blob: 52325d0ccb33aa76711d2bc7c0d642525599602d [file] [log] [blame]
/*
* Copyright (c) 2018 Karsten Koenig
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <device.h>
#include <spi.h>
#include <gpio.h>
#define LOG_LEVEL CONFIG_CAN_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(mcp2515_can);
#include "mcp2515.h"
static int mcp2515_cmd_soft_reset(struct device *dev)
{
u8_t cmd_buf[] = { MCP2515_OPCODE_RESET };
const struct spi_buf tx_buf = {
.buf = cmd_buf, .len = sizeof(cmd_buf),
};
const struct spi_buf_set tx = {
.buffers = &tx_buf, .count = 1U
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
static int mcp2515_cmd_bit_modify(struct device *dev, u8_t reg_addr, u8_t mask,
u8_t data)
{
u8_t cmd_buf[] = { MCP2515_OPCODE_BIT_MODIFY, reg_addr, mask, data };
const struct spi_buf tx_buf = {
.buf = cmd_buf, .len = sizeof(cmd_buf),
};
const struct spi_buf_set tx = {
.buffers = &tx_buf, .count = 1U
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
static int mcp2515_cmd_write_reg(struct device *dev, u8_t reg_addr,
u8_t *buf_data, u8_t buf_len)
{
u8_t cmd_buf[] = { MCP2515_OPCODE_WRITE, reg_addr };
struct spi_buf tx_buf[] = {
{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
{ .buf = buf_data, .len = buf_len }
};
const struct spi_buf_set tx = {
.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
};
return spi_write(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg, &tx);
}
static int mcp2515_cmd_read_reg(struct device *dev, u8_t reg_addr,
u8_t *buf_data, u8_t buf_len)
{
u8_t cmd_buf[] = { MCP2515_OPCODE_READ, reg_addr };
struct spi_buf tx_buf[] = {
{ .buf = cmd_buf, .len = sizeof(cmd_buf) },
{ .buf = NULL, .len = buf_len }
};
const struct spi_buf_set tx = {
.buffers = tx_buf, .count = ARRAY_SIZE(tx_buf)
};
struct spi_buf rx_buf[] = {
{ .buf = NULL, .len = sizeof(cmd_buf) },
{ .buf = buf_data, .len = buf_len }
};
const struct spi_buf_set rx = {
.buffers = rx_buf, .count = ARRAY_SIZE(rx_buf)
};
return spi_transceive(DEV_DATA(dev)->spi, &DEV_DATA(dev)->spi_cfg,
&tx, &rx);
}
static u8_t mcp2515_convert_canmode_to_mcp2515mode(enum can_mode mode)
{
switch (mode) {
case CAN_NORMAL_MODE:
return MCP2515_MODE_NORMAL;
case CAN_SILENT_MODE:
return MCP2515_MODE_SILENT;
case CAN_LOOPBACK_MODE:
return MCP2515_MODE_LOOPBACK;
default:
LOG_ERR("Unsupported CAN Mode %u", mode);
return MCP2515_MODE_SILENT;
}
}
static void mcp2515_convert_zcanframe_to_mcp2515frame(const struct zcan_frame
*source, u8_t *target)
{
u8_t rtr;
u8_t dlc;
u8_t data_idx = 0U;
if (source->id_type == CAN_STANDARD_IDENTIFIER) {
target[MCP2515_FRAME_OFFSET_SIDH] = source->std_id >> 3;
target[MCP2515_FRAME_OFFSET_SIDL] =
(source->std_id & 0x07) << 5;
} else {
target[MCP2515_FRAME_OFFSET_SIDH] = source->ext_id >> 21;
target[MCP2515_FRAME_OFFSET_SIDL] =
(((source->ext_id >> 18) & 0x07) << 5) | (BIT(3)) |
((source->ext_id >> 16) & 0x03);
target[MCP2515_FRAME_OFFSET_EID8] = source->ext_id >> 8;
target[MCP2515_FRAME_OFFSET_EID0] = source->ext_id;
}
rtr = (source->rtr == CAN_REMOTEREQUEST) ? BIT(6) : 0;
dlc = (source->dlc) & 0x0F;
target[MCP2515_FRAME_OFFSET_DLC] = rtr | dlc;
for (; data_idx < 8; data_idx++) {
target[MCP2515_FRAME_OFFSET_D0 + data_idx] =
source->data[data_idx];
}
}
static void mcp2515_convert_mcp2515frame_to_zcanframe(const u8_t *source,
struct zcan_frame *target)
{
u8_t data_idx = 0U;
if (source[MCP2515_FRAME_OFFSET_SIDL] & BIT(3)) {
target->id_type = CAN_EXTENDED_IDENTIFIER;
target->ext_id =
(source[MCP2515_FRAME_OFFSET_SIDH] << 21) |
((source[MCP2515_FRAME_OFFSET_SIDL] >> 5) << 18) |
((source[MCP2515_FRAME_OFFSET_SIDL] & 0x03) << 16) |
(source[MCP2515_FRAME_OFFSET_EID8] << 8) |
source[MCP2515_FRAME_OFFSET_EID0];
} else {
target->id_type = CAN_STANDARD_IDENTIFIER;
target->std_id = (source[MCP2515_FRAME_OFFSET_SIDH] << 3) |
(source[MCP2515_FRAME_OFFSET_SIDL] >> 5);
}
target->dlc = source[MCP2515_FRAME_OFFSET_DLC] & 0x0F;
target->rtr = source[MCP2515_FRAME_OFFSET_DLC] & BIT(6) ?
