blob: 97c0bbdf85314bbc4ffc75f3723a008fe483dd97 [file] [log] [blame]
/*
* Copyright (c) 2016 Open-RnD Sp. z o.o.
* Copyright (c) 2016 Linaro Limited.
* Copyright (c) 2024 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_uart
/**
* @brief Driver for UART port on STM32 family processor.
* @note LPUART and U(S)ART have the same base and
* majority of operations are performed the same way.
* Please validate for newly added series.
*/
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/sys/__assert.h>
#include <soc.h>
#include <zephyr/init.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/pm/policy.h>
#include <zephyr/pm/device.h>
#ifdef CONFIG_UART_ASYNC_API
#include <zephyr/drivers/dma/dma_stm32.h>
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/linker/sections.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "uart_stm32.h"
#include <stm32_ll_usart.h>
#include <stm32_ll_lpuart.h>
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE)
#include <stm32_ll_exti.h>
#endif /* CONFIG_PM */
#ifdef CONFIG_DCACHE
#include <zephyr/linker/linker-defs.h>
#include <zephyr/mem_mgmt/mem_attr.h>
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
#endif /* CONFIG_DCACHE */
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(uart_stm32, CONFIG_UART_LOG_LEVEL);
/* This symbol takes the value 1 if one of the device instances */
/* is configured in dts with a domain clock */
#if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT
#define STM32_UART_DOMAIN_CLOCK_SUPPORT 1
#else
#define STM32_UART_DOMAIN_CLOCK_SUPPORT 0
#endif
#define HAS_LPUART DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart)
/* Available everywhere except l1, f1, f2, f4. */
#ifdef USART_CR3_DEM
#define HAS_DRIVER_ENABLE 1
#else
#define HAS_DRIVER_ENABLE 0
#endif
#ifdef CONFIG_PM
/* Placeholder value when wakeup-line DT property is not defined */
#define STM32_WAKEUP_LINE_NONE 0xFFFFFFFF
#endif
#if HAS_LPUART
#ifdef USART_PRESC_PRESCALER
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint16_t presc_idx,
const uint32_t baud_rate)
{
uint64_t lpuartdiv;
lpuartdiv = clock_rate / LPUART_PRESCALER_TAB[presc_idx];
lpuartdiv *= LPUART_LPUARTDIV_FREQ_MUL;
lpuartdiv += baud_rate / 2;
lpuartdiv /= baud_rate;
return (uint32_t)lpuartdiv;
}
#else
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint32_t baud_rate)
{
uint64_t lpuartdiv;
lpuartdiv = clock_rate * LPUART_LPUARTDIV_FREQ_MUL;
lpuartdiv += baud_rate / 2;
lpuartdiv /= baud_rate;
return (uint32_t)lpuartdiv;
}
#endif /* USART_PRESC_PRESCALER */
#endif /* HAS_LPUART */
#ifdef CONFIG_PM
static void uart_stm32_pm_policy_state_lock_get(const struct device *dev)
{
struct uart_stm32_data *data = dev->data;
if (!data->pm_policy_state_on) {
data->pm_policy_state_on = true;
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
}
}
static void uart_stm32_pm_policy_state_lock_put(const struct device *dev)
{
struct uart_stm32_data *data = dev->data;
if (data->pm_policy_state_on) {
data->pm_policy_state_on = false;
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
}
}
#endif /* CONFIG_PM */
static inline void uart_stm32_set_baudrate(const struct device *dev, uint32_t baud_rate)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
uint32_t clock_rate;
/* Get clock rate */
if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) {
if (clock_control_get_rate(data->clock,
(clock_control_subsys_t)&config->pclken[1],
&clock_rate) < 0) {
LOG_ERR("Failed call clock_control_get_rate(pclken[1])");
return;
}
} else {
if (clock_control_get_rate(data->clock,
(clock_control_subsys_t)&config->pclken[0],
&clock_rate) < 0) {
LOG_ERR("Failed call clock_control_get_rate(pclken[0])");
return;
}
}
#if HAS_LPUART
if (IS_LPUART_INSTANCE(usart)) {
uint32_t lpuartdiv;
#ifdef USART_PRESC_PRESCALER
uint8_t presc_idx;
uint32_t presc_val;
for (presc_idx = 0; presc_idx < ARRAY_SIZE(LPUART_PRESCALER_TAB); presc_idx++) {
lpuartdiv = lpuartdiv_calc(clock_rate, presc_idx, baud_rate);
if (lpuartdiv >= LPUART_BRR_MIN_VALUE && lpuartdiv <= LPUART_BRR_MASK) {
break;
}
}
if (presc_idx == ARRAY_SIZE(LPUART_PRESCALER_TAB)) {
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate);
return;
}
presc_val = presc_idx << USART_PRESC_PRESCALER_Pos;
LL_LPUART_SetPrescaler(usart, presc_val);
#else
lpuartdiv = lpuartdiv_calc(clock_rate, baud_rate);
if (lpuartdiv < LPUART_BRR_MIN_VALUE || lpuartdiv > LPUART_BRR_MASK) {
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate);
return;
}
#endif /* USART_PRESC_PRESCALER */
LL_LPUART_SetBaudRate(usart,
clock_rate,
#ifdef USART_PRESC_PRESCALER
presc_val,
#endif
baud_rate);
/* Check BRR is greater than or equal to 0x300 */
__ASSERT(LL_LPUART_ReadReg(usart, BRR) >= 0x300U,
"BaudRateReg >= 0x300");
/* Check BRR is lower than or equal to 0xFFFFF */
__ASSERT(LL_LPUART_ReadReg(usart, BRR) < 0x000FFFFFU,
"BaudRateReg < 0xFFFF");
} else {
#endif /* HAS_LPUART */
#ifdef USART_CR1_OVER8
LL_USART_SetOverSampling(usart,
LL_USART_OVERSAMPLING_16);
#endif
LL_USART_SetBaudRate(usart,
clock_rate,
#ifdef USART_PRESC_PRESCALER
LL_USART_PRESCALER_DIV1,
#endif
#ifdef USART_CR1_OVER8
LL_USART_OVERSAMPLING_16,
#endif
baud_rate);
/* Check BRR is greater than or equal to 16d */
__ASSERT(LL_USART_ReadReg(usart, BRR) >= 16,
"BaudRateReg >= 16");
#if HAS_LPUART
}
#endif /* HAS_LPUART */
}
static inline void uart_stm32_set_parity(const struct device *dev,
uint32_t parity)
{
const struct uart_stm32_config *config = dev->config;
LL_USART_SetParity(config->usart, parity);
}
static inline uint32_t uart_stm32_get_parity(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
return LL_USART_GetParity(config->usart);
}
static inline void uart_stm32_set_stopbits(const struct device *dev,
uint32_t stopbits)
{
const struct uart_stm32_config *config = dev->config;
LL_USART_SetStopBitsLength(config->usart, stopbits);
}
static inline uint32_t uart_stm32_get_stopbits(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
return LL_USART_GetStopBitsLength(config->usart);
}
static inline void uart_stm32_set_databits(const struct device *dev,
uint32_t databits)
{
const struct uart_stm32_config *config = dev->config;
LL_USART_SetDataWidth(config->usart, databits);
}
static inline uint32_t uart_stm32_get_databits(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
return LL_USART_GetDataWidth(config->usart);
}
static inline void uart_stm32_set_hwctrl(const struct device *dev,
uint32_t hwctrl)
{
const struct uart_stm32_config *config = dev->config;
LL_USART_SetHWFlowCtrl(config->usart, hwctrl);
}
static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
return LL_USART_GetHWFlowCtrl(config->usart);
}
#if HAS_DRIVER_ENABLE
static inline void uart_stm32_set_driver_enable(const struct device *dev,
bool driver_enable)
{
const struct uart_stm32_config *config = dev->config;
if (driver_enable) {
LL_USART_EnableDEMode(config->usart);
} else {
LL_USART_DisableDEMode(config->usart);
}
}
static inline bool uart_stm32_get_driver_enable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
return LL_USART_IsEnabledDEMode(config->usart);
}
#endif
static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity)
{
switch (parity) {
case UART_CFG_PARITY_ODD:
return LL_USART_PARITY_ODD;
case UART_CFG_PARITY_EVEN:
return LL_USART_PARITY_EVEN;
