blob: 1690b33f9a43be6785c338bd6936817bca541eef [file] [log] [blame]
/*
* Copyright (c) 2022 Meta Platforms, Inc. and its affiliates.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <zephyr/drivers/i3c.h>
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/sys/util.h>
#define DEV_ID 0x0
#define DEV_ID_I3C_MASTER 0x5034
#define CONF_STATUS0 0x4
#define CONF_STATUS0_CMDR_DEPTH(x) (4 << (((x) & GENMASK(31, 29)) >> 29))
#define CONF_STATUS0_ECC_CHK BIT(28)
#define CONF_STATUS0_INTEG_CHK BIT(27)
#define CONF_STATUS0_CSR_DAP_CHK BIT(26)
#define CONF_STATUS0_TRANS_TOUT_CHK BIT(25)
#define CONF_STATUS0_PROT_FAULTS_CHK BIT(24)
#define CONF_STATUS0_GPO_NUM(x) (((x) & GENMASK(23, 16)) >> 16)
#define CONF_STATUS0_GPI_NUM(x) (((x) & GENMASK(15, 8)) >> 8)
#define CONF_STATUS0_IBIR_DEPTH(x) (4 << (((x) & GENMASK(7, 6)) >> 7))
/* CONF_STATUS0_SUPPORTS_DDR moved to CONF_STATUS1 in rev >= 1p7 */
#define CONF_STATUS0_SUPPORTS_DDR BIT(5)
#define CONF_STATUS0_SEC_MASTER BIT(4)
/* And it was replaced with a Dev Role mask */
#define CONF_STATUS0_DEV_ROLE(x) ((x) & GENMASK(5, 4) >> 4)
#define CONF_STATUS0_DEV_ROLE_MAIN_MASTER 0
#define CONF_STATUS0_DEV_ROLE_SEC_MASTER 1
#define CONF_STATUS0_DEV_ROLE_SLAVE 2
#define CONF_STATUS0_DEVS_NUM(x) ((x) & GENMASK(3, 0))
#define CONF_STATUS1 0x8
#define CONF_STATUS1_IBI_HW_RES(x) ((((x) & GENMASK(31, 28)) >> 28) + 1)
#define CONF_STATUS1_CMD_DEPTH(x) (4 << (((x) & GENMASK(27, 26)) >> 26))
#define CONF_STATUS1_SLV_DDR_RX_DEPTH(x) (8 << (((x) & GENMASK(25, 21)) >> 21))
#define CONF_STATUS1_SLV_DDR_TX_DEPTH(x) (8 << (((x) & GENMASK(20, 16)) >> 16))
#define CONF_STATUS1_SUPPORTS_DDR BIT(14)
#define CONF_STATUS1_ALT_MODE BIT(13)
#define CONF_STATUS1_IBI_DEPTH(x) (2 << (((x) & GENMASK(12, 10)) >> 10))
#define CONF_STATUS1_RX_DEPTH(x) (8 << (((x) & GENMASK(9, 5)) >> 5))
#define CONF_STATUS1_TX_DEPTH(x) (8 << ((x) & GENMASK(4, 0)))
#define REV_ID 0xc
#define REV_ID_VID(id) (((id) & GENMASK(31, 20)) >> 20)
#define REV_ID_PID(id) (((id) & GENMASK(19, 8)) >> 8)
#define REV_ID_REV(id) ((id) & GENMASK(7, 0))
#define REV_ID_VERSION(m, n) ((m << 5) | (n))
#define REV_ID_REV_MAJOR(id) (((id) & GENMASK(7, 5)) >> 5)
#define REV_ID_REV_MINOR(id) ((id) & GENMASK(4, 0))
#define CTRL 0x10
#define CTRL_DEV_EN BIT(31)
#define CTRL_HALT_EN BIT(30)
#define CTRL_MCS BIT(29)
#define CTRL_MCS_EN BIT(28)
#define CTRL_I3C_11_SUPP BIT(26)
#define CTRL_THD_DELAY(x) (((x) << 24) & GENMASK(25, 24))
#define CTRL_TC_EN BIT(9)
#define CTRL_HJ_DISEC BIT(8)
#define CTRL_MST_ACK BIT(7)
#define CTRL_HJ_ACK BIT(6)
#define CTRL_HJ_INIT BIT(5)
#define CTRL_MST_INIT BIT(4)
#define CTRL_AHDR_OPT BIT(3)
#define CTRL_PURE_BUS_MODE 0
#define CTRL_MIXED_FAST_BUS_MODE 2
#define CTRL_MIXED_SLOW_BUS_MODE 3
#define CTRL_BUS_MODE_MASK GENMASK(1, 0)
#define THD_DELAY_MAX 3
#define PRESCL_CTRL0 0x14
#define PRESCL_CTRL0_I2C(x) ((x) << 16)
#define PRESCL_CTRL0_I3C(x) (x)
#define PRESCL_CTRL0_I3C_MAX GENMASK(9, 0)
#define PRESCL_CTRL0_I2C_MAX GENMASK(15, 0)
#define PRESCL_CTRL1 0x18
#define PRESCL_CTRL1_PP_LOW_MASK GENMASK(15, 8)
#define PRESCL_CTRL1_PP_LOW(x) ((x) << 8)
#define PRESCL_CTRL1_OD_LOW_MASK GENMASK(7, 0)
#define PRESCL_CTRL1_OD_LOW(x) (x)
#define SLV_STATUS4 0x1C
#define SLV_STATUS4_BUSCON_FILL_LVL GENMASK(16, 8)
#define SLV_STATUS5_BUSCON_DATA GENMASK(7, 0)
#define MST_IER 0x20
#define MST_IDR 0x24
#define MST_IMR 0x28
#define MST_ICR 0x2c
#define MST_ISR 0x30
#define MST_INT_HALTED BIT(18)
#define MST_INT_MR_DONE BIT(17)
#define MST_INT_IMM_COMP BIT(16)
#define MST_INT_TX_THR BIT(15)
#define MST_INT_TX_OVF BIT(14)
#define MST_INT_C_REF_ROV BIT(13)
#define MST_INT_IBID_THR BIT(12)
#define MST_INT_IBID_UNF BIT(11)
#define MST_INT_IBIR_THR BIT(10)
#define MST_INT_IBIR_UNF BIT(9)
#define MST_INT_IBIR_OVF BIT(8)
#define MST_INT_RX_THR BIT(7)
#define MST_INT_RX_UNF BIT(6)
#define MST_INT_CMDD_EMP BIT(5)
#define MST_INT_CMDD_THR BIT(4)
#define MST_INT_CMDD_OVF BIT(3)
#define MST_INT_CMDR_THR BIT(2)
#define MST_INT_CMDR_UNF BIT(1)
#define MST_INT_CMDR_OVF BIT(0)
#define MST_INT_MASK GENMASK(18, 0)
#define MST_STATUS0 0x34
#define MST_STATUS0_IDLE BIT(18)
#define MST_STATUS0_HALTED BIT(17)
#define MST_STATUS0_MASTER_MODE BIT(16)
#define MST_STATUS0_TX_FULL BIT(13)
#define MST_STATUS0_IBID_FULL BIT(12)
#define MST_STATUS0_IBIR_FULL BIT(11)
#define MST_STATUS0_RX_FULL BIT(10)
#define MST_STATUS0_CMDD_FULL BIT(9)
#define MST_STATUS0_CMDR_FULL BIT(8)
#define MST_STATUS0_TX_EMP BIT(5)
#define MST_STATUS0_IBID_EMP BIT(4)
#define MST_STATUS0_IBIR_EMP BIT(3)
#define MST_STATUS0_RX_EMP BIT(2)
#define MST_STATUS0_CMDD_EMP BIT(1)
#define MST_STATUS0_CMDR_EMP BIT(0)
#define CMDR 0x38
#define CMDR_NO_ERROR 0
#define CMDR_DDR_PREAMBLE_ERROR 1
#define CMDR_DDR_PARITY_ERROR 2
#define CMDR_DDR_RX_FIFO_OVF 3
#define CMDR_DDR_TX_FIFO_UNF 4
#define CMDR_M0_ERROR 5
#define CMDR_M1_ERROR 6
#define CMDR_M2_ERROR 7
#define CMDR_MST_ABORT 8
#define CMDR_NACK_RESP 9
#define CMDR_INVALID_DA 10
#define CMDR_DDR_DROPPED 11
#define CMDR_ERROR(x) (((x) & GENMASK(27, 24)) >> 24)
#define CMDR_XFER_BYTES(x) (((x) & GENMASK(19, 8)) >> 8)
#define CMDR_CMDID_HJACK_DISEC 0xfe
#define CMDR_CMDID_HJACK_ENTDAA 0xff
#define CMDR_CMDID(x) ((x) & GENMASK(7, 0))
#define IBIR 0x3c
#define IBIR_ACKED BIT(12)
#define IBIR_SLVID(x) (((x) & GENMASK(11, 8)) >> 8)
#define IBIR_SLVID_INV 0xF
#define IBIR_ERROR BIT(7)
#define IBIR_XFER_BYTES(x) (((x) & GENMASK(6, 2)) >> 2)
#define IBIR_TYPE_IBI 0
#define IBIR_TYPE_HJ 1
#define IBIR_TYPE_MR 2
#define IBIR_TYPE(x) ((x) & GENMASK(1, 0))
#define SLV_IER 0x40
#define SLV_IDR 0x44
#define SLV_IMR 0x48
#define SLV_ICR 0x4c
#define SLV_ISR 0x50
#define SLV_INT_CHIP_RST BIT(31)
#define SLV_INT_PERIPH_RST BIT(30)
#define SLV_INT_FLUSH_DONE BIT(29)
#define SLV_INT_RST_DAA BIT(28)
#define SLV_INT_BUSCON_UP BIT(26)
#define SLV_INT_MRL_UP BIT(25)
#define SLV_INT_MWL_UP BIT(24)
#define SLV_INT_IBI_THR BIT(23)
#define SLV_INT_IBI_DONE BIT(22)
#define SLV_INT_DEFSLVS BIT(21)
#define SLV_INT_TM BIT(20)
#define SLV_INT_ERROR BIT(19)
#define SLV_INT_EVENT_UP BIT(18)
#define SLV_INT_HJ_DONE BIT(17)
#define SLV_INT_MR_DONE BIT(16)
#define SLV_INT_DA_UPD BIT(15)
#define SLV_INT_SDR_FAIL BIT(14)
#define SLV_INT_DDR_FAIL BIT(13)
#define SLV_INT_M_RD_ABORT BIT(12)
#define SLV_INT_DDR_RX_THR BIT(11)
#define SLV_INT_DDR_TX_THR BIT(10)
#define SLV_INT_SDR_RX_THR BIT(9)
#define SLV_INT_SDR_TX_THR BIT(8)
#define SLV_INT_DDR_RX_UNF BIT(7)
#define SLV_INT_DDR_TX_OVF BIT(6)
#define SLV_INT_SDR_RX_UNF BIT(5)
#define SLV_INT_SDR_TX_OVF BIT(4)
#define SLV_INT_DDR_RD_COMP BIT(3)
#define SLV_INT_DDR_WR_COMP BIT(2)
#define SLV_INT_SDR_RD_COMP BIT(1)
#define SLV_INT_SDR_WR_COMP BIT(0)
#define SLV_STATUS0 0x54
#define SLV_STATUS0_IBI_XFRD_BYTEs(s) (((s) & GENMASK(31, 24)) >> 24)
#define SLV_STATUS0_REG_ADDR(s) (((s) & GENMASK(23, 16)) >> 16)
#define SLV_STATUS0_XFRD_BYTES(s) ((s) & GENMASK(15, 0))
#define SLV_STATUS1 0x58
#define SLV_STATUS1_SCL_IN_RST BIT(31)
#define SLV_STATUS1_HJ_IN_USE BIT(30)
#define SLV_STATUS1_NACK_NXT_PW BIT(29)
#define SLV_STATUS1_NACK_NXT_PR BIT(28)
#define SLV_STATUS1_MR_PEND BIT(27)
#define SLV_STATUS1_HJ_PEND BIT(26)
#define SLV_STATUS1_IBI_PEND BIT(25)
#define SLV_STATUS1_IBI_DIS BIT(24)
#define SLV_STATUS1_BUS_VAR BIT(23)
#define SLV_STATUS1_TCAM0_DIS BIT(22)
#define SLV_STATUS1_AS(s) (((s) & GENMASK(21, 20)) >> 20)
#define SLV_STATUS1_VEN_TM BIT(19)
#define SLV_STATUS1_HJ_DIS BIT(18)
#define SLV_STATUS1_MR_DIS BIT(17)
#define SLV_STATUS1_PROT_ERR BIT(16)
#define SLV_STATUS1_DA(s) (((s) & GENMASK(15, 9)) >> 9)
#define SLV_STATUS1_HAS_DA BIT(8)
#define SLV_STATUS1_DDR_RX_FULL BIT(7)
#define SLV_STATUS1_DDR_TX_FULL BIT(6)
#define SLV_STATUS1_DDR_RX_EMPTY BIT(5)
#define SLV_STATUS1_DDR_TX_EMPTY BIT(4)
#define SLV_STATUS1_SDR_RX_FULL BIT(3)
#define SLV_STATUS1_SDR_TX_FULL BIT(2)
#define SLV_STATUS1_SDR_RX_EMPTY BIT(1)
#define SLV_STATUS1_SDR_TX_EMPTY BIT(0)
#define SLV_IBI_CTRL 0x5c
#define SLV_IBI_TCAM_EVNT(x) ((x) << 27)
#define SLV_IBI_PL(x) ((x) << 16)
#define SLV_IBI_TCAM0 BIT(9)
#define SLV_IBI_REQ BIT(8)
#define SLV_IBI_AUTO_CLR_IBI 1
#define SLV_IBI_AUTO_CLR_PR 2
#define SLV_IBI_AUTO_CLR_IBI_OR_PR 3
#define SLV_IBI_CLEAR_TRIGGER(x) ((x) << 4)
#define CMD0_FIFO 0x60
#define CMD0_FIFO_IS_DDR BIT(31)
#define CMD0_FIFO_IS_CCC BIT(30)
#define CMD0_FIFO_BCH BIT(29)
#define XMIT_BURST_STATIC_SUBADDR 0
#define XMIT_SINGLE_INC_SUBADDR 1
#define XMIT_SINGLE_STATIC_SUBADDR 2
#define XMIT_BURST_WITHOUT_SUBADDR 3
#define CMD0_FIFO_PRIV_XMIT_MODE(m) ((m) << 27)
#define CMD0_FIFO_SBCA BIT(26)
#define CMD0_FIFO_RSBC BIT(25)
