blob: 3536a88af4d57b42ab8e176dd3aad6f38faae0e5 [file] [log] [blame]
/*
* Copyright (c) 2022, Basalte bv
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_adc
#include <soc.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(adc_sam, CONFIG_ADC_LOG_LEVEL);
#define SAM_ADC_NUM_CHANNELS 16
#define SAM_ADC_TEMP_CHANNEL 15
struct adc_sam_config {
Adc *regs;
const struct atmel_sam_pmc_config clock_cfg;
uint8_t prescaler;
uint8_t startup_time;
uint8_t settling_time;
uint8_t tracking_time;
const struct pinctrl_dev_config *pcfg;
void (*config_func)(const struct device *dev);
};
struct adc_sam_data {
struct adc_context ctx;
const struct device *dev;
/* Pointer to the buffer in the sequence. */
uint16_t *buffer;
/* Pointer to the beginning of a sample. Consider the number of
* channels in the sequence: this buffer changes by that amount
* so all the channels would get repeated.
*/
uint16_t *repeat_buffer;
/* Number of active channels to fill buffer */
uint8_t num_active_channels;
};
static uint8_t count_bits(uint32_t val)
{
uint8_t res = 0;
while (val) {
res += val & 1U;
val >>= 1;
}
return res;
}
static int adc_sam_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_sam_config *const cfg = dev->config;
Adc *const adc = cfg->regs;
uint8_t channel_id = channel_cfg->channel_id;
if (channel_cfg->differential) {
if (channel_id != (channel_cfg->input_positive / 2U)
|| channel_id != (channel_cfg->input_negative / 2U)) {
LOG_ERR("Invalid ADC differential input for channel %u", channel_id);
return -EINVAL;
}
} else {
if (channel_id != channel_cfg->input_positive) {
LOG_ERR("Invalid ADC single-ended input for channel %u", channel_id);
return -EINVAL;
}
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid ADC channel acquisition time");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
LOG_ERR("Invalid ADC channel reference (%d)", channel_cfg->reference);
return -EINVAL;
}
/* Enable internal temperature sensor (channel 15 / single-ended) */
if (channel_cfg->channel_id == SAM_ADC_TEMP_CHANNEL) {
adc->ADC_ACR |= ADC_ACR_TSON;
}
/* Set channel mode, always on both inputs */
if (channel_cfg->differential) {
adc->ADC_COR |= (ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U);
} else {
adc->ADC_COR &= ~((ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U));
}
/* Reset current gain */
adc->ADC_CGR &= ~(ADC_CGR_GAIN0_Msk << (channel_id * 2U));
switch (channel_cfg->gain) {
case ADC_GAIN_1_2:
if (!channel_cfg->differential) {
LOG_ERR("ADC 1/2x gain only allowed for differential channel");
return -EINVAL;
}
/* NOP */
break;
case ADC_GAIN_1:
adc->ADC_CGR |= ADC_CGR_GAIN0(1) << (channel_id * 2U);
break;
case ADC_GAIN_2:
adc->ADC_CGR |= ADC_CGR_GAIN0(2) << (channel_id * 2U);
break;
case ADC_GAIN_4:
if (channel_cfg->differential) {
LOG_ERR("ADC 4x gain only allowed for single-ended channel");
return -EINVAL;
}
adc->ADC_CGR |= ADC_CGR_GAIN0(3) << (channel_id * 2U);
break;
default:
LOG_ERR("Invalid ADC channel gain (%d)", channel_cfg->gain);
return -EINVAL;
}
return 0;
}
static void adc_sam_start_conversion(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
Adc *const adc = cfg->regs;
adc->ADC_CR = ADC_CR_START;
}
/**
* This is only called once at the beginning of all the conversions,
* all channels as a group.
*/
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
const struct adc_sam_config *const cfg = data->dev->config;
Adc *const adc = cfg->regs;
data->num_active_channels = count_bits(ctx->sequence.channels);
/* Disable all */
adc->ADC_CHDR = 0xffff;
/* Enable selected */
adc->ADC_CHER = ctx->sequence.channels;
LOG_DBG("Starting conversion for %u channels", data->num_active_channels);
adc_sam_start_conversion(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
if (repeat) {
data->buffer = data->repeat_buffer;
}
}
static int check_buffer_size(const struct adc_sequence *sequence,
uint8_t active_channels)
{
size_t needed_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_sam_data *data = dev->data;
uint32_t channels = sequence->channels;
int error;
/* Signal an error if the channel selection is invalid (no channels or
* a non-existing one is selected).