case UART_CFG_PARITY_NONE:
default:
return LL_USART_PARITY_NONE;
}
}
static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity)
{
switch (parity) {
case LL_USART_PARITY_ODD:
return UART_CFG_PARITY_ODD;
case LL_USART_PARITY_EVEN:
return UART_CFG_PARITY_EVEN;
case LL_USART_PARITY_NONE:
default:
return UART_CFG_PARITY_NONE;
}
}
static inline uint32_t uart_stm32_cfg2ll_stopbits(const struct uart_stm32_config *config,
enum uart_config_stop_bits sb)
{
switch (sb) {
/* Some MCU's don't support 0.5 stop bits */
#ifdef LL_USART_STOPBITS_0_5
case UART_CFG_STOP_BITS_0_5:
#if HAS_LPUART
if (IS_LPUART_INSTANCE(config->usart)) {
/* return the default */
return LL_USART_STOPBITS_1;
}
#endif /* HAS_LPUART */
return LL_USART_STOPBITS_0_5;
#endif /* LL_USART_STOPBITS_0_5 */
case UART_CFG_STOP_BITS_1:
return LL_USART_STOPBITS_1;
/* Some MCU's don't support 1.5 stop bits */
#ifdef LL_USART_STOPBITS_1_5
case UART_CFG_STOP_BITS_1_5:
#if HAS_LPUART
if (IS_LPUART_INSTANCE(config->usart)) {
/* return the default */
return LL_USART_STOPBITS_2;
}
#endif
return LL_USART_STOPBITS_1_5;
#endif /* LL_USART_STOPBITS_1_5 */
case UART_CFG_STOP_BITS_2:
default:
return LL_USART_STOPBITS_2;
}
}
static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb)
{
switch (sb) {
/* Some MCU's don't support 0.5 stop bits */
#ifdef LL_USART_STOPBITS_0_5
case LL_USART_STOPBITS_0_5:
return UART_CFG_STOP_BITS_0_5;
#endif /* LL_USART_STOPBITS_0_5 */
case LL_USART_STOPBITS_1:
return UART_CFG_STOP_BITS_1;
/* Some MCU's don't support 1.5 stop bits */
#ifdef LL_USART_STOPBITS_1_5
case LL_USART_STOPBITS_1_5:
return UART_CFG_STOP_BITS_1_5;
#endif /* LL_USART_STOPBITS_1_5 */
case LL_USART_STOPBITS_2:
default:
return UART_CFG_STOP_BITS_2;
}
}
static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db,
enum uart_config_parity p)
{
switch (db) {
/* Some MCU's don't support 7B or 9B datawidth */
#ifdef LL_USART_DATAWIDTH_7B
case UART_CFG_DATA_BITS_7:
if (p == UART_CFG_PARITY_NONE) {
return LL_USART_DATAWIDTH_7B;
} else {
return LL_USART_DATAWIDTH_8B;
}
#endif /* LL_USART_DATAWIDTH_7B */
#ifdef LL_USART_DATAWIDTH_9B
case UART_CFG_DATA_BITS_9:
return LL_USART_DATAWIDTH_9B;
#endif /* LL_USART_DATAWIDTH_9B */
case UART_CFG_DATA_BITS_8:
default:
if (p == UART_CFG_PARITY_NONE) {
return LL_USART_DATAWIDTH_8B;
#ifdef LL_USART_DATAWIDTH_9B
} else {
return LL_USART_DATAWIDTH_9B;
#endif
}
return LL_USART_DATAWIDTH_8B;
}
}
static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db,
uint32_t p)
{
switch (db) {
/* Some MCU's don't support 7B or 9B datawidth */
#ifdef LL_USART_DATAWIDTH_7B
case LL_USART_DATAWIDTH_7B:
if (p == LL_USART_PARITY_NONE) {
return UART_CFG_DATA_BITS_7;
} else {
return UART_CFG_DATA_BITS_6;
}
#endif /* LL_USART_DATAWIDTH_7B */
#ifdef LL_USART_DATAWIDTH_9B
case LL_USART_DATAWIDTH_9B:
if (p == LL_USART_PARITY_NONE) {
return UART_CFG_DATA_BITS_9;
} else {
return UART_CFG_DATA_BITS_8;
}
#endif /* LL_USART_DATAWIDTH_9B */
case LL_USART_DATAWIDTH_8B:
default:
if (p == LL_USART_PARITY_NONE) {
return UART_CFG_DATA_BITS_8;
} else {
return UART_CFG_DATA_BITS_7;
}
}
}
/**
* @brief Get LL hardware flow control define from
* Zephyr hardware flow control option.
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS and UART_CFG_FLOW_CTRL_RS485.
* @param fc: Zephyr hardware flow control option.
* @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE.
*/
static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc)
{
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
return LL_USART_HWCONTROL_RTS_CTS;
} else if (fc == UART_CFG_FLOW_CTRL_RS485) {
/* Driver Enable is handled separately */
return LL_USART_HWCONTROL_NONE;
}
return LL_USART_HWCONTROL_NONE;
}
/**
* @brief Get Zephyr hardware flow control option from
* LL hardware flow control define.
* @note Supports only LL_USART_HWCONTROL_RTS_CTS.
* @param fc: LL hardware flow control definition.
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE.
*/
static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc)
{
if (fc == LL_USART_HWCONTROL_RTS_CTS) {
return UART_CFG_FLOW_CTRL_RTS_CTS;
}
return UART_CFG_FLOW_CTRL_NONE;
}
static void uart_stm32_parameters_set(const struct device *dev,
const struct uart_config *cfg)
{
const struct uart_stm32_config *config = dev->config;
struct uart_stm32_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity);
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits);
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits,
cfg->parity);
const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl);
#if HAS_DRIVER_ENABLE
bool driver_enable = cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485;
#endif
if (cfg == uart_cfg) {
/* Called via (re-)init function, so the SoC either just booted,
* or is returning from a low-power state where it lost register
* contents
*/
LL_USART_ConfigCharacter(config->usart,
databits,
parity,
stopbits);
uart_stm32_set_hwctrl(dev, flowctrl);
uart_stm32_set_baudrate(dev, cfg->baudrate);
} else {
/* Called from application/subsys via uart_configure syscall */
if (parity != uart_stm32_get_parity(dev)) {
uart_stm32_set_parity(dev, parity);
}
if (stopbits != uart_stm32_get_stopbits(dev)) {
uart_stm32_set_stopbits(dev, stopbits);
}
if (databits != uart_stm32_get_databits(dev)) {
uart_stm32_set_databits(dev, databits);
}
if (flowctrl != uart_stm32_get_hwctrl(dev)) {
uart_stm32_set_hwctrl(dev, flowctrl);
}
#if HAS_DRIVER_ENABLE
if (driver_enable != uart_stm32_get_driver_enable(dev)) {
uart_stm32_set_driver_enable(dev, driver_enable);
}
#endif
if (cfg->baudrate != uart_cfg->baudrate) {
uart_stm32_set_baudrate(dev, cfg->baudrate);
uart_cfg->baudrate = cfg->baudrate;
}
}
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_stm32_configure(const struct device *dev,
const struct uart_config *cfg)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity);
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits);
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits,
cfg->parity);
/* Hardware doesn't support mark or space parity */
if ((cfg->parity == UART_CFG_PARITY_MARK) ||
(cfg->parity == UART_CFG_PARITY_SPACE)) {
return -ENOTSUP;
}
/* Driver does not supports parity + 9 databits */
if ((cfg->parity != UART_CFG_PARITY_NONE) &&
(cfg->data_bits == UART_CFG_DATA_BITS_9)) {
return -ENOTSUP;
}
/* When the transformed ll stop bits don't match with what was requested, then it's not
* supported
*/
if (uart_stm32_ll2cfg_stopbits(stopbits) != cfg->stop_bits) {
return -ENOTSUP;
}
/* When the transformed ll databits don't match with what was requested, then it's not
* supported
*/
if (uart_stm32_ll2cfg_databits(databits, parity) != cfg->data_bits) {
return -ENOTSUP;
}
/* Driver supports only RTS/CTS and RS485 flow control */
if (!(cfg->flow_ctrl == UART_CFG_FLOW_CTRL_NONE
|| (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS &&
IS_UART_HWFLOW_INSTANCE(usart))
#if HAS_DRIVER_ENABLE
|| (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485 &&
IS_UART_DRIVER_ENABLE_INSTANCE(usart))
#endif
)) {
return -ENOTSUP;
}
LL_USART_Disable(usart);
/* Set basic parameters, such as data-/stop-bit, parity, and baudrate */
uart_stm32_parameters_set(dev, cfg);
LL_USART_Enable(usart);
/* Upon successful configuration, persist the syscall-passed
* uart_config.