#define CMD0_FIFO_IS_10B BIT(24)
#define CMD0_FIFO_PL_LEN(l) ((l) << 12)
#define CMD0_FIFO_IS_DB BIT(11)
#define CMD0_FIFO_PL_LEN_MAX 4095
#define CMD0_FIFO_DEV_ADDR(a) ((a) << 1)
#define CMD0_FIFO_RNW BIT(0)
#define CMD1_FIFO 0x64
#define CMD1_FIFO_CMDID(id) ((id) << 24)
#define CMD1_FIFO_DB(db) (((db) & GENMASK(15, 8)) << 8)
#define CMD1_FIFO_CSRADDR(a) (a)
#define CMD1_FIFO_CCC(id) (id)
#define TX_FIFO 0x68
#define TX_FIFO_STATUS 0x6C
#define IMD_CMD0 0x70
#define IMD_CMD0_PL_LEN(l) ((l) << 12)
#define IMD_CMD0_DEV_ADDR(a) ((a) << 1)
#define IMD_CMD0_RNW BIT(0)
#define IMD_CMD1 0x74
#define IMD_CMD1_CCC(id) (id)
#define IMD_DATA 0x78
#define RX_FIFO 0x80
#define IBI_DATA_FIFO 0x84
#define SLV_DDR_TX_FIFO 0x88
#define SLV_DDR_RX_FIFO 0x8c
#define DDR_PREAMBLE_MASK GENMASK(19, 18)
#define DDR_PREAMBLE_CMD_CRC 0x1 << 18
#define DDR_PREAMBLE_DATA_ABORT 0x2 << 18
#define DDR_PREAMBLE_DATA_ABORT_ALT 0x3 << 18
#define DDR_DATA(x) (((x) & GENMASK(17, 2)) >> 2)
#define DDR_EVEN_PARITY BIT(0)
#define DDR_ODD_PARITY BIT(1)
#define DDR_CRC_AND_HEADER_SIZE 0x4
#define DDR_CONVERT_BUF_LEN(x) (4 * (x))
#define HDR_CMD_RD BIT(15)
#define HDR_CMD_CODE(c) (((c) & GENMASK(6, 0)) << 8)
#define DDR_CRC_TOKEN (0xC << 14)
#define DDR_CRC_TOKEN_MASK GENMASK(17, 14)
#define DDR_CRC(t) (((t) & (GENMASK(13, 9))) >> 9)
#define DDR_CRC_WR_SETUP BIT(8)
#define CMD_IBI_THR_CTRL 0x90
#define IBIR_THR(t) ((t) << 24)
#define CMDR_THR(t) ((t) << 16)
#define CMDR_THR_MASK (GENMASK(20, 16))
#define IBI_THR(t) ((t) << 8)
#define CMD_THR(t) (t)
#define TX_RX_THR_CTRL 0x94
#define RX_THR(t) ((t) << 16)
#define RX_THR_MASK (GENMASK(31, 16))
#define TX_THR(t) (t)
#define TX_THR_MASK (GENMASK(15, 0))
#define SLV_DDR_TX_RX_THR_CTRL 0x98
#define SLV_DDR_RX_THR(t) ((t) << 16)
#define SLV_DDR_TX_THR(t) (t)
#define FLUSH_CTRL 0x9c
#define FLUSH_IBI_RESP BIT(24)
#define FLUSH_CMD_RESP BIT(23)
#define FLUSH_SLV_DDR_RX_FIFO BIT(22)
#define FLUSH_SLV_DDR_TX_FIFO BIT(21)
#define FLUSH_IMM_FIFO BIT(20)
#define FLUSH_IBI_FIFO BIT(19)
#define FLUSH_RX_FIFO BIT(18)
#define FLUSH_TX_FIFO BIT(17)
#define FLUSH_CMD_FIFO BIT(16)
#define SLV_CTRL 0xA0
#define SLV_PROT_ERR_TYPE 0xA4
#define SLV_ERR6_IBI BIT(9)
#define SLV_ERR6_PR BIT(8)
#define SLV_ERR_GETCCC BIT(7)
#define SLV_ERR5 BIT(6)
#define SLV_ERR4 BIT(5)
#define SLV_ERR3 BIT(4)
#define SLV_ERR2_PW BIT(3)
#define SLV_ERR2_SETCCC BIT(2)
#define SLV_ERR1 BIT(1)
#define SLV_ERR0 BIT(0)
#define SLV_STATUS2 0xA8
#define SLV_STATUS3 0xAC
#define SLV_STATUS3_BC_FSM(s) (((s) & GENMASK(26, 16)) >> 16)
#define SLV_STATUS3_MWL(s) ((s) & GENMASK(15, 0))
#define TTO_PRESCL_CTRL0 0xb0
#define TTO_PRESCL_CTRL0_PRESCL_I2C(x) ((x) << 16)
#define TTO_PRESCL_CTRL0_PRESCL_I3C(x) (x)
#define TTO_PRESCL_CTRL1 0xb4
#define TTO_PRESCL_CTRL1_DIVB(x) ((x) << 16)
#define TTO_PRESCL_CTRL1_DIVA(x) (x)
#define TTO_PRESCL_CTRL1_PP_LOW(x) ((x) << 8)
#define TTO_PRESCL_CTRL1_OD_LOW(x) (x)
#define DEVS_CTRL 0xb8
#define DEVS_CTRL_DEV_CLR_SHIFT 16
#define DEVS_CTRL_DEV_CLR_ALL GENMASK(31, 16)
#define DEVS_CTRL_DEV_CLR(dev) BIT(16 + (dev))
#define DEVS_CTRL_DEV_ACTIVE(dev) BIT(dev)
#define DEVS_CTRL_DEVS_ACTIVE_MASK GENMASK(15, 0)
#define MAX_DEVS 16
#define DEV_ID_RR0(d) (0xc0 + ((d) * 0x10))
#define DEV_ID_RR0_LVR_EXT_ADDR BIT(11)
#define DEV_ID_RR0_HDR_CAP BIT(10)
#define DEV_ID_RR0_IS_I3C BIT(9)
#define DEV_ID_RR0_DEV_ADDR_MASK (GENMASK(7, 1) | GENMASK(15, 13))
#define DEV_ID_RR0_SET_DEV_ADDR(a) (((a << 1) & GENMASK(7, 1)) | (((a) & GENMASK(9, 7)) << 13))
#define DEV_ID_RR0_GET_DEV_ADDR(x) ((((x) >> 1) & GENMASK(6, 0)) | (((x) >> 6) & GENMASK(9, 7)))
#define DEV_ID_RR1(d) (0xc4 + ((d) * 0x10))
#define DEV_ID_RR1_PID_MSB(pid) (pid)
#define DEV_ID_RR2(d) (0xc8 + ((d) * 0x10))
#define DEV_ID_RR2_PID_LSB(pid) ((pid) << 16)
#define DEV_ID_RR2_BCR(bcr) ((bcr) << 8)
#define DEV_ID_RR2_DCR(dcr) (dcr)
#define DEV_ID_RR2_LVR(lvr) (lvr)
#define SIR_MAP(x) (0x180 + ((x) * 4))
#define SIR_MAP_DEV_REG(d) SIR_MAP((d) / 2)
#define SIR_MAP_DEV_SHIFT(d, fs) ((fs) + (((d) % 2) ? 16 : 0))
#define SIR_MAP_DEV_CONF_MASK(d) (GENMASK(15, 0) << (((d) % 2) ? 16 : 0))
#define SIR_MAP_DEV_CONF(d, c) ((c) << (((d) % 2) ? 16 : 0))
#define DEV_ROLE_SLAVE 0
#define DEV_ROLE_MASTER 1
#define SIR_MAP_DEV_ROLE(role) ((role) << 14)
#define SIR_MAP_DEV_SLOW BIT(13)
#define SIR_MAP_DEV_PL(l) ((l) << 8)
#define SIR_MAP_PL_MAX GENMASK(4, 0)
#define SIR_MAP_DEV_DA(a) ((a) << 1)
#define SIR_MAP_DEV_ACK BIT(0)
#define GRPADDR_LIST 0x198
#define GRPADDR_CS 0x19C
#define GPIR_WORD(x) (0x200 + ((x) * 4))
#define GPI_REG(val, id) (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0))
#define GPOR_WORD(x) (0x220 + ((x) * 4))
#define GPO_REG(val, id) (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0))
#define ASF_INT_STATUS 0x300
#define ASF_INT_RAW_STATUS 0x304
#define ASF_INT_MASK 0x308
#define ASF_INT_TEST 0x30c
#define ASF_INT_FATAL_SELECT 0x310
#define ASF_INTEGRITY_ERR BIT(6)
#define ASF_PROTOCOL_ERR BIT(5)
#define ASF_TRANS_TIMEOUT_ERR BIT(4)
#define ASF_CSR_ERR BIT(3)
#define ASF_DAP_ERR BIT(2)
#define ASF_SRAM_UNCORR_ERR BIT(1)
#define ASF_SRAM_CORR_ERR BIT(0)
#define ASF_SRAM_CORR_FAULT_STATUS 0x320
#define ASF_SRAM_UNCORR_FAULT_STATUS 0x324
#define ASF_SRAM_CORR_FAULT_INSTANCE(x) ((x) >> 24)
#define ASF_SRAM_CORR_FAULT_ADDR(x) ((x) & GENMASK(23, 0))
#define ASF_SRAM_FAULT_STATS 0x328
#define ASF_SRAM_FAULT_UNCORR_STATS(x) ((x) >> 16)
#define ASF_SRAM_FAULT_CORR_STATS(x) ((x) & GENMASK(15, 0))
#define ASF_TRANS_TOUT_CTRL 0x330
#define ASF_TRANS_TOUT_EN BIT(31)
#define ASF_TRANS_TOUT_VAL(x) (x)
#define ASF_TRANS_TOUT_FAULT_MASK 0x334
#define ASF_TRANS_TOUT_FAULT_STATUS 0x338
#define ASF_TRANS_TOUT_FAULT_APB BIT(3)
#define ASF_TRANS_TOUT_FAULT_SCL_LOW BIT(2)
#define ASF_TRANS_TOUT_FAULT_SCL_HIGH BIT(1)
#define ASF_TRANS_TOUT_FAULT_FSCL_HIGH BIT(0)
#define ASF_PROTO_FAULT_MASK 0x340
#define ASF_PROTO_FAULT_STATUS 0x344
#define ASF_PROTO_FAULT_SLVSDR_RD_ABORT BIT(31)
#define ASF_PROTO_FAULT_SLVDDR_FAIL BIT(30)
#define ASF_PROTO_FAULT_S(x) BIT(16 + (x))
#define ASF_PROTO_FAULT_MSTSDR_RD_ABORT BIT(15)
#define ASF_PROTO_FAULT_MSTDDR_FAIL BIT(14)
#define ASF_PROTO_FAULT_M(x) BIT(x)
/*******************************************************************************
* Local Constants Definition
******************************************************************************/
/* TODO: this needs to be configurable in the dts...somehow */
#define I3C_CONTROLLER_ADDR 0x08
/* Maximum i3c devices that the IP can be built with */
#define I3C_MAX_DEVS 11
#define I3C_MAX_MSGS 10
#define I3C_SIR_DEFAULT_DA 0x7F
#define I3C_MAX_IDLE_CANCEL_WAIT_RETRIES 50
#define I3C_PRESCL_REG_SCALE (4)
#define I2C_PRESCL_REG_SCALE (5)
#define I3C_WAIT_FOR_IDLE_STATE_US 100
#define I3C_IDLE_TIMEOUT_CYC \
(I3C_WAIT_FOR_IDLE_STATE_US * (sys_clock_hw_cycles_per_sec() / USEC_PER_SEC))
/* Target T_LOW period in open-drain mode. */
#define I3C_BUS_TLOW_OD_MIN_NS 200
/*
* MIPI I3C v1.1.1 Spec defines SDA Signal Data Hold in Push Pull max as the
* minimum of the clock rise and fall time plus 3ns
*/
#define I3C_HD_PP_DEFAULT_NS 10
/* Interrupt thresholds. */
/* command response fifo threshold */
#define I3C_CMDR_THR 1
/* command tx fifo threshold - unused */
#define I3C_CMDD_THR 1
/* in-band-interrupt data fifo threshold - unused */
#define I3C_IBID_THR 1
/* in-band-interrupt response queue threshold */
#define I3C_IBIR_THR 1
/* tx data threshold - unused */
#define I3C_TX_THR 1
#define LOG_MODULE_NAME I3C_CADENCE
LOG_MODULE_REGISTER(I3C_CADENCE, CONFIG_I3C_CADENCE_LOG_LEVEL);
/*******************************************************************************
* Local Types Definition
******************************************************************************/
/** Describes peripheral HW configuration determined from CONFx registers. */
struct cdns_i3c_hw_config {
/* Revision ID */
uint32_t rev_id;
/* The maxiumum command queue depth. */
uint32_t cmd_mem_depth;
/* The maxiumum command response queue depth. */
uint32_t cmdr_mem_depth;
/* The maximum RX FIFO depth. */
uint32_t rx_mem_depth;
/* The maximum TX FIFO depth. */
uint32_t tx_mem_depth;
/* The maximum DDR RX FIFO depth. */
uint32_t ddr_rx_mem_depth;
/* The maximum DDR TX FIFO depth. */
uint32_t ddr_tx_mem_depth;
/* The maximum IBIR FIFO depth. */
uint32_t ibir_mem_depth;
/* The maximum IBI FIFO depth. */
uint32_t ibi_mem_depth;
};
/* Cadence I3C/I2C Device Private Data */
struct cdns_i3c_i2c_dev_data {
/* Device id within the retaining registers. This is set after bus initialization by the
* controller.