CAN_REMOTEREQUEST : CAN_DATAFRAME;
for (; data_idx < 8; data_idx++) {
target->data[data_idx] = source[MCP2515_FRAME_OFFSET_D0 +
data_idx];
}
}
const int mcp2515_set_mode(struct device *dev, u8_t mcp2515_mode)
{
u8_t canstat;
mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_CANCTRL,
MCP2515_CANCTRL_MODE_MASK,
mcp2515_mode << MCP2515_CANCTRL_MODE_POS);
mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANSTAT, &canstat, 1);
if (((canstat & MCP2515_CANSTAT_MODE_MASK) >> MCP2515_CANSTAT_MODE_POS)
!= mcp2515_mode) {
LOG_ERR("Failed to set MCP2515 operation mode");
return -EIO;
}
return 0;
}
static int mcp2515_attach(struct device *dev, const struct zcan_filter *filter,
void *response_ptr, u8_t is_type_msgq)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
int filter_idx = 0;
__ASSERT(response_ptr != NULL, "response_ptr can not be null");
k_mutex_lock(&dev_data->filter_mutex, K_FOREVER);
/* find free filter */
while ((BIT(filter_idx) & dev_data->filter_usage)
&& (filter_idx < CONFIG_CAN_MCP2515_MAX_FILTER)) {
filter_idx++;
}
/* setup filter */
if (filter_idx < CONFIG_CAN_MCP2515_MAX_FILTER) {
dev_data->filter_usage |= BIT(filter_idx);
if (is_type_msgq) {
dev_data->filter_response_type |= BIT(filter_idx);
} else {
dev_data->filter_response_type &= ~BIT(filter_idx);
}
dev_data->filter[filter_idx] = *filter;
dev_data->filter_response[filter_idx] = response_ptr;
} else {
filter_idx = CAN_NO_FREE_FILTER;
}
k_mutex_unlock(&dev_data->filter_mutex);
return filter_idx;
}
static int mcp2515_configure(struct device *dev, enum can_mode mode,
u32_t bitrate)
{
const struct mcp2515_config *dev_cfg = DEV_CFG(dev);
/* CNF3, CNF2, CNF1, CANINTE */
u8_t config_buf[4];
if (bitrate == 0) {
bitrate = dev_cfg->bus_speed;
}
const u8_t bit_length = 1 + dev_cfg->tq_prop + dev_cfg->tq_bs1 +
dev_cfg->tq_bs2;
/* CNF1; SJW<7:6> | BRP<5:0> */
u8_t brp =
(CONFIG_CAN_MCP2515_OSC_FREQ / (bit_length * bitrate * 2)) - 1;
const u8_t sjw = (dev_cfg->tq_sjw - 1) << 6;
u8_t cnf1 = sjw | brp;
/* CNF2; BTLMODE<7>|SAM<6>|PHSEG1<5:3>|PRSEG<2:0> */
const u8_t btlmode = 1 << 7;
const u8_t sam = 0 << 6;
const u8_t phseg1 = (dev_cfg->tq_bs1 - 1) << 3;
const u8_t prseg = (dev_cfg->tq_prop - 1);
const u8_t cnf2 = btlmode | sam | phseg1 | prseg;
/* CNF3; SOF<7>|WAKFIL<6>|UND<5:3>|PHSEG2<2:0> */
const u8_t sof = 0 << 7;
const u8_t wakfil = 0 << 6;
const u8_t und = 0 << 3;
const u8_t phseg2 = (dev_cfg->tq_bs2 - 1);
const u8_t cnf3 = sof | wakfil | und | phseg2;
/* CANINTE
* MERRE<7>:WAKIE<6>:ERRIE<5>:TX2IE<4>:TX1IE<3>:TX0IE<2>:RX1IE<1>:
* RX0IE<0>
* all TX and RX buffer interrupts enabled
*/
const u8_t caninte = BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0);