*/
if (channels == 0U ||
(channels & (~0UL << SAM_ADC_NUM_CHANNELS))) {
LOG_ERR("Invalid selection of channels");
return -EINVAL;
}
if (sequence->oversampling != 0U) {
LOG_ERR("Oversampling is not supported");
return -EINVAL;
}
if (sequence->resolution != 12U) {
LOG_ERR("ADC resolution %d is not valid", sequence->resolution);
return -EINVAL;
}
data->num_active_channels = count_bits(channels);
error = check_buffer_size(sequence, data->num_active_channels);
if (error) {
return error;
}
data->buffer = sequence->buffer;
data->repeat_buffer = sequence->buffer;
/* At this point we allow the scheduler to do other things while
* we wait for the conversions to complete. This is provided by the
* adc_context functions. However, the caller of this function is
* blocked until the results are in.
*/
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_sam_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_sam_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static void adc_sam_isr(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
struct adc_sam_data *data = dev->data;
Adc *const adc = cfg->regs;
uint16_t result;
if (adc->ADC_ISR & ADC_ISR_DRDY) {
result = adc->ADC_LCDR & ADC_LCDR_LDATA_Msk;
*data->buffer++ = result;
data->num_active_channels--;
if (data->num_active_channels == 0) {
/* Called once all conversions have completed.*/
adc_context_on_sampling_done(&data->ctx, dev);
} else {
adc_sam_start_conversion(dev);
}
}
}
static int adc_sam_init(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
struct adc_sam_data *data = dev->data;
Adc *const adc = cfg->regs;
int ret;
uint32_t frequency, conv_periods;
/* Get peripheral clock frequency */
ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg,
&frequency);
if (ret < 0) {
LOG_ERR("Failed to get ADC peripheral clock rate (%d)", ret);
return -ENODEV;
}
/* Calculate ADC clock frequency */
frequency = frequency / 2U / (cfg->prescaler + 1U);
if (frequency < 1000000U || frequency > 22000000U) {
LOG_ERR("Invalid ADC clock frequency %d (1MHz < freq < 22Mhz)", frequency);
return -EINVAL;
}
/* The number of ADC pulses for conversion */
conv_periods = MAX(20U, cfg->tracking_time + 6U);
/* Calculate the sampling frequency */
frequency /= conv_periods;
/* Reset ADC controller */
adc->ADC_CR = ADC_CR_SWRST;
/* Reset Mode */
adc->ADC_MR = 0U;
/* Reset PDC transfer */
adc->ADC_PTCR = ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS;
adc->ADC_RCR = 0U;
adc->ADC_RNCR = 0U;
/* Set prescaler, timings and allow different analog settings for each channel */
adc->ADC_MR = ADC_MR_PRESCAL(cfg->prescaler)
| ADC_MR_STARTUP(cfg->startup_time)
| ADC_MR_SETTLING(cfg->settling_time)
| ADC_MR_TRACKTIM(cfg->tracking_time)
| ADC_MR_TRANSFER(2U) /* Should be 2 to guarantee the optimal hold time. */
| ADC_MR_ANACH_ALLOWED;
/**
* Set bias current control
* IBCTL = 00 is the required value for a sampling frequency below 500 kHz,
* and IBCTL = 01 for a sampling frequency between 500 kHz and 1 MHz.
*/
adc->ADC_ACR = ADC_ACR_IBCTL(frequency < 500000U ? 0U : 1U);
/* Enable ADC clock in PMC */
ret = clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg);
if (ret < 0) {
LOG_ERR("Failed to enable ADC clock (%d)", ret);
return -ENODEV;
}
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
cfg->config_func(dev);
/* Enable data ready interrupt */
adc->ADC_IER = ADC_IER_DRDY;
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_sam_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_sam_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static const struct adc_driver_api adc_sam_api = {
.channel_setup = adc_sam_channel_setup,
.read = adc_sam_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_sam_read_async,
#endif
};
#define ADC_SAM_DEVICE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static void adc_sam_irq_config_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
adc_sam_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
} \
static const struct adc_sam_config adc_sam_config_##n = { \
.regs = (Adc *)DT_INST_REG_ADDR(n), \
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
.prescaler = DT_INST_PROP(n, prescaler), \
.startup_time = DT_INST_ENUM_IDX(n, startup_time), \
.settling_time = DT_INST_ENUM_IDX(n, settling_time), \
.tracking_time = DT_INST_ENUM_IDX(n, tracking_time), \
.config_func = &adc_sam_irq_config_##n, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
}; \
static struct adc_sam_data adc_sam_data_##n = { \
ADC_CONTEXT_INIT_TIMER(adc_sam_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_sam_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_sam_data_##n, ctx), \
.dev = DEVICE_DT_INST_GET(n), \
}; \
DEVICE_DT_INST_DEFINE(n, adc_sam_init, NULL, \
&adc_sam_data_##n, \
&adc_sam_config_##n, POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&adc_sam_api);
DT_INST_FOREACH_STATUS_OKAY(ADC_SAM_DEVICE)