*/
uint8_t id;
};
/* Single command/transfer */
struct cdns_i3c_cmd {
uint32_t cmd0;
uint32_t cmd1;
uint32_t ddr_header;
uint32_t ddr_crc;
uint32_t len;
uint32_t *num_xfer;
void *buf;
uint32_t error;
enum i3c_data_rate hdr;
};
/* Transfer data */
struct cdns_i3c_xfer {
struct k_sem complete;
int ret;
int num_cmds;
struct cdns_i3c_cmd cmds[I3C_MAX_MSGS];
};
#ifdef CONFIG_I3C_USE_IBI
/* IBI transferred data */
struct cdns_i3c_ibi_buf {
uint8_t ibi_data[CONFIG_I3C_IBI_MAX_PAYLOAD_SIZE];
uint8_t ibi_data_cnt;
};
#endif
/* Driver config */
struct cdns_i3c_config {
struct i3c_driver_config common;
/** base address of the controller */
uintptr_t base;
/** input frequency to the I3C Cadence */
uint32_t input_frequency;
/** Interrupt configuration function. */
void (*irq_config_func)(const struct device *dev);
/** IBID Threshold value */
uint8_t ibid_thr;
};
/* Driver instance data */
struct cdns_i3c_data {
struct i3c_driver_data common;
struct cdns_i3c_hw_config hw_cfg;
#ifdef CONFIG_I3C_USE_IBI
struct cdns_i3c_ibi_buf ibi_buf;
#endif
struct k_mutex bus_lock;
struct cdns_i3c_i2c_dev_data cdns_i3c_i2c_priv_data[I3C_MAX_DEVS];
struct cdns_i3c_xfer xfer;
struct i3c_target_config *target_config;
struct k_sem ibi_hj_complete;
uint32_t free_rr_slots;
uint16_t fifo_bytes_read;
uint8_t max_devs;
};
/*******************************************************************************
* Global Variables Declaration
******************************************************************************/
/*******************************************************************************
* Local Functions Declaration
******************************************************************************/
/*******************************************************************************
* Private Functions Code
******************************************************************************/
static uint8_t i3c_cdns_crc5(uint8_t crc5, uint16_t word)
{
uint8_t crc0;
int i;
/*
* crc0 = next_data_bit ^ crc[4]
* 1 2 3 4
* crc[4:0] = { crc[3:2], crc[1]^crc0, crc[0], crc0 }
*/
for (i = 15; i >= 0; --i) {
crc0 = ((word >> i) ^ (crc5 >> 4)) & 0x1;
crc5 = ((crc5 << 1) & 0x1a) | (((crc5 >> 1) ^ crc0) << 2) | crc0;
}
return crc5 & 0x1f;
}
static uint8_t cdns_i3c_ddr_parity(uint16_t payload)
{
uint16_t pb;
uint8_t parity;
/* Calculate odd parity. */
pb = (payload >> 15) ^ (payload >> 13) ^ (payload >> 11) ^ (payload >> 9) ^ (payload >> 7) ^
(payload >> 5) ^ (payload >> 3) ^ (payload >> 1);
parity = (pb & 1) << 1;
/* Calculate even and 1 parity */
pb = (payload >> 14) ^ (payload >> 12) ^ (payload >> 10) ^ (payload >> 8) ^ (payload >> 6) ^
(payload >> 4) ^ (payload >> 2) ^ payload ^ 1;
parity |= (pb & 1);
return parity;
}
/* This prepares the ddr word from the payload add adding on parity, This
* does not write the preamble
*/
static uint32_t prepare_ddr_word(uint16_t payload)
{
return (uint32_t)payload << 2 | cdns_i3c_ddr_parity(payload);
}
/* This ensures that PA0 contains 1'b1 which allows for easier Bus Turnaround */
static uint16_t prepare_ddr_cmd_parity_adjustment_bit(uint16_t word)
{
uint16_t pb;
pb = (word >> 14) ^ (word >> 12) ^ (word >> 10) ^ (word >> 8) ^ (word >> 6) ^ (word >> 4) ^
(word >> 2);
if (pb & 1) {
word |= BIT(0);
}
return word;
}
/* Computes and sets parity */
/* Returns [7:1] 7-bit addr, [0] even/xor parity */
static uint8_t cdns_i3c_even_parity_byte(uint8_t byte)
{
uint8_t parity = 0;
uint8_t b = byte;
while (b) {
parity = !parity;
b = b & (b - 1);
}
b = (byte << 1) | !parity;
return b;
}
/* Check if command response fifo is empty */
static inline bool cdns_i3c_cmd_rsp_fifo_empty(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_CMDR_EMP) ? true : false);
}
/* Check if command fifo is empty */
static inline bool cdns_i3c_cmd_fifo_empty(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_CMDD_EMP) ? true : false);
}
/* Check if command fifo is full */
static inline bool cdns_i3c_cmd_fifo_full(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_CMDD_FULL) ? true : false);
}
/* Check if ibi response fifo is empty */
static inline bool cdns_i3c_ibi_rsp_fifo_empty(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_IBIR_EMP) ? true : false);
}
/* Check if tx fifo is full */
static inline bool cdns_i3c_tx_fifo_full(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_TX_FULL) ? true : false);
}
/* Check if rx fifo is full */
static inline bool cdns_i3c_rx_fifo_full(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_RX_FULL) ? true : false);
}
/* Check if rx fifo is empty */
static inline bool cdns_i3c_rx_fifo_empty(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_RX_EMP) ? true : false);
}
/* Check if ibi fifo is empty */
static inline bool cdns_i3c_ibi_fifo_empty(const struct cdns_i3c_config *config)
{
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
return ((mst_st & MST_STATUS0_IBID_EMP) ? true : false);
}
/* Interrupt handling */
static inline void cdns_i3c_interrupts_disable(const struct cdns_i3c_config *config)
{
sys_write32(MST_INT_MASK, config->base + MST_IDR);
}
static inline void cdns_i3c_interrupts_clear(const struct cdns_i3c_config *config)
{
sys_write32(MST_INT_MASK, config->base + MST_ICR);
}
/* FIFO mgmt */
static void cdns_i3c_write_tx_fifo(const struct cdns_i3c_config *config, const void *buf,
uint32_t len)
{
const uint32_t *ptr = buf;
uint32_t remain, val;
for (remain = len; remain >= 4; remain -= 4) {
val = *ptr++;
sys_write32(val, config->base + TX_FIFO);
}
if (remain > 0) {
val = 0;
memcpy(&val, ptr, remain);
sys_write32(val, config->base + TX_FIFO);
}
}
static void cdns_i3c_write_ddr_tx_fifo(const struct cdns_i3c_config *config, const void *buf,
uint32_t len)
{
const uint32_t *ptr = buf;
uint32_t remain, val;
for (remain = len; remain >= 4; remain -= 4) {
val = *ptr++;
sys_write32(val, config->base + SLV_DDR_TX_FIFO);
}
if (remain > 0) {
val = 0;
memcpy(&val, ptr, remain);
sys_write32(val, config->base + SLV_DDR_TX_FIFO);
}
}
#ifdef CONFIG_I3C_USE_IBI
static void cdns_i3c_write_ibi_fifo(const struct cdns_i3c_config *config, const void *buf,
uint32_t len)
{
const uint32_t *ptr = buf;
uint32_t remain, val;
for (remain = len; remain >= 4; remain -= 4) {
val = *ptr++;
sys_write32(val, config->base + IBI_DATA_FIFO);
}
if (remain > 0) {
val = 0;
memcpy(&val, ptr, remain);
sys_write32(val, config->base + IBI_DATA_FIFO);
}
}
#endif /* CONFIG_I3C_USE_IBI */
static void cdns_i3c_target_read_rx_fifo(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
const struct i3c_target_callbacks *target_cb = data->target_config->callbacks;
/* Version 1p7 uses the full 32b FIFO width */
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
uint16_t xferred_bytes =
SLV_STATUS0_XFRD_BYTES(sys_read32(config->base + SLV_STATUS0));
for (int i = data->fifo_bytes_read; i < xferred_bytes; i += 4) {
uint32_t rx_data = sys_read32(config->base + RX_FIFO);
/* Call write received cb for each remaining byte */
for (int j = 0; j < MIN(4, xferred_bytes - i); j++) {
target_cb->write_received_cb(data->target_config,
(rx_data >> (8 * j)));
}
}
/*
* store the xfer bytes as the thr interrupt may trigger again as xferred_bytes will
* count up to the "total" bytes received
*/
data->fifo_bytes_read = xferred_bytes;
} else {
/*
* Target writes only write to the first byte of the 32 bit
* width fifo for older version
*/
uint8_t rx_data = (uint8_t)sys_read32(config->base + RX_FIFO);
target_cb->write_received_cb(data->target_config, rx_data);
}
}
static int cdns_i3c_read_rx_fifo(const struct cdns_i3c_config *config, void *buf, uint32_t len)
{
uint32_t *ptr = buf;
uint32_t remain, val;
for (remain = len; remain >= 4; remain -= 4) {
if (cdns_i3c_rx_fifo_empty(config)) {
return -EIO;
}
val = sys_le32_to_cpu(sys_read32(config->base + RX_FIFO));
*ptr++ = val;
}
if (remain > 0) {
if (cdns_i3c_rx_fifo_empty(config)) {
return -EIO;
}
val = sys_le32_to_cpu(sys_read32(config->base + RX_FIFO));
memcpy(ptr, &val, remain);
}
return 0;
}
static int cdns_i3c_read_rx_fifo_ddr_xfer(const struct cdns_i3c_config *config, void *buf,
uint32_t len, uint32_t ddr_header)
{
uint16_t *ptr = buf;
uint32_t val;
uint32_t preamble;
uint8_t crc5 = 0x1F;
/*
* TODO: This function does not support threshold interrupts, it is expected that the
* whole packet to be within the FIFO and not split across multiple calls to this function.
*/
crc5 = i3c_cdns_crc5(crc5, (uint16_t)DDR_DATA(ddr_header));
for (int i = 0; i < len; i++) {
if (cdns_i3c_rx_fifo_empty(config)) {
return -EIO;
}
val = sys_read32(config->base + RX_FIFO);
preamble = (val & DDR_PREAMBLE_MASK);
if (preamble == DDR_PREAMBLE_DATA_ABORT ||
preamble == DDR_PREAMBLE_DATA_ABORT_ALT) {
*ptr++ = sys_cpu_to_be16((uint16_t)DDR_DATA(val));
crc5 = i3c_cdns_crc5(crc5, (uint16_t)DDR_DATA(val));
} else if ((preamble == DDR_PREAMBLE_CMD_CRC) &&
((val & DDR_CRC_TOKEN_MASK) == DDR_CRC_TOKEN)) {
uint8_t crc = (uint8_t)DDR_CRC(val);
if (crc5 != crc) {
LOG_ERR("DDR RX crc error");
return -EIO;
}
}
}
return 0;
}
static inline int cdns_i3c_wait_for_idle(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
uint32_t start_time = k_cycle_get_32();
/**
* Spin waiting for device to go idle. It is unlikely that this will
* actually take any time unless if the last transaction came immediately
* after an error condition.
*/
while (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_IDLE)) {
if (k_cycle_get_32() - start_time > I3C_IDLE_TIMEOUT_CYC) {
return -EAGAIN;
}
}
return 0;
}
static void cdns_i3c_set_prescalers(const struct device *dev)
{
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
/* These formulas are from section 6.2.1 of the Cadence I3C Master User Guide. */
uint32_t prescl_i3c = DIV_ROUND_UP(config->input_frequency,
(ctrl_config->scl.i3c * I3C_PRESCL_REG_SCALE)) -
1;
uint32_t prescl_i2c = DIV_ROUND_UP(config->input_frequency,
(ctrl_config->scl.i2c * I2C_PRESCL_REG_SCALE)) -
1;
/* update with actual value */
ctrl_config->scl.i3c = config->input_frequency / ((prescl_i3c + 1) * I3C_PRESCL_REG_SCALE);
ctrl_config->scl.i2c = config->input_frequency / ((prescl_i2c + 1) * I2C_PRESCL_REG_SCALE);
LOG_DBG("%s: I3C speed = %u, PRESCL_CTRL0.i3c = 0x%x", dev->name, ctrl_config->scl.i3c,
prescl_i3c);
LOG_DBG("%s: I2C speed = %u, PRESCL_CTRL0.i2c = 0x%x", dev->name, ctrl_config->scl.i2c,
prescl_i2c);
/* Calculate the OD_LOW value assuming a desired T_low period of 210ns. */
uint32_t pres_step = 1000000000 / (ctrl_config->scl.i3c * 4);
int32_t od_low = DIV_ROUND_UP(I3C_BUS_TLOW_OD_MIN_NS, pres_step) - 2;
if (od_low < 0) {
od_low = 0;
}
LOG_DBG("%s: PRESCL_CTRL1.od_low = 0x%x", dev->name, od_low);
/* disable in order to update timing */
uint32_t ctrl = sys_read32(config->base + CTRL);
if (ctrl & CTRL_DEV_EN) {
sys_write32(~CTRL_DEV_EN & ctrl, config->base + CTRL);
}
sys_write32(PRESCL_CTRL0_I3C(prescl_i3c) | PRESCL_CTRL0_I2C(prescl_i2c),
config->base + PRESCL_CTRL0);
/* Sets the open drain low time relative to the push-pull. */
sys_write32(PRESCL_CTRL1_OD_LOW(od_low & PRESCL_CTRL1_OD_LOW_MASK),
config->base + PRESCL_CTRL1);
/* reenable */
if (ctrl & CTRL_DEV_EN) {
sys_write32(CTRL_DEV_EN | ctrl, config->base + CTRL);
}
}
/**
* @brief Compute RR0 Value from addr
*
* @param addr Address of the target
*
* @return RR0 value
*/
static uint32_t prepare_rr0_dev_address(uint16_t addr)
{
/* RR0[7:1] = addr[6:0] | parity^[0] */
uint32_t ret = cdns_i3c_even_parity_byte(addr);
if (addr & GENMASK(9, 7)) {
/* RR0[15:13] = addr[9:7] */
ret |= (addr & GENMASK(9, 7)) << 6;
/* RR0[11] = 10b lvr addr */
ret |= DEV_ID_RR0_LVR_EXT_ADDR;
}
return ret;
}
/**
* @brief Program Retaining Registers with device lists
*
* This will program the retaining register with the controller itself
*
* @param dev Pointer to controller device driver instance.
*/
static void cdns_i3c_program_controller_retaining_reg(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
/* Set controller retaining register */
uint8_t controller_da = I3C_CONTROLLER_ADDR;
if (!i3c_addr_slots_is_free(&data->common.attached_dev.addr_slots, controller_da)) {
controller_da =
i3c_addr_slots_next_free_find(&data->common.attached_dev.addr_slots, 0);
LOG_DBG("%s: 0x%02x DA selected for controller", dev->name, controller_da);
}
sys_write32(prepare_rr0_dev_address(controller_da), config->base + DEV_ID_RR0(0));
/* Mark the address as I3C device */
i3c_addr_slots_mark_i3c(&data->common.attached_dev.addr_slots, controller_da);
}
#ifdef CONFIG_I3C_USE_IBI
static int cdns_i3c_controller_ibi_enable(const struct device *dev, struct i3c_device_desc *target)
{
uint32_t sir_map;
uint32_t sir_cfg;
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = target->controller_priv;
struct i3c_ccc_events i3c_events;
int ret = 0;
if (!i3c_device_is_ibi_capable(target)) {
ret = -EINVAL;
return ret;
}
/* TODO: check for duplicate in SIR */
sir_cfg = SIR_MAP_DEV_ROLE(I3C_BCR_DEVICE_ROLE(target->bcr)) |
SIR_MAP_DEV_DA(target->dynamic_addr) |
SIR_MAP_DEV_PL(target->data_length.max_ibi);
if (target->ibi_cb != NULL) {
sir_cfg |= SIR_MAP_DEV_ACK;
}
if (target->bcr & I3C_BCR_MAX_DATA_SPEED_LIMIT) {
sir_cfg |= SIR_MAP_DEV_SLOW;
}
LOG_DBG("%s: IBI enabling for 0x%02x (BCR 0x%02x)", dev->name, target->dynamic_addr,
target->bcr);
/* Tell target to enable IBI */
i3c_events.events = I3C_CCC_EVT_INTR;
ret = i3c_ccc_do_events_set(target, true, &i3c_events);
if (ret != 0) {
LOG_ERR("%s: Error sending IBI ENEC for 0x%02x (%d)", dev->name,
target->dynamic_addr, ret);
return ret;
}
sir_map = sys_read32(config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
sir_map &= ~SIR_MAP_DEV_CONF_MASK(cdns_i3c_device_data->id - 1);
sir_map |= SIR_MAP_DEV_CONF(cdns_i3c_device_data->id - 1, sir_cfg);
sys_write32(sir_map, config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
return ret;
}
static int cdns_i3c_controller_ibi_disable(const struct device *dev, struct i3c_device_desc *target)
{
uint32_t sir_map;
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = target->controller_priv;
struct i3c_ccc_events i3c_events;
int ret = 0;
if (!i3c_device_is_ibi_capable(target)) {
ret = -EINVAL;
return ret;
}
/* Tell target to disable IBI */
i3c_events.events = I3C_CCC_EVT_INTR;
ret = i3c_ccc_do_events_set(target, false, &i3c_events);
if (ret != 0) {
LOG_ERR("%s: Error sending IBI DISEC for 0x%02x (%d)", dev->name,
target->dynamic_addr, ret);
return ret;
}
sir_map = sys_read32(config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
sir_map &= ~SIR_MAP_DEV_CONF_MASK(cdns_i3c_device_data->id - 1);
sir_map |=
SIR_MAP_DEV_CONF(cdns_i3c_device_data->id - 1, SIR_MAP_DEV_DA(I3C_BROADCAST_ADDR));
sys_write32(sir_map, config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
return ret;
}
static int cdns_i3c_target_ibi_raise_hj(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
/* HJ requests should not be done by primary controllers */
if (!ctrl_config->is_secondary) {
LOG_ERR("%s: controller is primary, HJ not available", dev->name);
return -ENOTSUP;
}
/* Check if target already has a DA assigned to it */
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_HAS_DA) {
LOG_ERR("%s: HJ not available, DA already assigned", dev->name);
return -EACCES;
}
/* Check if HJ requests DISEC CCC with DISHJ field set has been received */
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_HJ_DIS) {
LOG_ERR("%s: HJ requests are currently disabled by DISEC", dev->name);
return -EAGAIN;
}
sys_write32(CTRL_HJ_INIT | sys_read32(config->base + CTRL), config->base + CTRL);
k_sem_reset(&data->ibi_hj_complete);
if (k_sem_take(&data->ibi_hj_complete, K_MSEC(500)) != 0) {
LOG_ERR("%s: timeout waiting for DAA after HJ", dev->name);
return -ETIMEDOUT;
}
return 0;
}
static int cdns_i3c_target_ibi_raise_intr(const struct device *dev, struct i3c_ibi *request)
{
const struct cdns_i3c_config *config = dev->config;
const struct cdns_i3c_data *data = dev->data;
uint32_t ibi_ctrl_val;
LOG_DBG("%s: issuing IBI TIR", dev->name);
/*
* Ensure data will fit within FIFO
*
* TODO: This limitation prevents burst transfers greater than the
* FIFO sizes and should be replaced with an implementation that
* utilizes the IBI data threshold interrupts.
