capture[pair];
capture->first_edge_cnv = TPM_GetChannelValue(base, channel);
capture->first_edge_cnt = cnt;
capture->first_edge_overflows = data->overflows;
capture->first_edge_overflow = overflow;
capture->first_chan_captured = true;
/* Disable interrupt for first edge to prepare for second edge capture */
TPM_DisableInterrupts(base, BIT(channel));
TPM_ClearStatusFlags(base, BIT(channel));
LOG_DBG("pair = %d, 1st ovfs = %d, 1st cnt = %u, 1st cnv = %u, 1st ovf = %d", pair,
capture->first_edge_overflows, cnt, capture->first_edge_cnv, overflow);
}
static void mcux_tpm_capture_second_edge(const struct device *dev, uint32_t channel,
uint32_t cnt, bool overflow)
{
TPM_Type *base = TPM_TYPE_BASE(dev, base);
struct mcux_tpm_data *data = dev->data;
uint32_t second_edge_overflows = data->overflows;
uint32_t pair = TPM_WHICH_PAIR(channel);
struct mcux_tpm_capture_data *capture;
uint32_t overflows;
uint32_t first_cnv;
uint32_t second_cnv;
uint32_t cycles;
int status = 0;
__ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture));
capture = &data->capture[pair];
first_cnv = capture->first_edge_cnv;
second_cnv = TPM_GetChannelValue(base, channel);
if (unlikely(capture->first_edge_overflow && first_cnv > capture->first_edge_cnt)) {
/* Compensate for the overflow registered in the same IRQ */
capture->first_edge_overflows--;
}
if (unlikely(overflow && second_cnv > cnt)) {
/* Compensate for the overflow registered in the same IRQ */
second_edge_overflows--;
}
overflows = second_edge_overflows - capture->first_edge_overflows;
/* Calculate cycles, check for overflows */
if (overflows > 0) {
if (u32_mul_overflow(overflows, base->MOD, &cycles)) {
LOG_ERR("overflow while calculating cycles");
status = -ERANGE;
} else {
cycles -= first_cnv;
if (u32_add_overflow(cycles, second_cnv, &cycles)) {
LOG_ERR("overflow while calculating cycles");
cycles = 0;
status = -ERANGE;
}
}
} else {
cycles = second_cnv - first_cnv;
}
LOG_DBG("pair = %d, 1st ovfs = %u, 2nd ovfs = %u, ovfs = %u, 1st cnv = %u, "
"2nd cnv = %u, cycles = %u, 2nd cnt = %u, 2nd ovf = %d",
pair, capture->first_edge_overflows, second_edge_overflows,
overflows, capture->first_edge_cnv, second_cnv, cycles, cnt, overflow);
if (capture->pulse_capture) {
capture->callback(dev, pair, 0, cycles, status,
capture->user_data);
} else {
capture->callback(dev, pair, cycles, 0, status,
capture->user_data);
}
/* Prepare for next capture */
capture->first_chan_captured = false;
TPM_ClearStatusFlags(base, BIT(channel));
if (capture->continuous_capture) {
if (capture->pulse_capture) {
/* Prepare for first edge of next pulse capture */
TPM_EnableInterrupts(base, BIT(TPM_PAIR_FIRST_CH(pair)));
} else {
/* In continuous period capture mode, first edge of next period capture
* is second edge of this capture (this edge)
*/
capture->first_edge_cnv = second_cnv;
capture->first_edge_cnt = cnt;
capture->first_edge_overflows = second_edge_overflows;
capture->first_edge_overflow = (overflows > 0);
capture->first_chan_captured = true;
}
} else {
/* One-shot capture done */
TPM_DisableInterrupts(base, BIT(TPM_PAIR_SECOND_CH(pair)));
}
}
static bool mcux_tpm_handle_overflow(const struct device *dev)
{
TPM_Type *base = TPM_TYPE_BASE(dev, base);
struct mcux_tpm_data *data = dev->data;
if (TPM_GetStatusFlags(base) & kTPM_TimeOverflowFlag) {
TPM_ClearStatusFlags(base, kTPM_TimeOverflowFlag);
data->overflows++;
return true;
}
return false;
}
static void mcux_tpm_irq_handler(const struct device *dev, uint32_t chan_start, uint32_t chan_end)
{
TPM_Type *base = TPM_TYPE_BASE(dev, base);
struct mcux_tpm_data *data = dev->data;
struct mcux_tpm_capture_data *capture;
bool overflow;
uint32_t flags;
uint32_t irqs;
uint32_t cnt;
uint32_t ch;
uint32_t first_chan;
uint32_t second_chan;
flags = TPM_GetStatusFlags(base);
irqs = TPM_GetEnabledInterrupts(base);
cnt = base->CNT;
overflow = mcux_tpm_handle_overflow(dev);
for (ch = chan_start; ch < chan_end; ch = ch + 2U) {
first_chan = ch;
second_chan = ch + 1U;
capture = &data->capture[TPM_WHICH_PAIR(first_chan)];
if ((flags & BIT(second_chan)) && (irqs & BIT(second_chan))) {
if (capture->first_chan_captured) {
mcux_tpm_capture_second_edge(dev, second_chan, cnt, overflow);
} else {
/* Missed first edge, clear second edge flag */
TPM_ClearStatusFlags(base, BIT(second_chan));
}
} else if ((flags & BIT(first_chan)) && (irqs & BIT(first_chan)) &&
!capture->first_chan_captured) {