/* Receive everything, filtering done in driver, RXB0 roll over into
* RXB1 */
const u8_t rx0_ctrl = BIT(6) | BIT(5) | BIT(2);
const u8_t rx1_ctrl = BIT(6) | BIT(5);
__ASSERT((dev_cfg->tq_sjw >= 1) && (dev_cfg->tq_sjw <= 4),
"1 <= SJW <= 4");
__ASSERT((dev_cfg->tq_prop >= 1) && (dev_cfg->tq_prop <= 8),
"1 <= PROP <= 8");
__ASSERT((dev_cfg->tq_bs1 >= 1) && (dev_cfg->tq_bs1 <= 8),
"1 <= BS1 <= 8");
__ASSERT((dev_cfg->tq_bs2 >= 2) && (dev_cfg->tq_bs2 <= 8),
"2 <= BS2 <= 8");
__ASSERT(dev_cfg->tq_prop + dev_cfg->tq_bs1 >= dev_cfg->tq_bs2,
"PROP + BS1 >= BS2");
__ASSERT(dev_cfg->tq_bs2 > dev_cfg->tq_sjw, "BS2 > SJW");
if (CONFIG_CAN_MCP2515_OSC_FREQ % (bit_length * bitrate * 2)) {
LOG_ERR("Prescaler is not a natural number! "
"prescaler = osc_rate / ((PROP + SEG1 + SEG2 + 1) "
"* bitrate * 2)\n"
"prescaler = %d / ((%d + %d + %d + 1) * %d * 2)",
CONFIG_CAN_MCP2515_OSC_FREQ, dev_cfg->tq_prop,
dev_cfg->tq_bs1, dev_cfg->tq_bs2, bitrate);
}
config_buf[0] = cnf3;
config_buf[1] = cnf2;
config_buf[2] = cnf1;
config_buf[3] = caninte;
/* will enter configuration mode automatically */
mcp2515_cmd_soft_reset(dev);
mcp2515_cmd_write_reg(dev, MCP2515_ADDR_CNF3, config_buf,
sizeof(config_buf));
mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_RXB0CTRL, rx0_ctrl, rx0_ctrl);
mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_RXB1CTRL, rx1_ctrl, rx1_ctrl);
return mcp2515_set_mode(dev,
mcp2515_convert_canmode_to_mcp2515mode(mode));
}
int mcp2515_send(struct device *dev, const struct zcan_frame *msg,
s32_t timeout, can_tx_callback_t callback)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
u8_t tx_idx = 0U;
u8_t addr_tx_ctrl;
u8_t tx_frame[MCP2515_FRAME_LEN];
if (k_sem_take(&dev_data->tx_sem, timeout) != 0) {
return CAN_TIMEOUT;
}
k_mutex_lock(&dev_data->tx_mutex, K_FOREVER);
/* find a free tx slot */
for (; tx_idx < MCP2515_TX_CNT; tx_idx++) {
if ((BIT(tx_idx) & dev_data->tx_busy_map) == 0) {
dev_data->tx_busy_map |= BIT(tx_idx);
break;
}
}
k_mutex_unlock(&dev_data->tx_mutex);
if (tx_idx == MCP2515_TX_CNT) {
LOG_WRN("no free tx slot available");
return CAN_TX_ERR;
}
dev_data->tx_cb[tx_idx].cb = callback;
addr_tx_ctrl = MCP2515_ADDR_TXB0CTRL +
(tx_idx * MCP2515_ADDR_OFFSET_FRAME2FRAME);
mcp2515_convert_zcanframe_to_mcp2515frame(msg, tx_frame);
mcp2515_cmd_write_reg(dev,
addr_tx_ctrl + MCP2515_ADDR_OFFSET_CTRL2FRAME,
tx_frame, sizeof(tx_frame));
/* request tx slot transmission */
mcp2515_cmd_bit_modify(dev, addr_tx_ctrl, MCP2515_TXCTRL_TXREQ,
MCP2515_TXCTRL_TXREQ);
if (callback == NULL) {
k_sem_take(&dev_data->tx_cb[tx_idx].sem, K_FOREVER);
}
return 0;
}
int mcp2515_attach_msgq(struct device *dev, struct k_msgq *msgq,
const struct zcan_filter *filter)
{