*/
if (request->payload_len > data->hw_cfg.ibi_mem_depth) {
LOG_ERR("%s: payload too large for IBI TIR", dev->name);
return -ENOMEM;
}
cdns_i3c_write_ibi_fifo(config, request->payload, request->payload_len);
/* Write Payload Length and Start Condition */
ibi_ctrl_val = sys_read32(config->base + SLV_IBI_CTRL);
ibi_ctrl_val |= SLV_IBI_PL(request->payload_len);
ibi_ctrl_val |= SLV_IBI_REQ;
sys_write32(ibi_ctrl_val, config->base + SLV_IBI_CTRL);
return 0;
}
static int cdns_i3c_target_ibi_raise(const struct device *dev, struct i3c_ibi *request)
{
struct cdns_i3c_data *data = dev->data;
if (request == NULL) {
return -EINVAL;
}
switch (request->ibi_type) {
case I3C_IBI_TARGET_INTR:
/* Check IP Revision since older versions of CDNS IP do not support IBI interrupt*/
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
return cdns_i3c_target_ibi_raise_intr(dev, request);
} else {
return -ENOTSUP;
}
case I3C_IBI_CONTROLLER_ROLE_REQUEST:
/* TODO: Cadence I3C can support CR, but not implemented yet */
return -ENOTSUP;
case I3C_IBI_HOTJOIN:
return cdns_i3c_target_ibi_raise_hj(dev);
default:
return -EINVAL;
}
}
#endif
static void cdns_i3c_cancel_transfer(const struct device *dev)
{
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
uint32_t val;
uint32_t retry_count;
/* Disable further interrupts */
sys_write32(MST_INT_CMDD_EMP, config->base + MST_IDR);
/* Ignore if no pending transfer */
if (data->xfer.num_cmds == 0) {
return;
}
data->xfer.num_cmds = 0;
/* Clear main enable bit to disable further transactions */
sys_write32(~CTRL_DEV_EN & sys_read32(config->base + CTRL), config->base + CTRL);
/**
* Spin waiting for device to go idle. It is unlikely that this will
* actually take any time since we only get here if a transaction didn't
* complete in a long time.
*/
retry_count = I3C_MAX_IDLE_CANCEL_WAIT_RETRIES;
while (retry_count--) {
val = sys_read32(config->base + MST_STATUS0);
if (val & MST_STATUS0_IDLE) {
break;
}
k_msleep(10);
}
if (retry_count == 0) {
data->xfer.ret = -ETIMEDOUT;
}
/**
* Flush all queues.
*/
sys_write32(FLUSH_RX_FIFO | FLUSH_TX_FIFO | FLUSH_CMD_FIFO | FLUSH_CMD_RESP,
config->base + FLUSH_CTRL);
/* Re-enable device */
sys_write32(CTRL_DEV_EN | sys_read32(config->base + CTRL), config->base + CTRL);
}
/**
* @brief Start a I3C/I2C Transfer
*
* This is to be called from a I3C/I2C transfer function. This will write
* all data to tx and cmd fifos
*
* @param dev Pointer to controller device driver instance.
*/
static void cdns_i3c_start_transfer(const struct device *dev)
{
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_xfer *xfer = &data->xfer;
/* Ensure no pending command response queue threshold interrupt */
sys_write32(MST_INT_CMDD_EMP, config->base + MST_ICR);
/* Make sure RX FIFO is empty. */
while (!cdns_i3c_rx_fifo_empty(config)) {
(void)sys_read32(config->base + RX_FIFO);
}
/* Make sure CMDR FIFO is empty too */
while (!cdns_i3c_cmd_rsp_fifo_empty(config)) {
(void)sys_read32(config->base + CMDR);
}
/* Write all tx data to fifo */
for (unsigned int i = 0; i < xfer->num_cmds; i++) {
if (xfer->cmds[i].hdr == I3C_DATA_RATE_SDR) {
if (!(xfer->cmds[i].cmd0 & CMD0_FIFO_RNW)) {
cdns_i3c_write_tx_fifo(config, xfer->cmds[i].buf,
xfer->cmds[i].len);
}
} else if (xfer->cmds[i].hdr == I3C_DATA_RATE_HDR_DDR) {
/* DDR Xfer requires sending header block*/
cdns_i3c_write_tx_fifo(config, &xfer->cmds[i].ddr_header,
DDR_CRC_AND_HEADER_SIZE);
/* If not read operation need to send data + crc of data*/
if (!(DDR_DATA(xfer->cmds[i].ddr_header) & HDR_CMD_RD)) {
uint8_t *buf = (uint8_t *)xfer->cmds[i].buf;
uint32_t ddr_message = 0;
uint16_t ddr_data_payload = sys_get_be16(&buf[0]);
/* HDR-DDR Data Words */
ddr_message = (DDR_PREAMBLE_DATA_ABORT |
prepare_ddr_word(ddr_data_payload));
cdns_i3c_write_tx_fifo(config, &ddr_message,
DDR_CRC_AND_HEADER_SIZE);
for (int j = 2; j < ((xfer->cmds[i].len - 2) * 2); j += 2) {
ddr_data_payload = sys_get_be16(&buf[j]);
ddr_message = (DDR_PREAMBLE_DATA_ABORT_ALT |
prepare_ddr_word(ddr_data_payload));
cdns_i3c_write_tx_fifo(config, &ddr_message,
DDR_CRC_AND_HEADER_SIZE);
}
/* HDR-DDR CRC Word */
cdns_i3c_write_tx_fifo(config, &xfer->cmds[i].ddr_crc,
DDR_CRC_AND_HEADER_SIZE);
}
} else {
xfer->ret = -ENOTSUP;
return;
}
}
/* Write all data to cmd fifos */
for (unsigned int i = 0; i < xfer->num_cmds; i++) {
/* The command ID is just the msg index. */
xfer->cmds[i].cmd1 |= CMD1_FIFO_CMDID(i);
sys_write32(xfer->cmds[i].cmd1, config->base + CMD1_FIFO);
sys_write32(xfer->cmds[i].cmd0, config->base + CMD0_FIFO);
if (xfer->cmds[i].hdr == I3C_DATA_RATE_HDR_DDR) {
sys_write32(0x00, config->base + CMD1_FIFO);
if ((DDR_DATA(xfer->cmds[i].ddr_header) & HDR_CMD_RD)) {
sys_write32(CMD0_FIFO_IS_DDR | CMD0_FIFO_PL_LEN(1),
config->base + CMD0_FIFO);
} else {
sys_write32(CMD0_FIFO_IS_DDR | CMD0_FIFO_PL_LEN(xfer->cmds[i].len),
config->base + CMD0_FIFO);
}
}
}
/* kickoff transfer */
sys_write32(CTRL_MCS | sys_read32(config->base + CTRL), config->base + CTRL);
sys_write32(MST_INT_CMDD_EMP, config->base + MST_IER);
}
/**
* @brief Send Common Command Code (CCC).
*
* @see i3c_do_ccc
*
* @param dev Pointer to controller device driver instance.
* @param payload Pointer to CCC payload.
*
* @return @see i3c_do_ccc
*/
static int cdns_i3c_do_ccc(const struct device *dev, struct i3c_ccc_payload *payload)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
struct cdns_i3c_cmd *cmd;
int ret = 0;
uint8_t num_cmds = 0;
/* make sure we are currently the active controller */
if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) {
return -EACCES;
}
if (payload == NULL) {
return -EINVAL;
}
/*
* Ensure data will fit within FIFOs.
*
* TODO: This limitation prevents burst transfers greater than the
* FIFO sizes and should be replaced with an implementation that
* utilizes the RX/TX data threshold interrupts.
*/
uint32_t num_msgs =
1 + ((payload->ccc.data_len > 0) ? payload->targets.num_targets
: MAX(payload->targets.num_targets - 1, 0));
if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) {
LOG_ERR("%s: Too many messages", dev->name);
return -ENOMEM;
}
uint32_t rxsize = 0;
/* defining byte is stored in a separate register for direct CCCs */
uint32_t txsize =
i3c_ccc_is_payload_broadcast(payload) ? ROUND_UP(payload->ccc.data_len, 4) : 0;
for (int i = 0; i < payload->targets.num_targets; i++) {
if (payload->targets.payloads[i].rnw) {
rxsize += ROUND_UP(payload->targets.payloads[i].data_len, 4);
} else {
txsize += ROUND_UP(payload->targets.payloads[i].data_len, 4);
}
}
if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) {
LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name);
return -ENOMEM;
}
LOG_DBG("%s: CCC[0x%02x]", dev->name, payload->ccc.id);
k_mutex_lock(&data->bus_lock, K_FOREVER);
/* wait for idle */
ret = cdns_i3c_wait_for_idle(dev);
if (ret != 0) {
goto error;
}
/* if this is a direct CCC */
if (!i3c_ccc_is_payload_broadcast(payload)) {
/* if the CCC has no data bytes, then the target payload must be in
* the same command buffer
*/
for (int i = 0; i < payload->targets.num_targets; i++) {
cmd = &data->xfer.cmds[i];
num_cmds++;
cmd->cmd1 = CMD1_FIFO_CCC(payload->ccc.id);
cmd->cmd0 = CMD0_FIFO_IS_CCC;
/* if there is a defining byte */
if (payload->ccc.data_len == 1) {
/* Only revision 1p7 supports defining byte for direct CCCs */
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
cmd->cmd0 |= CMD0_FIFO_IS_DB;
cmd->cmd1 |= CMD1_FIFO_DB(payload->ccc.data[0]);
} else {
LOG_ERR("%s: Defining Byte with Direct CCC not supported "
"with rev %lup%lu",
dev->name, REV_ID_REV_MAJOR(data->hw_cfg.rev_id),
REV_ID_REV_MINOR(data->hw_cfg.rev_id));
ret = -ENOTSUP;
goto error;
}
} else if (payload->ccc.data_len > 1) {
LOG_ERR("%s: Defining Byte length greater than 1", dev->name);
ret = -EINVAL;
goto error;
}
/* for a short CCC, i.e. where a direct ccc has multiple targets,
* BCH must be 0 for subsequent targets and RSBC must be 1, otherwise
* if there is just one target, RSBC must be 0 on the first target
*/
if (i == 0) {
cmd->cmd0 |= CMD0_FIFO_BCH;
}
if (i < (payload->targets.num_targets - 1)) {
cmd->cmd0 |= CMD0_FIFO_RSBC;
}
cmd->buf = payload->targets.payloads[i].data;
cmd->len = payload->targets.payloads[i].data_len;
cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(payload->targets.payloads[i].addr) |
CMD0_FIFO_PL_LEN(payload->targets.payloads[i].data_len);
if (payload->targets.payloads[i].rnw) {
cmd->cmd0 |= CMD0_FIFO_RNW;
}
cmd->hdr = I3C_DATA_RATE_SDR;
/*
* write the address of num_xfer which is to be updated upon message
* completion
*/
cmd->num_xfer = &(payload->targets.payloads[i].num_xfer);
}
} else {
cmd = &data->xfer.cmds[0];
num_cmds++;
cmd->cmd1 = CMD1_FIFO_CCC(payload->ccc.id);
cmd->cmd0 = CMD0_FIFO_IS_CCC | CMD0_FIFO_BCH;
cmd->hdr = I3C_DATA_RATE_SDR;
if (payload->ccc.data_len > 0) {
/* Write additional data for CCC if needed */
cmd->buf = payload->ccc.data;
cmd->len = payload->ccc.data_len;
cmd->cmd0 |= CMD0_FIFO_PL_LEN(payload->ccc.data_len);
/* write the address of num_xfer which is to be updated upon message
* completion
*/
cmd->num_xfer = &(payload->ccc.num_xfer);
} else {
/* no data to transfer */
cmd->len = 0;
cmd->num_xfer = NULL;
}
}
data->xfer.ret = -ETIMEDOUT;
data->xfer.num_cmds = num_cmds;
cdns_i3c_start_transfer(dev);
if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) {
cdns_i3c_cancel_transfer(dev);
}
if (data->xfer.ret < 0) {
LOG_ERR("%s: CCC[0x%02x] error (%d)", dev->name, payload->ccc.id, data->xfer.ret);
}
ret = data->xfer.ret;
error:
k_mutex_unlock(&data->bus_lock);
return ret;
}
/**
* @brief Perform Dynamic Address Assignment.
*
* @see i3c_do_daa
*
* @param dev Pointer to controller device driver instance.