* This allows restoring it, should the device return from a low-power
* mode in which register contents are lost.
*/
*uart_cfg = *cfg;
return 0;
};
static int uart_stm32_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_stm32_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
cfg->baudrate = uart_cfg->baudrate;
cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev));
cfg->stop_bits = uart_stm32_ll2cfg_stopbits(
uart_stm32_get_stopbits(dev));
cfg->data_bits = uart_stm32_ll2cfg_databits(
uart_stm32_get_databits(dev), uart_stm32_get_parity(dev));
cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl(
uart_stm32_get_hwctrl(dev));
#if HAS_DRIVER_ENABLE
if (uart_stm32_get_driver_enable(dev)) {
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485;
}
#endif
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
typedef void (*poll_in_fn)(
USART_TypeDef *usart,
void *in);
static int uart_stm32_poll_in_visitor(const struct device *dev, void *in, poll_in_fn get_fn)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
/* Clear overrun error flag */
if (LL_USART_IsActiveFlag_ORE(usart)) {
LL_USART_ClearFlag_ORE(usart);
}
/*
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by
* the uart_err_check function call (on errors flags clearing)
*/
if (!LL_USART_IsActiveFlag_RXNE(usart)) {
return -1;
}
get_fn(usart, in);
return 0;
}
typedef void (*poll_out_fn)(
USART_TypeDef *usart, uint16_t out);
static void uart_stm32_poll_out_visitor(const struct device *dev, uint16_t out, poll_out_fn set_fn)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
#ifdef CONFIG_PM
struct uart_stm32_data *data = dev->data;
#endif
unsigned int key;
/* Wait for TXE flag to be raised
* When TXE flag is raised, we lock interrupts to prevent interrupts (notably that of usart)
* or thread switch. Then, we can safely send our character. The character sent will be
* interlaced with the characters potentially send with interrupt transmission API
*/
while (1) {
if (LL_USART_IsActiveFlag_TXE(usart)) {
key = irq_lock();
if (LL_USART_IsActiveFlag_TXE(usart)) {
break;
}
irq_unlock(key);
}
}
#ifdef CONFIG_PM
/* If an interrupt transmission is in progress, the pm constraint is already managed by the
* call of uart_stm32_irq_tx_[en|dis]able
*/
if (!data->tx_poll_stream_on && !data->tx_int_stream_on) {
data->tx_poll_stream_on = true;
/* Don't allow system to suspend until stream
* transmission has completed
*/
uart_stm32_pm_policy_state_lock_get(dev);
/* Enable TC interrupt so we can release suspend
* constraint when done
*/
LL_USART_EnableIT_TC(usart);
}
#endif /* CONFIG_PM */
set_fn(usart, out);
irq_unlock(key);
}
static void poll_in_u8(USART_TypeDef *usart, void *in)
{
*((unsigned char *)in) = (unsigned char)LL_USART_ReceiveData8(usart);
}
static void poll_out_u8(USART_TypeDef *usart, uint16_t out)
{
LL_USART_TransmitData8(usart, (uint8_t)out);
}
static int uart_stm32_poll_in(const struct device *dev, unsigned char *c)
{
return uart_stm32_poll_in_visitor(dev, (void *)c, poll_in_u8);
}
static void uart_stm32_poll_out(const struct device *dev, unsigned char c)
{
uart_stm32_poll_out_visitor(dev, c, poll_out_u8);
}
#ifdef CONFIG_UART_WIDE_DATA
static void poll_out_u9(USART_TypeDef *usart, uint16_t out)
{
LL_USART_TransmitData9(usart, out);
}
static void poll_in_u9(USART_TypeDef *usart, void *in)
{
*((uint16_t *)in) = LL_USART_ReceiveData9(usart);
}
static int uart_stm32_poll_in_u16(const struct device *dev, uint16_t *in_u16)
{
return uart_stm32_poll_in_visitor(dev, (void *)in_u16, poll_in_u9);
}
static void uart_stm32_poll_out_u16(const struct device *dev, uint16_t out_u16)
{
uart_stm32_poll_out_visitor(dev, out_u16, poll_out_u9);
}
#endif
static int uart_stm32_err_check(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
uint32_t err = 0U;
/* Check for errors, then clear them.
* Some SoC clear all error flags when at least
* one is cleared. (e.g. F4X, F1X, and F2X).
* The stm32 F4X, F1X, and F2X also reads the usart DR when clearing Errors
*/
if (LL_USART_IsActiveFlag_ORE(usart)) {
err |= UART_ERROR_OVERRUN;
}
if (LL_USART_IsActiveFlag_PE(usart)) {
err |= UART_ERROR_PARITY;
}
if (LL_USART_IsActiveFlag_FE(usart)) {
err |= UART_ERROR_FRAMING;
}
if (LL_USART_IsActiveFlag_NE(usart)) {
err |= UART_ERROR_NOISE;
}
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
if (LL_USART_IsActiveFlag_LBD(usart)) {
err |= UART_BREAK;
}
if (err & UART_BREAK) {
LL_USART_ClearFlag_LBD(usart);
}
#endif
/* Clearing error :
* the stm32 F4X, F1X, and F2X sw sequence is reading the usart SR
* then the usart DR to clear the Error flags ORE, PE, FE, NE
* --> so is the RXNE flag also cleared !
*/
if (err & UART_ERROR_OVERRUN) {
LL_USART_ClearFlag_ORE(usart);
}
if (err & UART_ERROR_PARITY) {
LL_USART_ClearFlag_PE(usart);
}
if (err & UART_ERROR_FRAMING) {
LL_USART_ClearFlag_FE(usart);
}
if (err & UART_ERROR_NOISE) {
LL_USART_ClearFlag_NE(usart);
}
return err;
}
static inline void __uart_stm32_get_clock(const struct device *dev)
{
struct uart_stm32_data *data = dev->data;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
data->clock = clk;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
typedef void (*fifo_fill_fn)(USART_TypeDef *usart, const void *tx_data, const int offset);
static int uart_stm32_fifo_fill_visitor(const struct device *dev, const void *tx_data, int size,
fifo_fill_fn fill_fn)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
int num_tx = 0U;
unsigned int key;
if (!LL_USART_IsActiveFlag_TXE(usart)) {
return num_tx;
}
/* Lock interrupts to prevent nested interrupts or thread switch */
key = irq_lock();
while ((size - num_tx > 0) && LL_USART_IsActiveFlag_TXE(usart)) {
/* TXE flag will be cleared with byte write to DR|RDR register */
/* Send a character */
fill_fn(usart, tx_data, num_tx);
num_tx++;
}
irq_unlock(key);
return num_tx;
}
static void fifo_fill_with_u8(USART_TypeDef *usart, const void *tx_data, const int offset)
{
const uint8_t *data = (const uint8_t *)tx_data;
/* Send a character (8bit) */
LL_USART_TransmitData8(usart, data[offset]);
}
static int uart_stm32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
{
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) ==
UART_CFG_DATA_BITS_9) {
return -ENOTSUP;
}
return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size,
fifo_fill_with_u8);
}
typedef void (*fifo_read_fn)(USART_TypeDef *usart, void *rx_data, const int offset);
static int uart_stm32_fifo_read_visitor(const struct device *dev, void *rx_data, const int size,
fifo_read_fn read_fn)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
int num_rx = 0U;
while ((size - num_rx > 0) && LL_USART_IsActiveFlag_RXNE(usart)) {
/* RXNE flag will be cleared upon read from DR|RDR register */
read_fn(usart, rx_data, num_rx);
num_rx++;
/* Clear overrun error flag */
if (LL_USART_IsActiveFlag_ORE(usart)) {
LL_USART_ClearFlag_ORE(usart);
/*
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by
* the uart_err_check function call (on errors flags clearing)
*/
}
}
return num_rx;
}
static void fifo_read_with_u8(USART_TypeDef *usart, void *rx_data, const int offset)
{
uint8_t *data = (uint8_t *)rx_data;
data[offset] = LL_USART_ReceiveData8(usart);
}
static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
{
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) ==
UART_CFG_DATA_BITS_9) {
return -ENOTSUP;
}
return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size,
fifo_read_with_u8);
}
#ifdef CONFIG_UART_WIDE_DATA
static void fifo_fill_with_u16(USART_TypeDef *usart, const void *tx_data, const int offset)
{
const uint16_t *data = (const uint16_t *)tx_data;
/* Send a character (9bit) */
LL_USART_TransmitData9(usart, data[offset]);
}
static int uart_stm32_fifo_fill_u16(const struct device *dev, const uint16_t *tx_data, int size)
{
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) !=
UART_CFG_DATA_BITS_9) {
return -ENOTSUP;
}
return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size,
fifo_fill_with_u16);
}
static void fifo_read_with_u16(USART_TypeDef *usart, void *rx_data, const int offset)
{
uint16_t *data = (uint16_t *)rx_data;
data[offset] = LL_USART_ReceiveData9(usart);
}
static int uart_stm32_fifo_read_u16(const struct device *dev, uint16_t *rx_data, const int size)