mcux_tpm_capture_first_edge(dev, first_chan, cnt, overflow);
} else {
/* No action required */
}
}
}
#endif /* CONFIG_PWM_CAPTURE */
static int mcux_tpm_get_cycles_per_sec(const struct device *dev,
uint32_t channel, uint64_t *cycles)
{
const struct mcux_tpm_config *config = dev->config;
struct mcux_tpm_data *data = dev->data;
*cycles = data->clock_freq >> config->prescale;
return 0;
}
static int mcux_tpm_init(const struct device *dev)
{
const struct mcux_tpm_config *config = dev->config;
struct mcux_tpm_data *data = dev->data;
tpm_chnl_pwm_signal_param_t *channel = data->channel;
tpm_config_t tpm_config;
TPM_Type *base;
int i;
int err;
DEVICE_MMIO_NAMED_MAP(dev, base, K_MEM_CACHE_NONE | K_MEM_DIRECT_MAP);
base = TPM_TYPE_BASE(dev, base);
if (config->channel_count > ARRAY_SIZE(data->channel)) {
LOG_ERR("Invalid channel count");
return -EINVAL;
}
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
#if defined(CONFIG_SOC_MIMX9596)
/* IMX9596 AON and WAKEUP clocks aren't controllable */
if (config->clock_subsys != (clock_control_subsys_t)IMX95_CLK_BUSWAKEUP &&
config->clock_subsys != (clock_control_subsys_t)IMX95_CLK_BUSAON) {
#endif
if (clock_control_on(config->clock_dev, config->clock_subsys)) {
LOG_ERR("Could not turn on clock");
return -EINVAL;
}
#if defined(CONFIG_SOC_MIMX9596)
}
#endif
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&data->clock_freq)) {
LOG_ERR("Could not get clock frequency");
return -EINVAL;
}
for (i = 0; i < config->channel_count; i++) {
channel->chnlNumber = i;
#if !(defined(FSL_FEATURE_TPM_HAS_PAUSE_LEVEL_SELECT) && FSL_FEATURE_TPM_HAS_PAUSE_LEVEL_SELECT)
channel->level = kTPM_NoPwmSignal;
#else
channel->level = kTPM_HighTrue;
channel->pauseLevel = kTPM_ClearOnPause;
#endif
channel->dutyCyclePercent = 0;
#if defined(FSL_FEATURE_TPM_HAS_COMBINE) && FSL_FEATURE_TPM_HAS_COMBINE
channel->firstEdgeDelayPercent = 0;
#endif
channel++;
}
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
TPM_GetDefaultConfig(&tpm_config);
tpm_config.prescale = config->prescale;
TPM_Init(base, &tpm_config);
#ifdef CONFIG_PWM_CAPTURE
config->irq_config_func(dev);
TPM_EnableInterrupts(base, kTPM_TimeOverflowInterruptEnable);
data->period_cycles = 0xFFFFU;
TPM_SetTimerPeriod(base, data->period_cycles);
TPM_StartTimer(base, config->tpm_clock_source);
#endif /* CONFIG_PWM_CAPTURE */
return 0;
}
static DEVICE_API(pwm, mcux_tpm_driver_api) = {
.set_cycles = mcux_tpm_set_cycles,
.get_cycles_per_sec = mcux_tpm_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = mcux_tpm_configure_capture,
.enable_capture = mcux_tpm_enable_capture,
.disable_capture = mcux_tpm_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};
#define TO_TPM_PRESCALE_DIVIDE(val) _DO_CONCAT(kTPM_Prescale_Divide_, val)
#ifdef CONFIG_PWM_CAPTURE
static void mcux_tpm_isr(const struct device *dev)
{
const struct mcux_tpm_config *cfg = dev->config;
mcux_tpm_irq_handler(dev, 0, cfg->channel_count);
}
#define TPM_CONFIG_FUNC(n) \
static void mcux_tpm_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
mcux_tpm_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
#define TPM_CFG_CAPTURE_INIT(n) \
.irq_config_func = mcux_tpm_config_func_##n
#define TPM_INIT_CFG(n) TPM_DECLARE_CFG(n, TPM_CFG_CAPTURE_INIT(n))
#else /* !CONFIG_PWM_CAPTURE */
#define TPM_CONFIG_FUNC(n)
#define TPM_CFG_CAPTURE_INIT
#define TPM_INIT_CFG(n) TPM_DECLARE_CFG(n, TPM_CFG_CAPTURE_INIT)
#endif /* !CONFIG_PWM_CAPTURE */
#define TPM_DECLARE_CFG(n, CAPTURE_INIT) \
static const struct mcux_tpm_config mcux_tpm_config_##n = { \
DEVICE_MMIO_NAMED_ROM_INIT(base, DT_DRV_INST(n)), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL(n, name), \
.tpm_clock_source = kTPM_SystemClock, \
.prescale = TO_TPM_PRESCALE_DIVIDE(DT_INST_PROP(n, prescaler)), \
.channel_count = FSL_FEATURE_TPM_CHANNEL_COUNTn((TPM_Type *) \
DT_INST_REG_ADDR(n)), \
.mode = kTPM_EdgeAlignedPwm, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
CAPTURE_INIT \
}
#define TPM_DEVICE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static const struct mcux_tpm_config mcux_tpm_config_##n; \
static struct mcux_tpm_data mcux_tpm_data_##n; \
DEVICE_DT_INST_DEFINE(n, &mcux_tpm_init, NULL, \
&mcux_tpm_data_##n, \
&mcux_tpm_config_##n, \
POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
&mcux_tpm_driver_api); \
TPM_CONFIG_FUNC(n) \
TPM_INIT_CFG(n);
DT_INST_FOREACH_STATUS_OKAY(TPM_DEVICE)