*
* @return @see i3c_do_daa
*/
static int cdns_i3c_do_daa(const struct device *dev)
{
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
uint8_t last_addr = 0;
/* DAA should not be done by secondary controllers */
if (ctrl_config->is_secondary) {
return -EACCES;
}
/* read dev active reg */
uint32_t olddevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
/* ignore the controller register */
olddevs |= BIT(0);
/* Assign dynamic addressses to available RRs */
/* Loop through each clear bit */
for (uint8_t i = find_lsb_set(~olddevs); i <= data->max_devs; i++) {
uint8_t rr_idx = i - 1;
if (~olddevs & BIT(rr_idx)) {
/* Read RRx registers */
last_addr = i3c_addr_slots_next_free_find(
&data->common.attached_dev.addr_slots, last_addr + 1);
/* Write RRx registers */
sys_write32(prepare_rr0_dev_address(last_addr) | DEV_ID_RR0_IS_I3C,
config->base + DEV_ID_RR0(rr_idx));
sys_write32(0, config->base + DEV_ID_RR1(rr_idx));
sys_write32(0, config->base + DEV_ID_RR2(rr_idx));
}
}
/* the Cadence I3C IP will assign an address for it from the RR */
struct i3c_ccc_payload entdaa_ccc;
memset(&entdaa_ccc, 0, sizeof(entdaa_ccc));
entdaa_ccc.ccc.id = I3C_CCC_ENTDAA;
int status = cdns_i3c_do_ccc(dev, &entdaa_ccc);
if (status != 0) {
return status;
}
/* read again dev active reg */
uint32_t newdevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
/* look for new bits that were set */
newdevs &= ~olddevs;
if (newdevs) {
/* loop through each set bit for new devices */
for (uint8_t i = find_lsb_set(newdevs); i <= find_msb_set(newdevs); i++) {
uint8_t rr_idx = i - 1;
if (newdevs & BIT(rr_idx)) {
/* Read RRx registers */
uint32_t dev_id_rr0 = sys_read32(config->base + DEV_ID_RR0(rr_idx));
uint32_t dev_id_rr1 = sys_read32(config->base + DEV_ID_RR1(rr_idx));
uint32_t dev_id_rr2 = sys_read32(config->base + DEV_ID_RR2(rr_idx));
uint64_t pid = ((uint64_t)dev_id_rr1 << 16) + (dev_id_rr2 >> 16);
uint8_t dyn_addr = (dev_id_rr0 & 0xFE) >> 1;
uint8_t bcr = dev_id_rr2 >> 8;
uint8_t dcr = dev_id_rr2 & 0xFF;
const struct i3c_device_id i3c_id = I3C_DEVICE_ID(pid);
struct i3c_device_desc *target = i3c_device_find(dev, &i3c_id);
if (target == NULL) {
LOG_INF("%s: PID 0x%012llx is not in registered device "
"list, given DA 0x%02x",
dev->name, pid, dyn_addr);
i3c_addr_slots_mark_i3c(
&data->common.attached_dev.addr_slots, dyn_addr);
} else {
target->dynamic_addr = dyn_addr;
target->bcr = bcr;
target->dcr = dcr;
LOG_DBG("%s: PID 0x%012llx assigned dynamic address 0x%02x",
dev->name, pid, dyn_addr);
}
}
}
} else {
LOG_DBG("%s: ENTDAA: No devices found", dev->name);
}
/* mark slot as not free, may already be set if already attached */
data->free_rr_slots &= ~newdevs;
/* Unmask Hot-Join request interrupts. HJ will send DISEC HJ from the CTRL value */
struct i3c_ccc_events i3c_events;
i3c_events.events = I3C_CCC_EVT_HJ;
status = i3c_ccc_do_events_all_set(dev, true, &i3c_events);
if (status != 0) {
LOG_DBG("%s: Broadcast ENEC was NACK", dev->name);
}
return 0;
}
/**
* @brief Configure I2C hardware.
*
* @param dev Pointer to controller device driver instance.
* @param config Value of the configuration parameters.
*
* @retval 0 If successful.
* @retval -EINVAL If invalid configure parameters.
* @retval -EIO General Input/Output errors.
* @retval -ENOSYS If not implemented.
*/
static int cdns_i3c_i2c_api_configure(const struct device *dev, uint32_t config)
{
struct cdns_i3c_data *data = dev->data;
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
switch (I2C_SPEED_GET(config)) {
case I2C_SPEED_STANDARD:
ctrl_config->scl.i2c = 100000;
break;
case I2C_SPEED_FAST:
ctrl_config->scl.i2c = 400000;
break;
case I2C_SPEED_FAST_PLUS:
ctrl_config->scl.i2c = 1000000;
break;
case I2C_SPEED_HIGH:
ctrl_config->scl.i2c = 3400000;
break;
case I2C_SPEED_ULTRA:
ctrl_config->scl.i2c = 5000000;
break;
default:
break;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
cdns_i3c_set_prescalers(dev);
k_mutex_unlock(&data->bus_lock);
return 0;
}
/**
* @brief Configure I3C hardware.
*
* @param dev Pointer to controller device driver instance.
* @param type Type of configuration parameters being passed
* in @p config.
* @param config Pointer to the configuration parameters.
*
* @retval 0 If successful.
* @retval -EINVAL If invalid configure parameters.
* @retval -EIO General Input/Output errors.
* @retval -ENOSYS If not implemented.
*/
static int cdns_i3c_configure(const struct device *dev, enum i3c_config_type type, void *config)
{
struct cdns_i3c_data *data = dev->data;
struct i3c_config_controller *ctrl_cfg = config;
if ((ctrl_cfg->scl.i2c == 0U) || (ctrl_cfg->scl.i3c == 0U)) {
return -EINVAL;
}
data->common.ctrl_config.scl.i3c = ctrl_cfg->scl.i3c;
data->common.ctrl_config.scl.i2c = ctrl_cfg->scl.i2c;
k_mutex_lock(&data->bus_lock, K_FOREVER);
cdns_i3c_set_prescalers(dev);
k_mutex_unlock(&data->bus_lock);
return 0;
}
/**
* @brief Complete a I3C/I2C Transfer
*
* This is to be called from an ISR when the Command Response FIFO
* is Empty. This will check each Command Response reading the RX
* FIFO if message was a RnW and if any message had an error.
*
* @param dev Pointer to controller device driver instance.
*/
static void cdns_i3c_complete_transfer(const struct device *dev)
{
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
uint32_t cmdr;
uint32_t id = 0;
uint32_t xfer = 0;
int ret = 0;
struct cdns_i3c_cmd *cmd;
bool was_full;
/* Used only to determine in the case of a controller abort */
was_full = cdns_i3c_rx_fifo_full(config);
/* Disable further interrupts */
sys_write32(MST_INT_CMDD_EMP, config->base + MST_IDR);
/* Ignore if no pending transfer */
if (data->xfer.num_cmds == 0) {
return;
}
/* Process all results in fifo */
for (uint32_t status0 = sys_read32(config->base + MST_STATUS0);
!(status0 & MST_STATUS0_CMDR_EMP); status0 = sys_read32(config->base + MST_STATUS0)) {
cmdr = sys_read32(config->base + CMDR);
id = CMDR_CMDID(cmdr);
if (id == CMDR_CMDID_HJACK_DISEC || id == CMDR_CMDID_HJACK_ENTDAA ||
id >= data->xfer.num_cmds) {
continue;
}
cmd = &data->xfer.cmds[id];
xfer = MIN(CMDR_XFER_BYTES(cmdr), cmd->len);
if (cmd->num_xfer != NULL) {
*cmd->num_xfer = xfer;
}
/* Read any rx data into buffer */
if (cmd->cmd0 & CMD0_FIFO_RNW) {
ret = cdns_i3c_read_rx_fifo(config, cmd->buf, xfer);
}
if ((cmd->hdr == I3C_DATA_RATE_HDR_DDR) &&
(DDR_DATA(cmd->ddr_header) & HDR_CMD_RD)) {
ret = cdns_i3c_read_rx_fifo_ddr_xfer(config, cmd->buf, xfer,
cmd->ddr_header);
}
/* Record error */
cmd->error = CMDR_ERROR(cmdr);
}
for (int i = 0; i < data->xfer.num_cmds; i++) {
switch (data->xfer.cmds[i].error) {
case CMDR_NO_ERROR:
break;
case CMDR_MST_ABORT:
/*
* A controller abort is forced if the RX FIFO fills up
* There is also the case where the fifo can be full as
* the len of the packet is the same length of the fifo
* Check that the requested len is greater than the total
* transferred to confirm that is not case. Otherwise the
* abort was caused by the buffer length being meet and
* the target did not give an End of Data (EoD) in the T
* bit. Do not treat that condition as an error because
* some targets will just auto-increment the read address
* way beyond the buffer not giving an EoD.
*/
if ((was_full) && (data->xfer.cmds[i].len > *data->xfer.cmds[i].num_xfer)) {
ret = -ENOSPC;
} else {
LOG_DBG("%s: Controller Abort due to buffer length excedded with "
"no EoD from target",
dev->name);
}
break;
case CMDR_M0_ERROR: {
uint8_t ccc = data->xfer.cmds[i].cmd1 & 0xFF;
/*
* The M0 is an illegally formatted CCC. i.e. the Controller
* receives 1 byte instead of 2 with the GETMWL CCC. This can
* be problematic for CCCs that can have variable length such
* as GETMXDS and GETCAPS. Verify the number of bytes received matches
* what's expected from the specification and ignore the error. The IP will
* still retramsit the same CCC and theres nothing that can be done to
* prevent this. It it still up to the application to read `num_xfer` to
* determine the number of bytes returned.
*/
if (ccc == I3C_CCC_GETMXDS) {
/*
* Whether GETMXDS format 1 and format 2 can't be known ahead of
* time which will be returned.
*/
if ((*data->xfer.cmds[i].num_xfer !=
sizeof(((union i3c_ccc_getmxds *)0)->fmt1)) &&
(*data->xfer.cmds[i].num_xfer !=
sizeof(((union i3c_ccc_getmxds *)0)->fmt2))) {
ret = -EIO;
}
} else if (ccc == I3C_CCC_GETCAPS) {
/* GETCAPS can only return 1-4 bytes */
if (*data->xfer.cmds[i].num_xfer > sizeof(union i3c_ccc_getcaps)) {
ret = -EIO;
}
} else {
ret = -EIO;
}
break;
}
case CMDR_DDR_PREAMBLE_ERROR:
case CMDR_DDR_PARITY_ERROR:
case CMDR_M1_ERROR:
case CMDR_M2_ERROR:
case CMDR_NACK_RESP:
case CMDR_DDR_DROPPED:
ret = -EIO;
break;
case CMDR_DDR_RX_FIFO_OVF:
case CMDR_DDR_TX_FIFO_UNF:
ret = -ENOSPC;
break;
case CMDR_INVALID_DA:
default:
ret = -EINVAL;
break;
}
}
data->xfer.ret = ret;
/* Indicate no transfer is pending */
data->xfer.num_cmds = 0;
k_sem_give(&data->xfer.complete);
}
/**
* @brief Transfer messages in I2C mode.
*
* @param dev Pointer to device driver instance.
* @param target Pointer to target device descriptor.
* @param msgs Pointer to I2C messages.
* @param num_msgs Number of messages to transfers.
*
* @retval 0 If successful.
* @retval -EIO General input / output error.
* @retval -EINVAL Address not registered
*/
static int cdns_i3c_i2c_transfer(const struct device *dev, struct i3c_i2c_device_desc *i2c_dev,
struct i2c_msg *msgs, uint8_t num_msgs)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
uint32_t txsize = 0;
uint32_t rxsize = 0;
int ret;
/* make sure we are currently the active controller */
if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) {
return -EACCES;
}
if (num_msgs == 0) {
return 0;
}
if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) {
LOG_ERR("%s: Too many messages", dev->name);
return -ENOMEM;
}
/*
* Ensure data will fit within FIFOs
*/
for (unsigned int i = 0; i < num_msgs; i++) {
if ((msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
rxsize += ROUND_UP(msgs[i].len, 4);
} else {
txsize += ROUND_UP(msgs[i].len, 4);
}
}
if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) {
LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name);
return -ENOMEM;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
/* wait for idle */
ret = cdns_i3c_wait_for_idle(dev);
if (ret != 0) {
goto error;
}
for (unsigned int i = 0; i < num_msgs; i++) {
struct cdns_i3c_cmd *cmd = &data->xfer.cmds[i];
cmd->len = msgs[i].len;
cmd->buf = msgs[i].buf;
/* not an i3c transfer, but must be set to sdr */
cmd->hdr = I3C_DATA_RATE_SDR;
cmd->cmd0 = CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR);
cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(i2c_dev->addr);
cmd->cmd0 |= CMD0_FIFO_PL_LEN(msgs[i].len);
/* Send repeated start on all transfers except the last or those marked STOP. */
if ((i < (num_msgs - 1)) && ((msgs[i].flags & I2C_MSG_STOP) == 0)) {
cmd->cmd0 |= CMD0_FIFO_RSBC;
}
if (msgs[i].flags & I2C_MSG_ADDR_10_BITS) {
cmd->cmd0 |= CMD0_FIFO_IS_10B;
}
if ((msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
cmd->cmd0 |= CMD0_FIFO_RNW;
}
/* i2c transfers are a don't care for num_xfer */
cmd->num_xfer = NULL;
}
data->xfer.ret = -ETIMEDOUT;
data->xfer.num_cmds = num_msgs;
cdns_i3c_start_transfer(dev);
if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) {
cdns_i3c_cancel_transfer(dev);
}
ret = data->xfer.ret;
error:
k_mutex_unlock(&data->bus_lock);
return ret;
}
static int cdns_i3c_master_get_rr_slot(const struct device *dev, uint8_t dyn_addr)
{
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
uint8_t rr_idx, i;
uint32_t rr, activedevs;
/* If it does not have a dynamic address, then assign it a free one */
if (dyn_addr == 0) {
if (!data->free_rr_slots) {
return -ENOSPC;
}
return find_lsb_set(data->free_rr_slots) - 1;
}
/* Device already has a Dynamic Address, so assume it is already in the RRs */
activedevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
/* skip itself */
activedevs &= ~BIT(0);
/* loop through each set bit for new devices */
for (i = find_lsb_set(activedevs); i <= find_msb_set(activedevs); i++) {
rr_idx = i - 1;
if (activedevs & BIT(rr_idx)) {
rr = sys_read32(config->base + DEV_ID_RR0(rr_idx));
if ((rr & DEV_ID_RR0_IS_I3C) && DEV_ID_RR0_GET_DEV_ADDR(rr) == dyn_addr) {
return rr_idx;
}
}
}
return -EINVAL;
}
static int cdns_i3c_attach_device(const struct device *dev, struct i3c_device_desc *desc)
{
/*
* Mark Devices as active, devices that will be found and marked active during DAA,
* it will be given the exact DA programmed in it's RR, otherwise they get set as active
* here. If dynamic address is set, then it assumed that it was already initialized by the
* primary controller. When assigned through ENTDAA, the dynamic address, bcr, dcr, and pid
* are all set in the RR along with setting the device as active. If it has a static addr,
* then it is assumed that it will be programmed with SETDASA and will need to be marked
* as active before sending out SETDASA.