{
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) !=
UART_CFG_DATA_BITS_9) {
return -ENOTSUP;
}
return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size,
fifo_read_with_u16);
}
#endif
static void uart_stm32_irq_tx_enable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
#ifdef CONFIG_PM
struct uart_stm32_data *data = dev->data;
unsigned int key;
#endif
#ifdef CONFIG_PM
key = irq_lock();
data->tx_poll_stream_on = false;
data->tx_int_stream_on = true;
uart_stm32_pm_policy_state_lock_get(dev);
#endif
LL_USART_EnableIT_TC(config->usart);
#ifdef CONFIG_PM
irq_unlock(key);
#endif
}
static void uart_stm32_irq_tx_disable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
#ifdef CONFIG_PM
struct uart_stm32_data *data = dev->data;
unsigned int key;
key = irq_lock();
#endif
LL_USART_DisableIT_TC(config->usart);
#ifdef CONFIG_PM
data->tx_int_stream_on = false;
uart_stm32_pm_policy_state_lock_put(dev);
#endif
#ifdef CONFIG_PM
irq_unlock(key);
#endif
}
static int uart_stm32_irq_tx_ready(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
return LL_USART_IsActiveFlag_TXE(config->usart) &&
LL_USART_IsEnabledIT_TC(config->usart);
}
static int uart_stm32_irq_tx_complete(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
return LL_USART_IsActiveFlag_TC(config->usart);
}
static void uart_stm32_irq_rx_enable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
LL_USART_EnableIT_RXNE(config->usart);
}
static void uart_stm32_irq_rx_disable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
LL_USART_DisableIT_RXNE(config->usart);
}
static int uart_stm32_irq_rx_ready(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
/*
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by
* the uart_err_check function call (on errors flags clearing)
*/
return LL_USART_IsActiveFlag_RXNE(config->usart);
}
static void uart_stm32_irq_err_enable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
/* Enable FE, ORE interruptions */
LL_USART_EnableIT_ERROR(usart);
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
/* Enable Line break detection */
if (IS_UART_LIN_INSTANCE(usart)) {
LL_USART_EnableIT_LBD(usart);
}
#endif
/* Enable parity error interruption */
LL_USART_EnableIT_PE(usart);
}
static void uart_stm32_irq_err_disable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
/* Disable FE, ORE interruptions */
LL_USART_DisableIT_ERROR(usart);
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
/* Disable Line break detection */
if (IS_UART_LIN_INSTANCE(usart)) {
LL_USART_DisableIT_LBD(usart);
}
#endif
/* Disable parity error interruption */
LL_USART_DisableIT_PE(usart);
}
static int uart_stm32_irq_is_pending(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
return ((LL_USART_IsActiveFlag_RXNE(usart) &&
LL_USART_IsEnabledIT_RXNE(usart)) ||
(LL_USART_IsActiveFlag_TC(usart) &&
LL_USART_IsEnabledIT_TC(usart)));
}
static int uart_stm32_irq_update(const struct device *dev)
{
return 1;
}
static void uart_stm32_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_stm32_data *data = dev->data;
data->user_cb = cb;
data->user_data = cb_data;
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
data->async_cb = NULL;
data->async_user_data = NULL;
#endif
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
static inline void async_user_callback(struct uart_stm32_data *data,
struct uart_event *event)
{
if (data->async_cb) {
data->async_cb(data->uart_dev, event, data->async_user_data);
}
}
static inline void async_evt_rx_rdy(struct uart_stm32_data *data)
{
LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter);
struct uart_event event = {
.type = UART_RX_RDY,
.data.rx.buf = data->dma_rx.buffer,
.data.rx.len = data->dma_rx.counter - data->dma_rx.offset,
.data.rx.offset = data->dma_rx.offset
};
/* update the current pos for new data */
data->dma_rx.offset = data->dma_rx.counter;
/* send event only for new data */
if (event.data.rx.len > 0) {
async_user_callback(data, &event);
}
}
static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code)
{
LOG_DBG("rx error: %d", err_code);
struct uart_event event = {
.type = UART_RX_STOPPED,
.data.rx_stop.reason = err_code,
.data.rx_stop.data.len = data->dma_rx.counter,
.data.rx_stop.data.offset = 0,
.data.rx_stop.data.buf = data->dma_rx.buffer
};
async_user_callback(data, &event);
}
static inline void async_evt_tx_done(struct uart_stm32_data *data)
{
LOG_DBG("tx done: %d", data->dma_tx.counter);
struct uart_event event = {
.type = UART_TX_DONE,
.data.tx.buf = data->dma_tx.buffer,
.data.tx.len = data->dma_tx.counter
};
/* Reset tx buffer */
data->dma_tx.buffer_length = 0;
data->dma_tx.counter = 0;
async_user_callback(data, &event);
}
static inline void async_evt_tx_abort(struct uart_stm32_data *data)
{
LOG_DBG("tx abort: %d", data->dma_tx.counter);
struct uart_event event = {
.type = UART_TX_ABORTED,
.data.tx.buf = data->dma_tx.buffer,
.data.tx.len = data->dma_tx.counter
};
/* Reset tx buffer */
data->dma_tx.buffer_length = 0;
data->dma_tx.counter = 0;
async_user_callback(data, &event);
}
static inline void async_evt_rx_buf_request(struct uart_stm32_data *data)
{
struct uart_event evt = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(data, &evt);
}
static inline void async_evt_rx_buf_release(struct uart_stm32_data *data)
{
struct uart_event evt = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->dma_rx.buffer,
};
async_user_callback(data, &evt);
}
static inline void async_timer_start(struct k_work_delayable *work,
int32_t timeout)
{
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
/* start timer */
LOG_DBG("async timer started for %d us", timeout);
k_work_reschedule(work, K_USEC(timeout));
}
}
static void uart_stm32_dma_rx_flush(const struct device *dev)
{
struct dma_status stat;
struct uart_stm32_data *data = dev->data;
if (dma_get_status(data->dma_rx.dma_dev,
data->dma_rx.dma_channel, &stat) == 0) {
size_t rx_rcv_len = data->dma_rx.buffer_length -
stat.pending_length;
if (rx_rcv_len > data->dma_rx.offset) {
data->dma_rx.counter = rx_rcv_len;
async_evt_rx_rdy(data);
}
}
}
#endif /* CONFIG_UART_ASYNC_API */
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \
defined(CONFIG_UART_ASYNC_API) || \
defined(CONFIG_PM)
static void uart_stm32_isr(const struct device *dev)
{
struct uart_stm32_data *data = dev->data;
#if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API)
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
#endif
#ifdef CONFIG_PM
if (LL_USART_IsEnabledIT_TC(usart) &&
LL_USART_IsActiveFlag_TC(usart)) {
if (data->tx_poll_stream_on) {
/* A poll stream transmission just completed,
* allow system to suspend
*/
LL_USART_DisableIT_TC(usart);
data->tx_poll_stream_on = false;
uart_stm32_pm_policy_state_lock_put(dev);
}
/* Stream transmission was either async or IRQ based,
* constraint will be released at the same time TC IT
* is disabled
*/
}
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
if (data->user_cb) {
data->user_cb(dev, data->user_data);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
if (LL_USART_IsEnabledIT_IDLE(usart) &&
LL_USART_IsActiveFlag_IDLE(usart)) {
LL_USART_ClearFlag_IDLE(usart);
LOG_DBG("idle interrupt occurred");
if (data->dma_rx.timeout == 0) {
uart_stm32_dma_rx_flush(dev);
} else {
/* Start the RX timer not null */
async_timer_start(&data->dma_rx.timeout_work,
data->dma_rx.timeout);
}
} else if (LL_USART_IsEnabledIT_TC(usart) &&
LL_USART_IsActiveFlag_TC(usart)) {
LL_USART_DisableIT_TC(usart);
/* Generate TX_DONE event when transmission is done */
async_evt_tx_done(data);
#ifdef CONFIG_PM
uart_stm32_pm_policy_state_lock_put(dev);
#endif
} else if (LL_USART_IsEnabledIT_RXNE(usart) &&
LL_USART_IsActiveFlag_RXNE(usart)) {
#ifdef USART_SR_RXNE
/* clear the RXNE flag, because Rx data was not read */
LL_USART_ClearFlag_RXNE(usart);
#else
/* clear the RXNE by flushing the fifo, because Rx data was not read */
LL_USART_RequestRxDataFlush(usart);
#endif /* USART_SR_RXNE */
}
/* Clear errors */
uart_stm32_err_check(dev);
#endif /* CONFIG_UART_ASYNC_API */
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) \
&& defined(USART_CR3_WUFIE)
if (LL_USART_IsEnabledIT_WKUP(usart) &&
LL_USART_IsActiveFlag_WKUP(usart)) {
LL_USART_ClearFlag_WKUP(usart);