return mcp2515_attach(dev, filter, (void *) msgq, 1);
}
int mcp2515_attach_isr(struct device *dev, can_rx_callback_t isr,
const struct zcan_filter *filter)
{
return mcp2515_attach(dev, filter, (void *) isr, 0);
}
void mcp2515_detach(struct device *dev, int filter_nr)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
k_mutex_lock(&dev_data->filter_mutex, K_FOREVER);
dev_data->filter_usage &= ~BIT(filter_nr);
k_mutex_unlock(&dev_data->filter_mutex);
}
static u8_t mcp2515_filter_match(struct zcan_frame *msg,
struct zcan_filter *filter)
{
if (msg->id_type != filter->id_type) {
return 0;
}
if ((msg->rtr ^ filter->rtr) & filter->rtr_mask) {
return 0;
}
if (msg->id_type == CAN_STANDARD_IDENTIFIER) {
if ((msg->std_id ^ filter->std_id) & filter->std_id_mask) {
return 0;
}
} else {
if ((msg->ext_id ^ filter->ext_id) & filter->ext_id_mask) {
return 0;
}
}
return 1;
}
static void mcp2515_rx_filter(struct device *dev, struct zcan_frame *msg)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
u8_t filter_idx = 0U;
k_mutex_lock(&dev_data->filter_mutex, K_FOREVER);
for (; filter_idx < CONFIG_CAN_MCP2515_MAX_FILTER; filter_idx++) {
if (!(BIT(filter_idx) & dev_data->filter_usage)) {
continue; /* filter slot empty */
}
if (!mcp2515_filter_match(msg,
&dev_data->filter[filter_idx])) {
continue; /* filter did not match */
}
if (dev_data->filter_response_type & BIT(filter_idx)) {
struct k_msgq *msg_q =
dev_data->filter_response[filter_idx];
k_msgq_put(msg_q, msg, K_NO_WAIT);
} else {
can_rx_callback_t callback =
dev_data->filter_response[filter_idx];
callback(msg);
}
}
k_mutex_unlock(&dev_data->filter_mutex);
}
static void mcp2515_rx(struct device *dev, u8_t rx_idx)
{
struct zcan_frame msg;
u8_t rx_frame[MCP2515_FRAME_LEN];
u8_t addr_rx_ctrl = MCP2515_ADDR_RXB0CTRL +
(rx_idx * MCP2515_ADDR_OFFSET_FRAME2FRAME);
/* Fetch rx buffer */
mcp2515_cmd_read_reg(dev,
addr_rx_ctrl + MCP2515_ADDR_OFFSET_CTRL2FRAME,
rx_frame, sizeof(rx_frame));
mcp2515_convert_mcp2515frame_to_zcanframe(rx_frame, &msg);
mcp2515_rx_filter(dev, &msg);
}
static void mcp2515_tx_done(struct device *dev, u8_t tx_idx)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
if (dev_data->tx_cb[tx_idx].cb == NULL) {
k_sem_give(&dev_data->tx_cb[tx_idx].sem);
} else {
dev_data->tx_cb[tx_idx].cb(0);
}
k_mutex_lock(&dev_data->tx_mutex, K_FOREVER);
dev_data->tx_busy_map &= ~BIT(tx_idx);
k_mutex_unlock(&dev_data->tx_mutex);
k_sem_give(&dev_data->tx_sem);
}
static void mcp2515_handle_interrupts(struct device *dev)
{
u8_t canintf;
mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANINTF, &canintf, 1);
while (canintf != 0) {
if (canintf & MCP2515_CANINTF_RX0IF) {
mcp2515_rx(dev, 0);
}
if (canintf & MCP2515_CANINTF_RX1IF) {