*/
if ((desc->static_addr != 0) || (desc->dynamic_addr != 0)) {
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
int slot = cdns_i3c_master_get_rr_slot(dev, desc->dynamic_addr ? desc->dynamic_addr
: desc->static_addr);
if (slot < 0) {
LOG_ERR("%s: no space for i3c device: %s", dev->name, desc->dev->name);
return slot;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
sys_write32(sys_read32(config->base + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(slot),
config->base + DEVS_CTRL);
data->cdns_i3c_i2c_priv_data[slot].id = slot;
desc->controller_priv = &(data->cdns_i3c_i2c_priv_data[slot]);
data->free_rr_slots &= ~BIT(slot);
uint32_t dev_id_rr0 =
DEV_ID_RR0_IS_I3C |
prepare_rr0_dev_address(desc->dynamic_addr ? desc->dynamic_addr
: desc->static_addr);
uint32_t dev_id_rr1 = DEV_ID_RR1_PID_MSB((desc->pid & 0xFFFFFFFF0000) >> 16);
uint32_t dev_id_rr2 = DEV_ID_RR2_PID_LSB(desc->pid & 0xFFFF);
sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(slot));
sys_write32(dev_id_rr1, config->base + DEV_ID_RR1(slot));
sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(slot));
k_mutex_unlock(&data->bus_lock);
}
return 0;
}
static int cdns_i3c_reattach_device(const struct device *dev, struct i3c_device_desc *desc,
uint8_t old_dyn_addr)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = desc->controller_priv;
if (cdns_i3c_device_data == NULL) {
LOG_ERR("%s: %s: device not attached", dev->name, desc->dev->name);
return -EINVAL;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
uint32_t dev_id_rr0 = DEV_ID_RR0_IS_I3C | prepare_rr0_dev_address(desc->dynamic_addr);
uint32_t dev_id_rr1 = DEV_ID_RR1_PID_MSB((desc->pid & 0xFFFFFFFF0000) >> 16);
uint32_t dev_id_rr2 = DEV_ID_RR2_PID_LSB(desc->pid & 0xFFFF) | DEV_ID_RR2_BCR(desc->bcr) |
DEV_ID_RR2_DCR(desc->dcr);
sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(cdns_i3c_device_data->id));
sys_write32(dev_id_rr1, config->base + DEV_ID_RR1(cdns_i3c_device_data->id));
sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(cdns_i3c_device_data->id));
k_mutex_unlock(&data->bus_lock);
return 0;
}
static int cdns_i3c_detach_device(const struct device *dev, struct i3c_device_desc *desc)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = desc->controller_priv;
if (cdns_i3c_device_data == NULL) {
LOG_ERR("%s: %s: device not attached", dev->name, desc->dev->name);
return -EINVAL;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
sys_write32(sys_read32(config->base + DEVS_CTRL) |
DEVS_CTRL_DEV_CLR(cdns_i3c_device_data->id),
config->base + DEVS_CTRL);
data->free_rr_slots |= BIT(cdns_i3c_device_data->id);
desc->controller_priv = NULL;
k_mutex_unlock(&data->bus_lock);
return 0;
}
static int cdns_i3c_i2c_attach_device(const struct device *dev, struct i3c_i2c_device_desc *desc)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
int slot = cdns_i3c_master_get_rr_slot(dev, 0);
if (slot < 0) {
LOG_ERR("%s: no space for i2c device: addr 0x%02x", dev->name, desc->addr);
return slot;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
uint32_t dev_id_rr0 = prepare_rr0_dev_address(desc->addr);
uint32_t dev_id_rr2 = DEV_ID_RR2_LVR(desc->lvr);
sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(slot));
sys_write32(0, config->base + DEV_ID_RR1(slot));
sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(slot));
data->cdns_i3c_i2c_priv_data[slot].id = slot;
desc->controller_priv = &(data->cdns_i3c_i2c_priv_data[slot]);
data->free_rr_slots &= ~BIT(slot);
sys_write32(sys_read32(config->base + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(slot),
config->base + DEVS_CTRL);
k_mutex_unlock(&data->bus_lock);
return 0;
}
static int cdns_i3c_i2c_detach_device(const struct device *dev, struct i3c_i2c_device_desc *desc)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
struct cdns_i3c_i2c_dev_data *cdns_i2c_device_data = desc->controller_priv;
if (cdns_i2c_device_data == NULL) {
LOG_ERR("%s: device not attached", dev->name);
return -EINVAL;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
sys_write32(sys_read32(config->base + DEVS_CTRL) |
DEVS_CTRL_DEV_CLR(cdns_i2c_device_data->id),
config->base + DEVS_CTRL);
data->free_rr_slots |= BIT(cdns_i2c_device_data->id);
desc->controller_priv = NULL;
k_mutex_unlock(&data->bus_lock);
return 0;
}
/**
* @brief Transfer messages in I3C mode.
*
* @see i3c_transfer
*
* @param dev Pointer to device driver instance.
* @param target Pointer to target device descriptor.
* @param msgs Pointer to I3C messages.
* @param num_msgs Number of messages to transfers.
*
* @return @see i3c_transfer
*/
static int cdns_i3c_transfer(const struct device *dev, struct i3c_device_desc *target,
struct i3c_msg *msgs, uint8_t num_msgs)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
int txsize = 0;
int rxsize = 0;
int ret;
/* make sure we are currently the active controller */
if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) {
return -EACCES;
}
if (num_msgs == 0) {
return 0;
}
if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) {
LOG_ERR("%s: Too many messages", dev->name);
return -ENOMEM;
}
/*
* Ensure data will fit within FIFOs.
*
* TODO: This limitation prevents burst transfers greater than the
* FIFO sizes and should be replaced with an implementation that
* utilizes the RX/TX data interrupts.
*/
for (int i = 0; i < num_msgs; i++) {
if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) {
rxsize += ROUND_UP(msgs[i].len, 4);
} else {
txsize += ROUND_UP(msgs[i].len, 4);
}
}
if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) {
LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name);
return -ENOMEM;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
/* wait for idle */
ret = cdns_i3c_wait_for_idle(dev);
if (ret != 0) {
goto error;
}
/*
* Prepare transfer commands. Currently there is only a single transfer
* in-flight but it would be possible to keep a queue of transfers. If so,
* this preparation could be completed outside of the bus lock allowing
* greater parallelism.
*/
bool send_broadcast = true;
for (int i = 0; i < num_msgs; i++) {
struct cdns_i3c_cmd *cmd = &data->xfer.cmds[i];
uint32_t pl = msgs[i].len;
/* check hdr mode */
if ((!(msgs[i].flags & I3C_MSG_HDR)) ||
((msgs[i].flags & I3C_MSG_HDR) && (msgs[i].hdr_mode == 0))) {
/* HDR message flag is not set or if hdr flag is set but no hdr mode is set
*/
cmd->len = pl;
cmd->buf = msgs[i].buf;
cmd->cmd0 = CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR);
cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(target->dynamic_addr);
if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) {
cmd->cmd0 |= CMD0_FIFO_RNW;
/*
* For I3C_XMIT_MODE_NO_ADDR reads in SDN mode,
* CMD0_FIFO_PL_LEN specifies the abort limit not bytes to read
*/
cmd->cmd0 |= CMD0_FIFO_PL_LEN(pl + 1);
} else {
cmd->cmd0 |= CMD0_FIFO_PL_LEN(pl);
}
/* Send broadcast header on first transfer or after a STOP. */
if (!(msgs[i].flags & I3C_MSG_NBCH) && (send_broadcast)) {
cmd->cmd0 |= CMD0_FIFO_BCH;
send_broadcast = false;
}
/*
* Send repeated start on all transfers except the last or those marked
* STOP.
*/
if ((i < (num_msgs - 1)) && ((msgs[i].flags & I3C_MSG_STOP) == 0)) {
cmd->cmd0 |= CMD0_FIFO_RSBC;
} else {
send_broadcast = true;
}
/*
* write the address of num_xfer which is to be updated upon message
* completion
*/
cmd->num_xfer = &(msgs[i].num_xfer);
cmd->hdr = I3C_DATA_RATE_SDR;
} else if ((data->common.ctrl_config.supported_hdr & I3C_MSG_HDR_DDR) &&
(msgs[i].hdr_mode == I3C_MSG_HDR_DDR) && (msgs[i].flags & I3C_MSG_HDR)) {
uint16_t ddr_header_payload;
/* DDR sends data out in 16b, so len must be a multiple of 2 */
if (!((pl % 2) == 0)) {
ret = -EINVAL;
goto error;
}
/* HDR message flag is set and hdr mode is DDR */
cmd->buf = msgs[i].buf;
if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) {
/* HDR-DDR Read */
ddr_header_payload = HDR_CMD_RD |
HDR_CMD_CODE(msgs[i].hdr_cmd_code) |
(target->dynamic_addr << 1);
/* Parity Adjustment Bit for Reads */
ddr_header_payload =
prepare_ddr_cmd_parity_adjustment_bit(ddr_header_payload);
/* HDR-DDR Command Word */
cmd->ddr_header =
DDR_PREAMBLE_CMD_CRC | prepare_ddr_word(ddr_header_payload);
} else {
uint8_t crc5 = 0x1F;
/* HDR-DDR Write */
ddr_header_payload = HDR_CMD_CODE(msgs[i].hdr_cmd_code) |
(target->dynamic_addr << 1);
/* HDR-DDR Command Word */
cmd->ddr_header =
DDR_PREAMBLE_CMD_CRC | prepare_ddr_word(ddr_header_payload);
/* calculate crc5 */
crc5 = i3c_cdns_crc5(crc5, ddr_header_payload);
for (int j = 0; j < pl; j += 2) {
crc5 = i3c_cdns_crc5(
crc5,
sys_get_be16((void *)((uintptr_t)cmd->buf + j)));
}
cmd->ddr_crc = DDR_PREAMBLE_CMD_CRC | DDR_CRC_TOKEN | (crc5 << 9) |
DDR_CRC_WR_SETUP;
}
/* Length of DDR Transfer is length of payload (in 16b) + header and CRC
* blocks
*/
cmd->len = ((pl / 2) + 2);
/* prep command FIFO for ENTHDR0 */
cmd->cmd0 = CMD0_FIFO_IS_CCC;
cmd->cmd1 = I3C_CCC_ENTHDR0;
/* write the address of num_xfer which is to be updated upon message
* completion
*/
cmd->num_xfer = &(msgs[i].num_xfer);
cmd->hdr = I3C_DATA_RATE_HDR_DDR;
} else {
LOG_ERR("%s: Unsupported HDR Mode %d", dev->name, msgs[i].hdr_mode);
ret = -ENOTSUP;
goto error;
}
}
data->xfer.ret = -ETIMEDOUT;
data->xfer.num_cmds = num_msgs;
cdns_i3c_start_transfer(dev);
if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) {
LOG_ERR("%s: transfer timed out", dev->name);
cdns_i3c_cancel_transfer(dev);
}
ret = data->xfer.ret;
error:
k_mutex_unlock(&data->bus_lock);
return ret;
}
#ifdef CONFIG_I3C_USE_IBI
static int cdns_i3c_read_ibi_fifo(const struct cdns_i3c_config *config, void *buf, uint32_t len)
{
uint32_t *ptr = buf;
uint32_t remain, val;
for (remain = len; remain >= 4; remain -= 4) {
if (cdns_i3c_ibi_fifo_empty(config)) {
return -EIO;
}
val = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO));
*ptr++ = val;
}
if (remain > 0) {
if (cdns_i3c_ibi_fifo_empty(config)) {
return -EIO;
}
val = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO));
memcpy(ptr, &val, remain);
}
return 0;
}
static void cdns_i3c_handle_ibi(const struct device *dev, uint32_t ibir)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
/* The slave ID returned here is the device ID in the SIR map NOT the device ID
* in the RR map.
*/
uint8_t slave_id = IBIR_SLVID(ibir);
if (slave_id == IBIR_SLVID_INV) {
/* DA does not match any value among SIR map */
return;
}
uint32_t dev_id_rr0 = sys_read32(config->base + DEV_ID_RR0(slave_id + 1));
uint8_t dyn_addr = DEV_ID_RR0_GET_DEV_ADDR(dev_id_rr0);
struct i3c_device_desc *desc = i3c_dev_list_i3c_addr_find(dev, dyn_addr);
/*
* Check for NAK or error conditions.
*
* Note: The logging is for debugging only so will be compiled out in most cases.
* However, if the log level for this module is DEBUG and log mode is IMMEDIATE or MINIMAL,
* this option is also set this may cause problems due to being inside an ISR.
*/
if (!(IBIR_ACKED & ibir)) {
LOG_DBG("%s: NAK for slave ID %u", dev->name, (unsigned int)slave_id);
return;
}
if (ibir & IBIR_ERROR) {
/* Controller issued an Abort */
LOG_ERR("%s: IBI Data overflow", dev->name);
}
/* Read out any payload bytes */
uint8_t ibi_len = IBIR_XFER_BYTES(ibir);
if (ibi_len > 0) {
if (ibi_len - data->ibi_buf.ibi_data_cnt > 0) {
if (cdns_i3c_read_ibi_fifo(
config, &data->ibi_buf.ibi_data[data->ibi_buf.ibi_data_cnt],
ibi_len - data->ibi_buf.ibi_data_cnt) < 0) {
LOG_ERR("%s: Failed to get payload", dev->name);
}
}
data->ibi_buf.ibi_data_cnt = 0;
}
if (i3c_ibi_work_enqueue_target_irq(desc, data->ibi_buf.ibi_data, ibi_len) != 0) {
LOG_ERR("%s: Error enqueue IBI IRQ work", dev->name);
}
}
static void cdns_i3c_handle_hj(const struct device *dev, uint32_t ibir)
{
if (!(IBIR_ACKED & ibir)) {
LOG_DBG("%s: NAK for HJ", dev->name);
return;
}
if (i3c_ibi_work_enqueue_hotjoin(dev) != 0) {
LOG_ERR("%s: Error enqueue IBI HJ work", dev->name);
}
}
static void cnds_i3c_master_demux_ibis(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
for (uint32_t status0 = sys_read32(config->base + MST_STATUS0);
!(status0 & MST_STATUS0_IBIR_EMP); status0 = sys_read32(config->base + MST_STATUS0)) {
uint32_t ibir = sys_read32(config->base + IBIR);
switch (IBIR_TYPE(ibir)) {
case IBIR_TYPE_IBI:
cdns_i3c_handle_ibi(dev, ibir);
break;
case IBIR_TYPE_HJ:
cdns_i3c_handle_hj(dev, ibir);
break;
case IBIR_TYPE_MR:
/* not implemented */
break;
default:
break;
}
}
}
static void cdns_i3c_target_ibi_hj_complete(const struct device *dev)
{
struct cdns_i3c_data *data = dev->data;
k_sem_give(&data->ibi_hj_complete);
}
#endif
static void cdns_i3c_target_sdr_tx_thr_int_handler(const struct device *dev,
const struct i3c_target_callbacks *target_cb)
{
int status = 0;
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
if (target_cb != NULL && target_cb->read_processed_cb) {
/* with REV_ID 1.7, as a target, the fifos are full word, otherwise only the first
* byte is used.