#ifdef USART_ISR_REACK
while (LL_USART_IsActiveFlag_REACK(usart) == 0) {
}
#endif
}
#endif
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */
#ifdef CONFIG_UART_ASYNC_API
#ifdef CONFIG_DCACHE
static bool buf_in_nocache(uintptr_t buf, size_t len_bytes)
{
bool buf_within_nocache = false;
#ifdef CONFIG_NOCACHE_MEMORY
buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) &&
((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end));
if (buf_within_nocache) {
return true;
}
#endif /* CONFIG_NOCACHE_MEMORY */
buf_within_nocache = mem_attr_check_buf(
(void *)buf, len_bytes, DT_MEM_ARM_MPU_RAM_NOCACHE) == 0;
if (buf_within_nocache) {
return true;
}
buf_within_nocache = (buf >= ((uintptr_t)__rodata_region_start)) &&
((buf + len_bytes - 1) <= ((uintptr_t)__rodata_region_end));
return buf_within_nocache;
}
#endif /* CONFIG_DCACHE */
static int uart_stm32_async_callback_set(const struct device *dev,
uart_callback_t callback,
void *user_data)
{
struct uart_stm32_data *data = dev->data;
data->async_cb = callback;
data->async_user_data = user_data;
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
data->user_cb = NULL;
data->user_data = NULL;
#endif
return 0;
}
static inline void uart_stm32_dma_tx_enable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
LL_USART_EnableDMAReq_TX(config->usart);
}
static inline void uart_stm32_dma_tx_disable(const struct device *dev)
{
#ifdef CONFIG_UART_STM32U5_ERRATA_DMAT
ARG_UNUSED(dev);
/*
* Errata Sheet ES0499 : STM32U575xx and STM32U585xx device errata
* USART does not generate DMA requests after setting/clearing DMAT bit
* (also seen on stm32H5 serie)
*/
#else
const struct uart_stm32_config *config = dev->config;
LL_USART_DisableDMAReq_TX(config->usart);
#endif
}
static inline void uart_stm32_dma_rx_enable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
struct uart_stm32_data *data = dev->data;
LL_USART_EnableDMAReq_RX(config->usart);
data->dma_rx.enabled = true;
}
static inline void uart_stm32_dma_rx_disable(const struct device *dev)
{
struct uart_stm32_data *data = dev->data;
data->dma_rx.enabled = false;
}
static int uart_stm32_async_rx_disable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
struct uart_event disabled_event = {
.type = UART_RX_DISABLED
};
if (!data->dma_rx.enabled) {
async_user_callback(data, &disabled_event);
return -EFAULT;
}
LL_USART_DisableIT_IDLE(usart);
uart_stm32_dma_rx_flush(dev);
async_evt_rx_buf_release(data);
uart_stm32_dma_rx_disable(dev);
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work);
dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
if (data->rx_next_buffer) {
struct uart_event rx_next_buf_release_evt = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->rx_next_buffer,
};
async_user_callback(data, &rx_next_buf_release_evt);
}
data->rx_next_buffer = NULL;
data->rx_next_buffer_len = 0;
/* When async rx is disabled, enable interruptible instance of uart to function normally */
LL_USART_EnableIT_RXNE(usart);
LOG_DBG("rx: disabled");
async_user_callback(data, &disabled_event);
return 0;
}
void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
const struct device *uart_dev = user_data;
struct uart_stm32_data *data = uart_dev->data;
struct dma_status stat;
unsigned int key = irq_lock();
/* Disable TX */
uart_stm32_dma_tx_disable(uart_dev);
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work);
if (!dma_get_status(data->dma_tx.dma_dev,
data->dma_tx.dma_channel, &stat)) {
data->dma_tx.counter = data->dma_tx.buffer_length -
stat.pending_length;
}
data->dma_tx.buffer_length = 0;
irq_unlock(key);
}
static void uart_stm32_dma_replace_buffer(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
/* Replace the buffer and reload the DMA */
LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len);
/* reload DMA */
data->dma_rx.offset = 0;
data->dma_rx.counter = 0;
data->dma_rx.buffer = data->rx_next_buffer;
data->dma_rx.buffer_length = data->rx_next_buffer_len;
data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length;
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer;
data->rx_next_buffer = NULL;
data->rx_next_buffer_len = 0;
dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel,
data->dma_rx.blk_cfg.source_address,
data->dma_rx.blk_cfg.dest_address,
data->dma_rx.blk_cfg.block_size);
dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
LL_USART_ClearFlag_IDLE(usart);
/* Request next buffer */
async_evt_rx_buf_request(data);
}
void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
const struct device *uart_dev = user_data;
struct uart_stm32_data *data = uart_dev->data;
if (status < 0) {
async_evt_rx_err(data, status);
return;
}
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work);
/* true since this functions occurs when buffer if full */
data->dma_rx.counter = data->dma_rx.buffer_length;
async_evt_rx_rdy(data);
if (data->rx_next_buffer != NULL) {
async_evt_rx_buf_release(data);
/* replace the buffer when the current
* is full and not the same as the next
* one.
*/
uart_stm32_dma_replace_buffer(uart_dev);
} else {
/* Buffer full without valid next buffer,
* an UART_RX_DISABLED event must be generated,
* but uart_stm32_async_rx_disable() cannot be
* called in ISR context. So force the RX timeout
* to minimum value and let the RX timeout to do the job.
*/
k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1));
}
}
static int uart_stm32_async_tx(const struct device *dev,
const uint8_t *tx_data, size_t buf_size, int32_t timeout)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
int ret;
if (data->dma_tx.dma_dev == NULL) {
return -ENODEV;
}
if (data->dma_tx.buffer_length != 0) {
return -EBUSY;
}
#ifdef CONFIG_DCACHE
if (!buf_in_nocache((uintptr_t)tx_data, buf_size)) {
LOG_ERR("Tx buffer should be placed in a nocache memory region");
return -EFAULT;
}
#endif /* CONFIG_DCACHE */
data->dma_tx.buffer = (uint8_t *)tx_data;
data->dma_tx.buffer_length = buf_size;
data->dma_tx.timeout = timeout;
LOG_DBG("tx: l=%d", data->dma_tx.buffer_length);
/* Clear TC flag */
LL_USART_ClearFlag_TC(usart);
/* Enable TC interrupt so we can signal correct TX done */
LL_USART_EnableIT_TC(usart);
/* set source address */
data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer;
data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length;
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel,
&data->dma_tx.dma_cfg);
if (ret != 0) {
LOG_ERR("dma tx config error!");
return -EINVAL;
}
if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) {
LOG_ERR("UART err: TX DMA start failed!");
return -EFAULT;
}
/* Start TX timer */
async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout);
#ifdef CONFIG_PM
/* Do not allow system to suspend until transmission has completed */
uart_stm32_pm_policy_state_lock_get(dev);
#endif
/* Enable TX DMA requests */
uart_stm32_dma_tx_enable(dev);
return 0;
}
static int uart_stm32_async_rx_enable(const struct device *dev,
uint8_t *rx_buf, size_t buf_size, int32_t timeout)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
int ret;
if (data->dma_rx.dma_dev == NULL) {
return -ENODEV;
}
if (data->dma_rx.enabled) {
LOG_WRN("RX was already enabled");
return -EBUSY;
}
#ifdef CONFIG_DCACHE
if (!buf_in_nocache((uintptr_t)rx_buf, buf_size)) {
LOG_ERR("Rx buffer should be placed in a nocache memory region");
return -EFAULT;
}
#endif /* CONFIG_DCACHE */
data->dma_rx.offset = 0;
data->dma_rx.buffer = rx_buf;
data->dma_rx.buffer_length = buf_size;
data->dma_rx.counter = 0;
data->dma_rx.timeout = timeout;
/* Disable RX interrupts to let DMA to handle it */
LL_USART_DisableIT_RXNE(usart);
data->dma_rx.blk_cfg.block_size = buf_size;
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer;
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel,
&data->dma_rx.dma_cfg);
if (ret != 0) {
LOG_ERR("UART ERR: RX DMA config failed!");
return -EINVAL;
}
if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) {
LOG_ERR("UART ERR: RX DMA start failed!");
return -EFAULT;
}
/* Flush RX data buffer */
#ifdef USART_SR_RXNE
LL_USART_ClearFlag_RXNE(usart);
#else
LL_USART_RequestRxDataFlush(usart);
#endif /* USART_SR_RXNE */
/* Enable RX DMA requests */
uart_stm32_dma_rx_enable(dev);
/* Enable IRQ IDLE to define the end of a
* RX DMA transaction.
*/
LL_USART_ClearFlag_IDLE(usart);
LL_USART_EnableIT_IDLE(usart);
LL_USART_EnableIT_ERROR(usart);
/* Request next buffer */
async_evt_rx_buf_request(data);
LOG_DBG("async rx enabled");
return ret;
}
static int uart_stm32_async_tx_abort(const struct device *dev)
{
struct uart_stm32_data *data = dev->data;
size_t tx_buffer_length = data->dma_tx.buffer_length;
struct dma_status stat;
if (tx_buffer_length == 0) {
return -EFAULT;
}
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work);
if (!dma_get_status(data->dma_tx.dma_dev,
data->dma_tx.dma_channel, &stat)) {
data->dma_tx.counter = tx_buffer_length - stat.pending_length;
}
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32u5_dma)
dma_suspend(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
#endif
dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
async_evt_tx_abort(data);
return 0;
}
static void uart_stm32_async_rx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct uart_dma_stream *rx_stream = CONTAINER_OF(dwork,
struct uart_dma_stream, timeout_work);
struct uart_stm32_data *data = CONTAINER_OF(rx_stream,
struct uart_stm32_data, dma_rx);
const struct device *dev = data->uart_dev;
LOG_DBG("rx timeout");
if (data->dma_rx.counter == data->dma_rx.buffer_length) {
uart_stm32_async_rx_disable(dev);
} else {
uart_stm32_dma_rx_flush(dev);
}
}
static void uart_stm32_async_tx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct uart_dma_stream *tx_stream = CONTAINER_OF(dwork,
struct uart_dma_stream, timeout_work);
struct uart_stm32_data *data = CONTAINER_OF(tx_stream,
struct uart_stm32_data, dma_tx);
const struct device *dev = data->uart_dev;
uart_stm32_async_tx_abort(dev);
LOG_DBG("tx: async timeout");
}
static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf,
size_t len)
{
struct uart_stm32_data *data = dev->data;
unsigned int key;
int err = 0;
LOG_DBG("replace buffer (%d)", len);
key = irq_lock();
if (data->rx_next_buffer != NULL) {
err = -EBUSY;
} else if (!data->dma_rx.enabled) {
err = -EACCES;
} else {
#ifdef CONFIG_DCACHE
if (!buf_in_nocache((uintptr_t)buf, len)) {
LOG_ERR("Rx buffer should be placed in a nocache memory region");
return -EFAULT;
}
#endif /* CONFIG_DCACHE */
data->rx_next_buffer = buf;
data->rx_next_buffer_len = len;
}
irq_unlock(key);
return err;
}
static int uart_stm32_async_init(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
data->uart_dev = dev;
if (data->dma_rx.dma_dev != NULL) {
if (!device_is_ready(data->dma_rx.dma_dev)) {
return -ENODEV;
}
}
if (data->dma_tx.dma_dev != NULL) {
if (!device_is_ready(data->dma_tx.dma_dev)) {
return -ENODEV;
}
}
/* Disable both TX and RX DMA requests */
uart_stm32_dma_rx_disable(dev);
uart_stm32_dma_tx_disable(dev);
k_work_init_delayable(&data->dma_rx.timeout_work,
uart_stm32_async_rx_timeout);
k_work_init_delayable(&data->dma_tx.timeout_work,
uart_stm32_async_tx_timeout);
/* Configure dma rx config */
memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg));
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \
defined(CONFIG_SOC_SERIES_STM32F2X) || \
defined(CONFIG_SOC_SERIES_STM32F4X) || \
defined(CONFIG_SOC_SERIES_STM32L1X)
data->dma_rx.blk_cfg.source_address =
LL_USART_DMA_GetRegAddr(usart);
#else
data->dma_rx.blk_cfg.source_address =
LL_USART_DMA_GetRegAddr(usart,
LL_USART_DMA_REG_DATA_RECEIVE);
#endif
data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */
if (data->dma_rx.src_addr_increment) {
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
if (data->dma_rx.dst_addr_increment) {
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
/* RX disable circular buffer */
data->dma_rx.blk_cfg.source_reload_en = 0;
data->dma_rx.blk_cfg.dest_reload_en = 0;
data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold;
data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg;
data->dma_rx.dma_cfg.user_data = (void *)dev;
data->rx_next_buffer = NULL;
data->rx_next_buffer_len = 0;
/* Configure dma tx config */
memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg));
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \
defined(CONFIG_SOC_SERIES_STM32F2X) || \
defined(CONFIG_SOC_SERIES_STM32F4X) || \
defined(CONFIG_SOC_SERIES_STM32L1X)
data->dma_tx.blk_cfg.dest_address =
LL_USART_DMA_GetRegAddr(usart);
#else
data->dma_tx.blk_cfg.dest_address =
LL_USART_DMA_GetRegAddr(usart,
LL_USART_DMA_REG_DATA_TRANSMIT);
#endif
data->dma_tx.blk_cfg.source_address = 0; /* not ready */
if (data->dma_tx.src_addr_increment) {
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
if (data->dma_tx.dst_addr_increment) {
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold;
data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg;
data->dma_tx.dma_cfg.user_data = (void *)dev;
return 0;
}
#ifdef CONFIG_UART_WIDE_DATA
static int uart_stm32_async_tx_u16(const struct device *dev, const uint16_t *tx_data,
size_t buf_size, int32_t timeout)
{
return uart_stm32_async_tx(dev, (const uint8_t *)tx_data, buf_size * 2, timeout);
}
static int uart_stm32_async_rx_enable_u16(const struct device *dev, uint16_t *buf, size_t len,
int32_t timeout)
{
return uart_stm32_async_rx_enable(dev, (uint8_t *)buf, len * 2, timeout);
}
static int uart_stm32_async_rx_buf_rsp_u16(const struct device *dev, uint16_t *buf, size_t len)
{
return uart_stm32_async_rx_buf_rsp(dev, (uint8_t *)buf, len * 2);
}
#endif
#endif /* CONFIG_UART_ASYNC_API */
static const struct uart_driver_api uart_stm32_driver_api = {
.poll_in = uart_stm32_poll_in,
.poll_out = uart_stm32_poll_out,
#ifdef CONFIG_UART_WIDE_DATA
.poll_in_u16 = uart_stm32_poll_in_u16,
.poll_out_u16 = uart_stm32_poll_out_u16,
#endif
.err_check = uart_stm32_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_stm32_configure,
.config_get = uart_stm32_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_stm32_fifo_fill,
.fifo_read = uart_stm32_fifo_read,
#ifdef CONFIG_UART_WIDE_DATA
.fifo_fill_u16 = uart_stm32_fifo_fill_u16,
.fifo_read_u16 = uart_stm32_fifo_read_u16,
#endif
.irq_tx_enable = uart_stm32_irq_tx_enable,
.irq_tx_disable = uart_stm32_irq_tx_disable,
.irq_tx_ready = uart_stm32_irq_tx_ready,
.irq_tx_complete = uart_stm32_irq_tx_complete,
.irq_rx_enable = uart_stm32_irq_rx_enable,
.irq_rx_disable = uart_stm32_irq_rx_disable,
.irq_rx_ready = uart_stm32_irq_rx_ready,
.irq_err_enable = uart_stm32_irq_err_enable,
.irq_err_disable = uart_stm32_irq_err_disable,
.irq_is_pending = uart_stm32_irq_is_pending,
.irq_update = uart_stm32_irq_update,