*/
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
/* while tx fifo is not full and there is still data available */
while ((!(sys_read32(config->base + SLV_STATUS1) &
SLV_STATUS1_SDR_TX_FULL)) &&
(status == 0)) {
/* call function pointer for read */
uint32_t tx_data = 0;
bool data_valid = false;
for (int j = 0; j < 4; j++) {
uint8_t byte;
/* will return negative if no data left to transmit and 0
* if data available
*/
status = target_cb->read_processed_cb(data->target_config,
&byte);
if (status == 0) {
data_valid = true;
tx_data |= (byte << (j * 8));
}
}
if (data_valid) {
cdns_i3c_write_tx_fifo(config, &tx_data, sizeof(uint32_t));
}
}
} else {
/* while tx fifo is not full and there is still data available */
while ((!(sys_read32(config->base + SLV_STATUS1) &
SLV_STATUS1_SDR_TX_FULL)) &&
(status == 0)) {
uint8_t byte;
/* will return negative if no data left to transmit and 0 if
* data available
*/
status = target_cb->read_processed_cb(data->target_config, &byte);
if (status == 0) {
cdns_i3c_write_tx_fifo(config, &byte, sizeof(uint8_t));
}
}
}
}
}
static void cdns_i3c_irq_handler(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) {
uint32_t int_st = sys_read32(config->base + MST_ISR);
sys_write32(int_st, config->base + MST_ICR);
/* Command queue empty */
if (int_st & MST_INT_HALTED) {
LOG_WRN("Core Halted, 2 read aborts");
}
/* Command queue empty */
if (int_st & MST_INT_CMDD_EMP) {
cdns_i3c_complete_transfer(dev);
}
/* In-band interrupt */
if (int_st & MST_INT_IBIR_THR) {
#ifdef CONFIG_I3C_USE_IBI
cnds_i3c_master_demux_ibis(dev);
#else
LOG_ERR("%s: IBI received - Kconfig for using IBIs is not enabled",
dev->name);
#endif
}
/* In-band interrupt data threshold */
if (int_st & MST_INT_IBID_THR) {
#ifdef CONFIG_I3C_USE_IBI
/* pop data out of the IBI FIFO */
while (!cdns_i3c_ibi_fifo_empty(config)) {
uint32_t *ptr = (uint32_t *)&data->ibi_buf
.ibi_data[data->ibi_buf.ibi_data_cnt];
*ptr = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO));
data->ibi_buf.ibi_data_cnt += 4;
}
#else
LOG_ERR("%s: IBI received - Kconfig for using IBIs is not enabled",
dev->name);
#endif
}
/* In-band interrupt response overflow */
if (int_st & MST_INT_IBIR_OVF) {
LOG_ERR("%s: controller ibir overflow,", dev->name);
}
/* In-band interrupt data */
if (int_st & MST_INT_TX_OVF) {
LOG_ERR("%s: controller tx buffer overflow,", dev->name);
}
/* In-band interrupt data */
if (int_st & MST_INT_RX_UNF) {
LOG_ERR("%s: controller rx buffer underflow,", dev->name);
}
} else {
uint32_t int_sl = sys_read32(config->base + SLV_ISR);
const struct i3c_target_callbacks *target_cb =
data->target_config ? data->target_config->callbacks : NULL;
/* Clear interrupts */
sys_write32(int_sl, config->base + SLV_ICR);
/* SLV SDR rx fifo threshold */
if (int_sl & SLV_INT_SDR_RX_THR) {
/* while rx fifo is not empty */
while (!(sys_read32(config->base + SLV_STATUS1) &
SLV_STATUS1_SDR_RX_EMPTY)) {
if (target_cb != NULL && target_cb->write_received_cb != NULL) {
cdns_i3c_target_read_rx_fifo(dev);
}
}
}
/* SLV SDR tx fifo threshold */
if (int_sl & SLV_INT_SDR_TX_THR) {
cdns_i3c_target_sdr_tx_thr_int_handler(dev, target_cb);
}
/* SLV SDR rx complete */
if (int_sl & SLV_INT_SDR_RD_COMP) {
/* a read needs to be done on slv_status 0 else a NACK will happen */
(void)sys_read32(config->base + SLV_STATUS0);
/* call stop function pointer */
if (target_cb != NULL && target_cb->stop_cb) {
target_cb->stop_cb(data->target_config);
}
}
/* SLV SDR tx complete */
if (int_sl & SLV_INT_SDR_WR_COMP) {
/* a read needs to be done on slv_status 0 else a NACK will happen */
(void)sys_read32(config->base + SLV_STATUS0);
/* clear bytes read parameter */
data->fifo_bytes_read = 0;
/* call stop function pointer */
if (target_cb != NULL && target_cb->stop_cb) {
target_cb->stop_cb(data->target_config);
}
}
/* DA has been updated */
if (int_sl & SLV_INT_DA_UPD) {
LOG_INF("%s: DA updated to 0x%02lx", dev->name,
SLV_STATUS1_DA(sys_read32(config->base + SLV_STATUS1)));
/* HJ could send a DISEC which would trigger the SLV_INT_EVENT_UP bit,
* but it's still expected to eventually send a DAA
*/
#ifdef CONFIG_I3C_USE_IBI
cdns_i3c_target_ibi_hj_complete(dev);
#endif
}
/* HJ complete and DA has been assigned */
if (int_sl & SLV_INT_HJ_DONE) {
}
/* Controllership has been been given */
if (int_sl & SLV_INT_MR_DONE) {
/* TODO: implement support for controllership handoff */
}
/* EISC or DISEC has been received */
if (int_sl & SLV_INT_EVENT_UP) {
}
/* sdr transfer aborted by controller */
if (int_sl & SLV_INT_M_RD_ABORT) {
/* TODO: consider flushing tx buffer? */
}
/* SLV SDR rx fifo underflow */
if (int_sl & SLV_INT_SDR_RX_UNF) {
LOG_ERR("%s: slave sdr rx buffer underflow", dev->name);
}
/* SLV SDR tx fifo overflow */
if (int_sl & SLV_INT_SDR_TX_OVF) {
LOG_ERR("%s: slave sdr tx buffer overflow,", dev->name);
}
if (int_sl & SLV_INT_DDR_RX_THR) {
}
/* SLV DDR WR COMPLETE */
if (int_sl & SLV_INT_DDR_WR_COMP) {
/* initial value of CRC5 for HDR-DDR is 0x1F */
uint8_t crc5 = 0x1F;
while (!(sys_read32(config->base + SLV_STATUS1) &
SLV_STATUS1_DDR_RX_EMPTY)) {
uint32_t ddr_rx_data = sys_read32(config->base + SLV_DDR_RX_FIFO);
uint32_t preamble = (ddr_rx_data & DDR_PREAMBLE_MASK);
if (preamble == DDR_PREAMBLE_DATA_ABORT ||
preamble == DDR_PREAMBLE_DATA_ABORT_ALT) {
uint16_t ddr_payload = DDR_DATA(ddr_rx_data);
if (cdns_i3c_ddr_parity(ddr_payload) !=
(ddr_rx_data & (DDR_ODD_PARITY | DDR_EVEN_PARITY))) {
LOG_ERR("%s: Received incorrect DDR Parity",
dev->name);
}
/* calculate a running a crc */
crc5 = i3c_cdns_crc5(crc5, ddr_payload);
if (target_cb != NULL &&
target_cb->write_received_cb != NULL) {
/* DDR receives 2B for each payload */
target_cb->write_received_cb(
data->target_config,
(uint8_t)((ddr_payload >> 8) & 0xFF));
target_cb->write_received_cb(
data->target_config,
(uint8_t)(ddr_payload));
}
} else if ((preamble == DDR_PREAMBLE_CMD_CRC) &&
((ddr_rx_data & DDR_CRC_TOKEN_MASK) == DDR_CRC_TOKEN)) {
/* should come through here last */
if (crc5 != DDR_CRC(ddr_rx_data)) {
LOG_ERR("%s: Received incorrect DDR CRC5",
dev->name);
}
} else if (preamble == DDR_PREAMBLE_CMD_CRC) {
/* should come through here first */
uint16_t ddr_header_payload = DDR_DATA(ddr_rx_data);
crc5 = i3c_cdns_crc5(crc5, ddr_header_payload);
}
}
if (target_cb != NULL && target_cb->stop_cb != NULL) {
target_cb->stop_cb(data->target_config);
}
}
/* SLV SDR rx complete */
if (int_sl & SLV_INT_DDR_RD_COMP) {
/* a read needs to be done on slv_status 0 else a NACK will happen */
(void)sys_read32(config->base + SLV_STATUS0);
/* call stop function pointer */
if (target_cb != NULL && target_cb->stop_cb) {
target_cb->stop_cb(data->target_config);
}
}
/*SLV DDR TX THR*/
if (int_sl & SLV_INT_DDR_TX_THR) {
int status = 0;
if (target_cb != NULL && target_cb->read_processed_cb) {
while ((!(sys_read32(config->base + SLV_STATUS1) &
SLV_STATUS1_DDR_TX_FULL)) &&
(status == 0)) {
/* call function pointer for read */
uint8_t byte;
/* will return negative if no data left to transmit
* and 0 if data available
*/
status = target_cb->read_processed_cb(data->target_config,
&byte);
if (status == 0) {
cdns_i3c_write_ddr_tx_fifo(config, &byte,
sizeof(byte));
}
}
}
}
}
}
static void cdns_i3c_read_hw_cfg(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
uint32_t devid = sys_read32(config->base + DEV_ID);
uint32_t revid = sys_read32(config->base + REV_ID);
LOG_DBG("%s: Device info:\r\n"
" vid: 0x%03lX, pid: 0x%03lX\r\n"
" revision: major = %lu, minor = %lu\r\n"
" device ID: 0x%04X",
dev->name, REV_ID_VID(revid), REV_ID_PID(revid), REV_ID_REV_MAJOR(revid),
REV_ID_REV_MINOR(revid), devid);
/*
* Depths are specified as number of words (32bit), convert to bytes
*/
uint32_t cfg0 = sys_read32(config->base + CONF_STATUS0);
uint32_t cfg1 = sys_read32(config->base + CONF_STATUS1);
data->hw_cfg.rev_id = revid;
data->hw_cfg.cmdr_mem_depth = CONF_STATUS0_CMDR_DEPTH(cfg0) * 4;
data->hw_cfg.cmd_mem_depth = CONF_STATUS1_CMD_DEPTH(cfg1) * 4;
data->hw_cfg.rx_mem_depth = CONF_STATUS1_RX_DEPTH(cfg1) * 4;
data->hw_cfg.tx_mem_depth = CONF_STATUS1_TX_DEPTH(cfg1) * 4;
data->hw_cfg.ddr_rx_mem_depth = CONF_STATUS1_SLV_DDR_RX_DEPTH(cfg1) * 4;
data->hw_cfg.ddr_tx_mem_depth = CONF_STATUS1_SLV_DDR_TX_DEPTH(cfg1) * 4;
data->hw_cfg.ibir_mem_depth = CONF_STATUS0_IBIR_DEPTH(cfg0) * 4;
data->hw_cfg.ibi_mem_depth = CONF_STATUS1_IBI_DEPTH(cfg0) * 4;
LOG_DBG("%s: FIFO info:\r\n"
" cmd_mem_depth = %u\r\n"
" cmdr_mem_depth = %u\r\n"
" rx_mem_depth = %u\r\n"
" tx_mem_depth = %u\r\n"
" ddr_rx_mem_depth = %u\r\n"
" ddr_tx_mem_depth = %u\r\n"
" ibi_mem_depth = %u\r\n"
" ibir_mem_depth = %u",
dev->name, data->hw_cfg.cmd_mem_depth, data->hw_cfg.cmdr_mem_depth,
data->hw_cfg.rx_mem_depth, data->hw_cfg.tx_mem_depth, data->hw_cfg.ddr_rx_mem_depth,
data->hw_cfg.ddr_tx_mem_depth, data->hw_cfg.ibi_mem_depth,
data->hw_cfg.ibir_mem_depth);
/* Regardless of the cmd depth size we are limited by our cmd array length. */
data->hw_cfg.cmd_mem_depth = MIN(data->hw_cfg.cmd_mem_depth, ARRAY_SIZE(data->xfer.cmds));
}
/**
* @brief Get configuration of the I3C hardware.
*
* This provides a way to get the current configuration of the I3C hardware.
*
* This can return cached config or probed hardware parameters, but it has to
* be up to date with current configuration.
*
* @param[in] dev Pointer to controller device driver instance.
* @param[in] type Type of configuration parameters being passed
* in @p config.
* @param[in,out] config Pointer to the configuration parameters.
*
* Note that if @p type is @c I3C_CONFIG_CUSTOM, @p config must contain
* the ID of the parameter to be retrieved.
*
* @retval 0 If successful.
* @retval -EIO General Input/Output errors.
* @retval -ENOSYS If not implemented.
*/
static int cdns_i3c_config_get(const struct device *dev, enum i3c_config_type type, void *config)
{
struct cdns_i3c_data *data = dev->data;
int ret = 0;
if (config == NULL) {
ret = -EINVAL;
goto out_configure;
}
(void)memcpy(config, &data->common.ctrl_config, sizeof(data->common.ctrl_config));
out_configure:
return ret;
}
static int cdns_i3c_target_tx_ddr_write(const struct device *dev, uint8_t *buf, uint16_t len)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
uint32_t i, preamble;
uint32_t data_word;
uint8_t crc5 = 0x1F;
/* check if there is space available in the tx fifo */
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_DDR_TX_FULL) {
return -ENOSPC;
}
/* DDR sends data out in 16b, so len must be a multiple of 2 */
if (!((len % 2) == 0)) {
return -EINVAL;
}
/* Header shall be known in advanced to calculate crc5 */
uint8_t slave_da = SLV_STATUS1_DA(sys_read32(config->base + SLV_STATUS1));
uint16_t ddr_payload_header = HDR_CMD_RD | (slave_da << 1);
ddr_payload_header = prepare_ddr_cmd_parity_adjustment_bit(ddr_payload_header);
crc5 = i3c_cdns_crc5(crc5, ddr_payload_header);
/* write as much as you can to the fifo */
for (i = 0;
i < len && (!(sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_DDR_TX_FULL));
i += 2) {
/* Use ALT with other than first packets */
preamble = (i > 0) ? DDR_PREAMBLE_DATA_ABORT_ALT : DDR_PREAMBLE_DATA_ABORT;
data_word = (preamble | prepare_ddr_word(sys_get_be16(&buf[i])));
crc5 = i3c_cdns_crc5(crc5, sys_get_be16(&buf[i]));
sys_write32(data_word, config->base + SLV_DDR_TX_FIFO);
}
/* end of data buffer, write crc packet (if we are still not full) */
if ((i == len) && (!(sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_DDR_TX_FULL))) {
sys_write32(DDR_PREAMBLE_CMD_CRC | DDR_CRC_TOKEN | crc5 << 9,
config->base + SLV_DDR_TX_FIFO);
}
/* setup THR interrupt */
uint32_t thr_ctrl = sys_read32(config->base + SLV_DDR_TX_RX_THR_CTRL);
/*
* Interrupt at half of the data or FIFO depth to give it enough time to be
* processed. The ISR will then callback to the function pointer
* `read_processed_cb` to collect more data to transmit
*/
thr_ctrl &= ~TX_THR_MASK;
thr_ctrl |= TX_THR(MIN((data->hw_cfg.tx_mem_depth / 4) / 2, len / 2));
sys_write32(thr_ctrl, config->base + SLV_DDR_TX_RX_THR_CTRL);
/* return total bytes written */
return i;
}
/**
* @brief Writes to the Target's TX FIFO
*
* The Cadence I3C will then ACK read requests to it's TX FIFO from a
* Controller
*
* @param dev Pointer to the device structure for an I3C controller
* driver configured in target mode.
* @param buf Pointer to the buffer
* @param len Length of the buffer
*
* @retval Total number of bytes written
* @retval -EACCES Not in Target Mode
* @retval -ENOSPC No space in Tx FIFO
*/
static int cdns_i3c_target_tx_write(const struct device *dev, uint8_t *buf, uint16_t len,
uint8_t hdr_mode)
{
const struct cdns_i3c_config *config = dev->config;
struct cdns_i3c_data *data = dev->data;
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
const uint32_t *buf_32 = (uint32_t *)buf;
uint32_t i = 0;
uint32_t val = 0;
uint16_t remain = len;
/* check if we are currently a target */
if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) {
return -EACCES;
}
/* check if there is space available in the tx fifo */
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_SDR_TX_FULL) {
return -ENOSPC;
}
k_mutex_lock(&data->bus_lock, K_FOREVER);
/* rev 1p7 requires the length be written to the SLV_CTRL reg */
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
sys_write32(len, config->base + SLV_CTRL);
}
if (hdr_mode == I3C_MSG_HDR_DDR) {
if (ctrl_config->supported_hdr & I3C_MSG_HDR_DDR) {
i = cdns_i3c_target_tx_ddr_write(dev, buf, len);
/* TODO: DDR THR interrupt support not implemented yet*/
} else {
LOG_ERR("%s: HDR-DDR not supported", dev->name);
i = -ENOTSUP;
}
} else if (hdr_mode == 0) {
/* write as much as you can to the fifo */
while (i < len &&
(!(sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_SDR_TX_FULL))) {
/* with rev 1p7, while as a target, the fifos are using the full word,
* otherwise only the first byte is used
*/
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
remain = len - i;
if (remain >= 4) {
val = *buf_32++;
} else if (remain > 0) {
val = 0;
memcpy(&val, buf_32, remain);
}
sys_write32(val, config->base + TX_FIFO);
i += 4;
} else {
sys_write32((uint32_t)buf[i], config->base + TX_FIFO);
i++;
}
}
/* setup THR interrupt */
uint32_t thr_ctrl = sys_read32(config->base + TX_RX_THR_CTRL);
/*
* Interrupt at half of the data or FIFO depth to give it enough time to be
* processed. The ISR will then callback to the function pointer
* `read_processed_cb` to collect more data to transmit
*/
thr_ctrl &= ~TX_THR_MASK;
thr_ctrl |= TX_THR(MIN((data->hw_cfg.tx_mem_depth / 4) / 2, len / 2));
sys_write32(thr_ctrl, config->base + TX_RX_THR_CTRL);
} else {
LOG_ERR("%s: Unsupported HDR Mode %d", dev->name, hdr_mode);
i = -ENOTSUP;
}
k_mutex_unlock(&data->bus_lock);
/* return total bytes written */
return i;
}
/**
* @brief Instructs the I3C Target device to register itself to the I3C Controller
*
* This routine instructs the I3C Target device to register itself to the I3C
* Controller via its parent controller's i3c_target_register() API.