.irq_callback_set = uart_stm32_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
.callback_set = uart_stm32_async_callback_set,
.tx = uart_stm32_async_tx,
.tx_abort = uart_stm32_async_tx_abort,
.rx_enable = uart_stm32_async_rx_enable,
.rx_disable = uart_stm32_async_rx_disable,
.rx_buf_rsp = uart_stm32_async_rx_buf_rsp,
#ifdef CONFIG_UART_WIDE_DATA
.tx_u16 = uart_stm32_async_tx_u16,
.rx_enable_u16 = uart_stm32_async_rx_enable_u16,
.rx_buf_rsp_u16 = uart_stm32_async_rx_buf_rsp_u16,
#endif
#endif /* CONFIG_UART_ASYNC_API */
};
static int uart_stm32_clocks_enable(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
struct uart_stm32_data *data = dev->data;
int err;
__uart_stm32_get_clock(dev);
if (!device_is_ready(data->clock)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* enable clock */
err = clock_control_on(data->clock, (clock_control_subsys_t)&config->pclken[0]);
if (err != 0) {
LOG_ERR("Could not enable (LP)UART clock");
return err;
}
if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) {
err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t) &config->pclken[1],
NULL);
if (err != 0) {
LOG_ERR("Could not select UART domain clock");
return err;
}
}
return 0;
}
static int uart_stm32_registers_configure(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
struct uart_stm32_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
LL_USART_Disable(usart);
if (!device_is_ready(config->reset.dev)) {
LOG_ERR("reset controller not ready");
return -ENODEV;
}
/* Reset UART to default state using RCC */
(void)reset_line_toggle_dt(&config->reset);
/* TX/RX direction */
LL_USART_SetTransferDirection(usart, LL_USART_DIRECTION_TX_RX);
/* Set basic parameters, such as data-/stop-bit, parity, and baudrate */
uart_stm32_parameters_set(dev, uart_cfg);
/* Enable the single wire / half-duplex mode */
if (config->single_wire) {
LL_USART_EnableHalfDuplex(usart);
}
#ifdef LL_USART_TXRX_SWAPPED
if (config->tx_rx_swap) {
LL_USART_SetTXRXSwap(usart, LL_USART_TXRX_SWAPPED);
}
#endif
#ifdef LL_USART_RXPIN_LEVEL_INVERTED
if (config->rx_invert) {
LL_USART_SetRXPinLevel(usart, LL_USART_RXPIN_LEVEL_INVERTED);
}
#endif
#ifdef LL_USART_TXPIN_LEVEL_INVERTED
if (config->tx_invert) {
LL_USART_SetTXPinLevel(usart, LL_USART_TXPIN_LEVEL_INVERTED);
}
#endif
#if HAS_DRIVER_ENABLE
if (config->de_enable) {
if (!IS_UART_DRIVER_ENABLE_INSTANCE(usart)) {
LOG_ERR("%s does not support driver enable", dev->name);
return -EINVAL;
}
uart_stm32_set_driver_enable(dev, true);
LL_USART_SetDEAssertionTime(usart, config->de_assert_time);
LL_USART_SetDEDeassertionTime(usart, config->de_deassert_time);
if (config->de_invert) {
LL_USART_SetDESignalPolarity(usart, LL_USART_DE_POLARITY_LOW);
}
}
#endif
#ifdef USART_CR1_FIFOEN
if (config->fifo_enable) {
LL_USART_EnableFIFO(usart);
}
#endif
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE)
if (config->wakeup_source) {
/* Enable ability to wakeup device in Stop mode
* Effect depends on CONFIG_PM_DEVICE status:
* CONFIG_PM_DEVICE=n : Always active
* CONFIG_PM_DEVICE=y : Controlled by pm_device_wakeup_enable()
*/
#ifdef USART_CR3_WUFIE
LL_USART_SetWKUPType(usart, LL_USART_WAKEUP_ON_RXNE);
LL_USART_EnableIT_WKUP(usart);
LL_USART_ClearFlag_WKUP(usart);
#endif
LL_USART_EnableInStopMode(usart);
if (config->wakeup_line != STM32_WAKEUP_LINE_NONE) {
/* Prepare the WAKEUP with the expected EXTI line */
LL_EXTI_EnableIT_0_31(BIT(config->wakeup_line));
}
}
#endif /* CONFIG_PM */
LL_USART_Enable(usart);
#ifdef USART_ISR_TEACK
/* Wait until TEACK flag is set */
while (!(LL_USART_IsActiveFlag_TEACK(usart))) {
}
#endif /* !USART_ISR_TEACK */
#ifdef USART_ISR_REACK
/* Wait until REACK flag is set */
while (!(LL_USART_IsActiveFlag_REACK(usart))) {
}
#endif /* !USART_ISR_REACK */
return 0;
}
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0
*/
static int uart_stm32_init(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
int err;
err = uart_stm32_clocks_enable(dev);
if (err < 0) {
return err;
}
/* Configure dt provided device signals when available */
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
err = uart_stm32_registers_configure(dev);
if (err < 0) {
return err;
}
#if defined(CONFIG_PM) || \
defined(CONFIG_UART_INTERRUPT_DRIVEN) || \
defined(CONFIG_UART_ASYNC_API)
config->irq_config_func(dev);
#endif /* CONFIG_PM || CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */
#ifdef CONFIG_UART_ASYNC_API
return uart_stm32_async_init(dev);
#else
return 0;
#endif
}
#ifdef CONFIG_PM_DEVICE
static void uart_stm32_suspend_setup(const struct device *dev)
{
const struct uart_stm32_config *config = dev->config;
USART_TypeDef *usart = config->usart;
#ifdef USART_ISR_BUSY
/* Make sure that no USART transfer is on-going */
while (LL_USART_IsActiveFlag_BUSY(usart) == 1) {
}
#endif
while (LL_USART_IsActiveFlag_TC(usart) == 0) {
}
#ifdef USART_ISR_REACK
/* Make sure that USART is ready for reception */
while (LL_USART_IsActiveFlag_REACK(usart) == 0) {
}
#endif
/* Clear OVERRUN flag */
LL_USART_ClearFlag_ORE(usart);
}
static int uart_stm32_pm_action(const struct device *dev,
enum pm_device_action action)
{
const struct uart_stm32_config *config = dev->config;
struct uart_stm32_data *data = dev->data;
int err;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
/* Set pins to active state */
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
/* Enable clock */
err = clock_control_on(data->clock,
(clock_control_subsys_t)&config->pclken[0]);
if (err < 0) {
LOG_ERR("Could not enable (LP)UART clock");
return err;
}
if ((IS_ENABLED(CONFIG_PM_S2RAM)) &&
(!LL_USART_IsEnabled(config->usart))) {
/* When exiting low power mode, check whether UART is enabled.
* If not, it means we are exiting Suspend to RAM mode (STM32
* Standby), and the driver needs to be reinitialized.
*/
uart_stm32_init(dev);
}
break;
case PM_DEVICE_ACTION_SUSPEND:
uart_stm32_suspend_setup(dev);
/* Stop device clock. Note: fixed clocks are not handled yet. */
err = clock_control_off(data->clock, (clock_control_subsys_t)&config->pclken[0]);
if (err < 0) {
LOG_ERR("Could not enable (LP)UART clock");
return err;
}
/* Move pins to sleep state */
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
if ((err < 0) && (err != -ENOENT)) {
/*
* If returning -ENOENT, no pins where defined for sleep mode :
* Do not output on console (might sleep already) when going to sleep,
* "(LP)UART pinctrl sleep state not available"
* and don't block PM suspend.
* Else return the error.
*/
return err;
}
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_PM_DEVICE */
#ifdef CONFIG_UART_ASYNC_API
/* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */
#define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, \
.block_count = 1, \
.dma_callback = uart_stm32_dma_##dir##_cb, \
}, \
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \
STM32_DMA_FEATURES(index, dir)), \
#endif
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \
defined(CONFIG_PM)
#define STM32_UART_IRQ_HANDLER_DECL(index) \
static void uart_stm32_irq_config_func_##index(const struct device *dev);
#define STM32_UART_IRQ_HANDLER(index) \
static void uart_stm32_irq_config_func_##index(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(index), \
DT_INST_IRQ(index, priority), \
uart_stm32_isr, DEVICE_DT_INST_GET(index), \
0); \
irq_enable(DT_INST_IRQN(index)); \
}
#else
#define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */
#define STM32_UART_IRQ_HANDLER(index) /* Not used */
#endif
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \
defined(CONFIG_PM)
#define STM32_UART_IRQ_HANDLER_FUNC(index) \
.irq_config_func = uart_stm32_irq_config_func_##index,
#else
#define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */
#endif
#ifdef CONFIG_UART_ASYNC_API
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \
.dma_##dir = { \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \
(UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \
(NULL)) \
},
#else
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest)
#endif
#ifdef CONFIG_PM
#define STM32_UART_PM_WAKEUP(index) \
.wakeup_source = DT_INST_PROP(index, wakeup_source), \
.wakeup_line = COND_CODE_1(DT_INST_NODE_HAS_PROP(index, wakeup_line), \
(DT_INST_PROP(index, wakeup_line)), \
(STM32_WAKEUP_LINE_NONE)),
#else
#define STM32_UART_PM_WAKEUP(index) /* Not used */
#endif
/* Ensure DTS doesn't present an incompatible parity configuration.
* Mark/space parity isn't supported on the STM32 family.
* If 9 data bits are configured, ensure that a parity bit isn't set.
*/
#define STM32_UART_CHECK_DT_PARITY(index) \
BUILD_ASSERT( \
!(DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \
== UART_CFG_PARITY_MARK || \
DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \
== UART_CFG_PARITY_SPACE), \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported parity configuration"); \
BUILD_ASSERT( \
!(DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \
!= UART_CFG_PARITY_NONE && \
DT_INST_ENUM_IDX_OR(index, data_bits, \
STM32_UART_DEFAULT_DATA_BITS) \
== UART_CFG_DATA_BITS_9), \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported parity + data bits combination");
/* Ensure DTS doesn't present an incompatible data bits configuration
* The STM32 family doesn't support 5 data bits, or 6 data bits without parity.
* Only some series support 7 data bits.
*/
#ifdef LL_USART_DATAWIDTH_7B
#define STM32_UART_CHECK_DT_DATA_BITS(index) \
BUILD_ASSERT( \
!(DT_INST_ENUM_IDX_OR(index, data_bits, \
STM32_UART_DEFAULT_DATA_BITS) \
== UART_CFG_DATA_BITS_5 || \
(DT_INST_ENUM_IDX_OR(index, data_bits, \
STM32_UART_DEFAULT_DATA_BITS) \
== UART_CFG_DATA_BITS_6 && \
DT_INST_ENUM_IDX_OR(index, parity, \
STM32_UART_DEFAULT_PARITY) \
== UART_CFG_PARITY_NONE)), \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported data bits configuration");
#else
#define STM32_UART_CHECK_DT_DATA_BITS(index) \
BUILD_ASSERT( \
!(DT_INST_ENUM_IDX_OR(index, data_bits, \
STM32_UART_DEFAULT_DATA_BITS) \
== UART_CFG_DATA_BITS_5 || \
DT_INST_ENUM_IDX_OR(index, data_bits, \
STM32_UART_DEFAULT_DATA_BITS) \
== UART_CFG_DATA_BITS_6 || \
(DT_INST_ENUM_IDX_OR(index, data_bits, \
STM32_UART_DEFAULT_DATA_BITS) \
== UART_CFG_DATA_BITS_7 && \
DT_INST_ENUM_IDX_OR(index, parity, \
STM32_UART_DEFAULT_PARITY) \
== UART_CFG_PARITY_NONE)), \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported data bits configuration");
#endif
/* Ensure DTS doesn't present an incompatible stop bits configuration.
* Some STM32 series USARTs don't support 0.5 stop bits, and it generally isn't
* supported for LPUART.
*/
#ifndef LL_USART_STOPBITS_0_5
#define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \
BUILD_ASSERT( \
!(DT_INST_ENUM_IDX_OR(index, stop_bits, \
STM32_UART_DEFAULT_STOP_BITS) \
== UART_CFG_STOP_BITS_0_5), \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported stop bits configuration");
/* LPUARTs don't support 0.5 stop bits configurations */
#else
#define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \
BUILD_ASSERT( \
!(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \
DT_INST_ENUM_IDX_OR(index, stop_bits, \
STM32_UART_DEFAULT_STOP_BITS) \
== UART_CFG_STOP_BITS_0_5), \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported stop bits configuration");
#endif
/* Ensure DTS doesn't present an incompatible stop bits configuration.
* Some STM32 series USARTs don't support 1.5 stop bits, and it generally isn't
* supported for LPUART.
*/
#ifndef LL_USART_STOPBITS_1_5
#define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \
BUILD_ASSERT( \
DT_INST_ENUM_IDX_OR(index, stop_bits, \
STM32_UART_DEFAULT_STOP_BITS) \
!= UART_CFG_STOP_BITS_1_5, \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported stop bits configuration");
/* LPUARTs don't support 1.5 stop bits configurations */
#else
#define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \
BUILD_ASSERT( \
!(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \
DT_INST_ENUM_IDX_OR(index, stop_bits, \
STM32_UART_DEFAULT_STOP_BITS) \
== UART_CFG_STOP_BITS_1_5), \
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
" has unsupported stop bits configuration");
#endif
#define STM32_UART_INIT(index) \
STM32_UART_IRQ_HANDLER_DECL(index) \
\
PINCTRL_DT_INST_DEFINE(index); \
\
static const struct stm32_pclken pclken_##index[] = \
STM32_DT_INST_CLOCKS(index);\
\
static struct uart_config uart_cfg_##index = { \
.baudrate = DT_INST_PROP_OR(index, current_speed, \
STM32_UART_DEFAULT_BAUDRATE), \
.parity = DT_INST_ENUM_IDX_OR(index, parity, \
STM32_UART_DEFAULT_PARITY), \
.stop_bits = DT_INST_ENUM_IDX_OR(index, stop_bits, \
STM32_UART_DEFAULT_STOP_BITS), \
.data_bits = DT_INST_ENUM_IDX_OR(index, data_bits, \
STM32_UART_DEFAULT_DATA_BITS), \
.flow_ctrl = DT_INST_PROP(index, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}; \
\
static const struct uart_stm32_config uart_stm32_cfg_##index = { \
.usart = (USART_TypeDef *)DT_INST_REG_ADDR(index), \
.reset = RESET_DT_SPEC_GET(DT_DRV_INST(index)), \
.pclken = pclken_##index, \
.pclk_len = DT_INST_NUM_CLOCKS(index), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
.single_wire = DT_INST_PROP(index, single_wire), \
.tx_rx_swap = DT_INST_PROP(index, tx_rx_swap), \
.rx_invert = DT_INST_PROP(index, rx_invert), \
.tx_invert = DT_INST_PROP(index, tx_invert), \
.de_enable = DT_INST_PROP(index, de_enable), \
.de_assert_time = DT_INST_PROP(index, de_assert_time), \
.de_deassert_time = DT_INST_PROP(index, de_deassert_time), \
.de_invert = DT_INST_PROP(index, de_invert), \
.fifo_enable = DT_INST_PROP(index, fifo_enable), \
STM32_UART_IRQ_HANDLER_FUNC(index) \
STM32_UART_PM_WAKEUP(index) \
}; \
\
static struct uart_stm32_data uart_stm32_data_##index = { \
.uart_cfg = &uart_cfg_##index, \
UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \
UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \
}; \
\
PM_DEVICE_DT_INST_DEFINE(index, uart_stm32_pm_action); \
\
DEVICE_DT_INST_DEFINE(index, \
uart_stm32_init, \
PM_DEVICE_DT_INST_GET(index), \
&uart_stm32_data_##index, &uart_stm32_cfg_##index, \
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&uart_stm32_driver_api); \
\
STM32_UART_IRQ_HANDLER(index) \
\
STM32_UART_CHECK_DT_PARITY(index) \
STM32_UART_CHECK_DT_DATA_BITS(index) \
STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \
STM32_UART_CHECK_DT_STOP_BITS_1_5(index)
DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)