*
* @param dev Pointer to target device driver instance.
* @param cfg Config struct with functions and parameters used by the I3C driver
* to send bus events
*
* @return @see i3c_device_find.
*/
static int cdns_i3c_target_register(const struct device *dev, struct i3c_target_config *cfg)
{
struct cdns_i3c_data *data = dev->data;
data->target_config = cfg;
return 0;
}
/**
* @brief Unregisters the provided config as Target device
*
* This routine disables I3C target mode for the 'dev' I3C bus driver using
* the provided 'config' struct containing the functions and parameters
* to send bus events.
*
* @param dev Pointer to target device driver instance.
* @param cfg Config struct with functions and parameters used by the I3C driver
* to send bus events
*
* @return @see i3c_device_find.
*/
static int cdns_i3c_target_unregister(const struct device *dev, struct i3c_target_config *cfg)
{
/* no way to disable? maybe write DA to 0? */
return 0;
}
/**
* @brief Find a registered I3C target device.
*
* This returns the I3C device descriptor of the I3C device
* matching the incoming @p id.
*
* @param dev Pointer to controller device driver instance.
* @param id Pointer to I3C device ID.
*
* @return @see i3c_device_find.
*/
static struct i3c_device_desc *cdns_i3c_device_find(const struct device *dev,
const struct i3c_device_id *id)
{
const struct cdns_i3c_config *config = dev->config;
return i3c_dev_list_find(&config->common.dev_list, id);
}
/**
* Find a registered I2C target device.
*
* Controller only API.
*
* This returns the I2C device descriptor of the I2C device
* matching the device address @p addr.
*
* @param dev Pointer to controller device driver instance.
* @param id I2C target device address.
*
* @return @see i3c_i2c_device_find.
*/
static struct i3c_i2c_device_desc *cdns_i3c_i2c_device_find(const struct device *dev, uint16_t addr)
{
return i3c_dev_list_i2c_addr_find(dev, addr);
}
/**
* @brief Transfer messages in I2C mode.
*
* @see i2c_transfer
*
* @param dev Pointer to device driver instance.
* @param target Pointer to target device descriptor.
* @param msgs Pointer to I2C messages.
* @param num_msgs Number of messages to transfers.
*
* @return @see i2c_transfer
*/
static int cdns_i3c_i2c_api_transfer(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
struct i3c_i2c_device_desc *i2c_dev = cdns_i3c_i2c_device_find(dev, addr);
int ret;
if (i2c_dev == NULL) {
ret = -ENODEV;
} else {
ret = cdns_i3c_i2c_transfer(dev, i2c_dev, msgs, num_msgs);
}
return ret;
}
/**
* Determine I3C bus mode from the i2c devices on the bus
*
* Reads the LVR of all I2C devices and returns the I3C bus
* Mode
*
* @param dev_list Pointer to device list
*
* @return @see enum i3c_bus_mode.
*/
static enum i3c_bus_mode i3c_bus_mode(const struct i3c_dev_list *dev_list)
{
enum i3c_bus_mode mode = I3C_BUS_MODE_PURE;
for (int i = 0; i < dev_list->num_i2c; i++) {
switch (I3C_LVR_I2C_DEV_IDX(dev_list->i2c[i].lvr)) {
case I3C_LVR_I2C_DEV_IDX_0:
if (mode < I3C_BUS_MODE_MIXED_FAST) {
mode = I3C_BUS_MODE_MIXED_FAST;
}
break;
case I3C_LVR_I2C_DEV_IDX_1:
if (mode < I3C_BUS_MODE_MIXED_LIMITED) {
mode = I3C_BUS_MODE_MIXED_LIMITED;
}
break;
case I3C_LVR_I2C_DEV_IDX_2:
if (mode < I3C_BUS_MODE_MIXED_SLOW) {
mode = I3C_BUS_MODE_MIXED_SLOW;
}
break;
default:
mode = I3C_BUS_MODE_INVALID;
break;
}
}
return mode;
}
/**
* Determine THD_DEL value for CTRL register
*
* Should be MIN(t_cf, t_cr) + 3ns
*
* @param dev Pointer to device driver instance.
*
* @return Value to be written to THD_DEL
*/
static uint8_t cdns_i3c_sda_data_hold(const struct device *dev)
{
const struct cdns_i3c_config *config = dev->config;
uint32_t input_clock_frequency = config->input_frequency;
uint8_t thd_delay =
DIV_ROUND_UP(I3C_HD_PP_DEFAULT_NS, (NSEC_PER_SEC / input_clock_frequency));
if (thd_delay > THD_DELAY_MAX) {
thd_delay = THD_DELAY_MAX;
}
return (THD_DELAY_MAX - thd_delay);
}
/**
* @brief Initialize the hardware.
*
* @param dev Pointer to controller device driver instance.
*/
static int cdns_i3c_bus_init(const struct device *dev)
{
struct cdns_i3c_data *data = dev->data;
const struct cdns_i3c_config *config = dev->config;
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
cdns_i3c_read_hw_cfg(dev);
/* Clear all retaining regs */
sys_write32(DEVS_CTRL_DEV_CLR_ALL, config->base + DEVS_CTRL);
uint32_t conf0 = sys_read32(config->base + CONF_STATUS0);
uint32_t conf1 = sys_read32(config->base + CONF_STATUS1);
data->max_devs = CONF_STATUS0_DEVS_NUM(conf0);
data->free_rr_slots = GENMASK(data->max_devs, 1);
/* DDR supported bit moved in 1p7 revision along with dev role added */
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
ctrl_config->supported_hdr =
(conf1 & CONF_STATUS1_SUPPORTS_DDR) ? I3C_MSG_HDR_DDR : 0;
ctrl_config->is_secondary =
(CONF_STATUS0_DEV_ROLE(conf0) == CONF_STATUS0_DEV_ROLE_SEC_MASTER) ? true
: false;
} else {
ctrl_config->supported_hdr =
(conf0 & CONF_STATUS0_SUPPORTS_DDR) ? I3C_MSG_HDR_DDR : 0;
ctrl_config->is_secondary = (conf0 & CONF_STATUS0_SEC_MASTER) ? true : false;
}
k_mutex_init(&data->bus_lock);
k_sem_init(&data->xfer.complete, 0, 1);
k_sem_init(&data->ibi_hj_complete, 0, 1);
cdns_i3c_interrupts_disable(config);
cdns_i3c_interrupts_clear(config);
config->irq_config_func(dev);
/* Ensure the bus is disabled. */
sys_write32(~CTRL_DEV_EN & sys_read32(config->base + CTRL), config->base + CTRL);
/* determine prescaler timings for i3c and i2c scl */
cdns_i3c_set_prescalers(dev);
enum i3c_bus_mode mode = i3c_bus_mode(&config->common.dev_list);
LOG_DBG("%s: i3c bus mode %d", dev->name, mode);
int cdns_mode;
switch (mode) {
case I3C_BUS_MODE_PURE:
cdns_mode = CTRL_PURE_BUS_MODE;
break;
case I3C_BUS_MODE_MIXED_FAST:
cdns_mode = CTRL_MIXED_FAST_BUS_MODE;
break;
case I3C_BUS_MODE_MIXED_LIMITED:
case I3C_BUS_MODE_MIXED_SLOW:
cdns_mode = CTRL_MIXED_SLOW_BUS_MODE;
break;
default:
return -EINVAL;
}
/*
* When a Hot-Join request happens, disable all events coming from this device.
* We will issue ENTDAA afterwards from the threaded IRQ handler.
* Set HJ ACK later after bus init to prevent targets from indirect DAA enforcement.
*
* Set the I3C Bus Mode based on the LVR of the I2C devices
*/
uint32_t ctrl = CTRL_HJ_DISEC | CTRL_MCS_EN | (CTRL_BUS_MODE_MASK & cdns_mode);
/* Disable Controllership requests as it is not supported yet by the driver */
ctrl &= ~CTRL_MST_ACK;
/*
* Cadence I3C release r104v1p0 and above support configuration of the sda data hold time
*/
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 4)) {
ctrl |= CTRL_THD_DELAY(cdns_i3c_sda_data_hold(dev));
}
/*
* Cadence I3C release r105v1p0 and above support I3C v1.1 timing change
* for tCASHr_min = tCAS_min / 2, otherwise tCASr_min = tCAS_min (as
* per MIPI spec v1.0)
*/
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 5)) {
ctrl |= CTRL_I3C_11_SUPP;
}
/* write ctrl register value */
sys_write32(ctrl, config->base + CTRL);
/* enable Core */
sys_write32(CTRL_DEV_EN | ctrl, config->base + CTRL);
/* Set fifo thresholds. */
sys_write32(CMD_THR(I3C_CMDD_THR) | IBI_THR(I3C_IBID_THR) | CMDR_THR(I3C_CMDR_THR) |
IBIR_THR(config->ibid_thr),
config->base + CMD_IBI_THR_CTRL);
/* Set TX/RX interrupt thresholds. */
if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) {
sys_write32(TX_THR(I3C_TX_THR) | RX_THR(data->hw_cfg.rx_mem_depth),
config->base + TX_RX_THR_CTRL);
} else {
sys_write32(TX_THR(1) | RX_THR(1), config->base + TX_RX_THR_CTRL);
sys_write32(SLV_DDR_TX_THR(0) | SLV_DDR_RX_THR(1),
config->base + SLV_DDR_TX_RX_THR_CTRL);
}
/* enable target interrupts */
sys_write32(SLV_INT_DA_UPD | SLV_INT_SDR_RD_COMP | SLV_INT_SDR_WR_COMP |
SLV_INT_SDR_RX_THR | SLV_INT_SDR_TX_THR | SLV_INT_SDR_RX_UNF |
SLV_INT_SDR_TX_OVF | SLV_INT_HJ_DONE | SLV_INT_DDR_WR_COMP |
SLV_INT_DDR_RD_COMP | SLV_INT_DDR_RX_THR | SLV_INT_DDR_TX_THR,
config->base + SLV_IER);
/* Enable IBI interrupts. */
sys_write32(MST_INT_IBIR_THR | MST_INT_RX_UNF | MST_INT_HALTED | MST_INT_TX_OVF |
MST_INT_IBIR_OVF | MST_INT_IBID_THR,
config->base + MST_IER);
int ret = i3c_addr_slots_init(dev);
if (ret != 0) {
return ret;
}
/* Program retaining regs. */
cdns_i3c_program_controller_retaining_reg(dev);
/* only primary controllers are responsible for initializing the bus */
if (!ctrl_config->is_secondary) {
/* Sleep to wait for bus idle. */
k_busy_wait(201);
/* Perform bus initialization */
ret = i3c_bus_init(dev, &config->common.dev_list);
#ifdef CONFIG_I3C_USE_IBI
/* Bus Initialization Complete, allow HJ ACKs */
sys_write32(CTRL_HJ_ACK | sys_read32(config->base + CTRL), config->base + CTRL);
#endif
}
return 0;
}
static struct i3c_driver_api api = {
.i2c_api.configure = cdns_i3c_i2c_api_configure,
.i2c_api.transfer = cdns_i3c_i2c_api_transfer,
.configure = cdns_i3c_configure,
.config_get = cdns_i3c_config_get,
.attach_i3c_device = cdns_i3c_attach_device,
.reattach_i3c_device = cdns_i3c_reattach_device,
.detach_i3c_device = cdns_i3c_detach_device,
.attach_i2c_device = cdns_i3c_i2c_attach_device,
.detach_i2c_device = cdns_i3c_i2c_detach_device,
.do_daa = cdns_i3c_do_daa,
.do_ccc = cdns_i3c_do_ccc,
.i3c_device_find = cdns_i3c_device_find,
.i3c_xfers = cdns_i3c_transfer,
.target_tx_write = cdns_i3c_target_tx_write,
.target_register = cdns_i3c_target_register,
.target_unregister = cdns_i3c_target_unregister,
#ifdef CONFIG_I3C_USE_IBI
.ibi_enable = cdns_i3c_controller_ibi_enable,
.ibi_disable = cdns_i3c_controller_ibi_disable,
.ibi_raise = cdns_i3c_target_ibi_raise,
#endif
};
#define CADENCE_I3C_INSTANTIATE(n) \
static void cdns_i3c_config_func_##n(const struct device *dev); \
static struct i3c_device_desc cdns_i3c_device_array_##n[] = I3C_DEVICE_ARRAY_DT_INST(n); \
static struct i3c_i2c_device_desc cdns_i3c_i2c_device_array_##n[] = \
I3C_I2C_DEVICE_ARRAY_DT_INST(n); \
static const struct cdns_i3c_config i3c_config_##n = { \
.base = DT_INST_REG_ADDR(n), \
.input_frequency = DT_INST_PROP(n, input_clock_frequency), \
.irq_config_func = cdns_i3c_config_func_##n, \
.ibid_thr = DT_INST_PROP(n, ibid_thr), \
.common.dev_list.i3c = cdns_i3c_device_array_##n, \
.common.dev_list.num_i3c = ARRAY_SIZE(cdns_i3c_device_array_##n), \
.common.dev_list.i2c = cdns_i3c_i2c_device_array_##n, \
.common.dev_list.num_i2c = ARRAY_SIZE(cdns_i3c_i2c_device_array_##n), \
}; \
static struct cdns_i3c_data i3c_data_##n = { \
.common.ctrl_config.scl.i3c = DT_INST_PROP_OR(n, i3c_scl_hz, 0), \
.common.ctrl_config.scl.i2c = DT_INST_PROP_OR(n, i2c_scl_hz, 0), \
}; \
DEVICE_DT_INST_DEFINE(n, cdns_i3c_bus_init, NULL, &i3c_data_##n, &i3c_config_##n, \
POST_KERNEL, CONFIG_I3C_CONTROLLER_INIT_PRIORITY, &api); \
static void cdns_i3c_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), cdns_i3c_irq_handler, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
};
#define DT_DRV_COMPAT cdns_i3c
DT_INST_FOREACH_STATUS_OKAY(CADENCE_I3C_INSTANTIATE)