mcp2515_rx(dev, 1);
}
if (canintf & MCP2515_CANINTF_TX0IF) {
mcp2515_tx_done(dev, 0);
}
if (canintf & MCP2515_CANINTF_TX0IF) {
mcp2515_tx_done(dev, 1);
}
if (canintf & MCP2515_CANINTF_TX0IF) {
mcp2515_tx_done(dev, 2);
}
/* clear the flags we handled */
mcp2515_cmd_bit_modify(dev, MCP2515_ADDR_CANINTF, canintf,
~canintf);
/* check that no new interrupts happened while clearing known
* ones */
mcp2515_cmd_read_reg(dev, MCP2515_ADDR_CANINTF, &canintf, 1);
}
}
static void mcp2515_int_thread(struct device *dev)
{
struct mcp2515_data *dev_data = DEV_DATA(dev);
while (1) {
k_sem_take(&dev_data->int_sem, K_FOREVER);
mcp2515_handle_interrupts(dev);
}
}
static void mcp2515_int_gpio_callback(struct device *dev,
struct gpio_callback *cb, u32_t pins)
{
struct mcp2515_data *dev_data =
CONTAINER_OF(cb, struct mcp2515_data, int_gpio_cb);
k_sem_give(&dev_data->int_sem);
}
static const struct can_driver_api can_api_funcs = {
.configure = mcp2515_configure,
.send = mcp2515_send,
.attach_msgq = mcp2515_attach_msgq,
.attach_isr = mcp2515_attach_isr,
.detach = mcp2515_detach
};
static int mcp2515_init(struct device *dev)
{
const struct mcp2515_config *dev_cfg = DEV_CFG(dev);
struct mcp2515_data *dev_data = DEV_DATA(dev);
int ret;
k_sem_init(&dev_data->int_sem, 0, UINT_MAX);
k_mutex_init(&dev_data->tx_mutex);
k_sem_init(&dev_data->tx_sem, 3, 3);
k_sem_init(&dev_data->tx_cb[0].sem, 0, 1);
k_sem_init(&dev_data->tx_cb[1].sem, 0, 1);
k_sem_init(&dev_data->tx_cb[2].sem, 0, 1);
k_mutex_init(&dev_data->filter_mutex);
/* SPI config */
dev_data->spi_cfg.operation = SPI_WORD_SET(8);
dev_data->spi_cfg.frequency = dev_cfg->spi_freq;
dev_data->spi_cfg.slave = dev_cfg->spi_slave;
dev_data->spi = device_get_binding(dev_cfg->spi_port);
if (!dev_data->spi) {
LOG_ERR("SPI master port %s not found", dev_cfg->spi_port);
return -EINVAL;
}
#ifdef DT_MICROCHIP_MCP2515_0_CS_GPIO_PIN
dev_data->spi_cs_ctrl.gpio_dev =
device_get_binding(dev_cfg->spi_cs_port);
if (!dev_data->spi_cs_ctrl.gpio_dev) {
LOG_ERR("Unable to get GPIO SPI CS device");
return -ENODEV;
}
dev_data->spi_cs_ctrl.gpio_pin = dev_cfg->spi_cs_pin;
dev_data->spi_cs_ctrl.delay = 0U;
dev_data->spi_cfg.cs = &dev_data->spi_cs_ctrl;
#else
dev_data->spi_cfg.cs = NULL;
#endif /* DT_MICROCHIP_MCP2515_0_CS_GPIO_PIN */
/* Reset MCP2515 */
if (mcp2515_cmd_soft_reset(dev)) {
LOG_ERR("Soft-reset failed");
return -EIO;
}
/* Initialize interrupt handling */
dev_data->int_gpio = device_get_binding(dev_cfg->int_port);
if (dev_data->int_gpio == NULL) {
LOG_ERR("GPIO port %s not found", dev_cfg->int_port);
return -EINVAL;
}
if (gpio_pin_configure(dev_data->int_gpio, dev_cfg->int_pin,
(GPIO_DIR_IN | GPIO_INT | GPIO_INT_EDGE
| GPIO_INT_ACTIVE_LOW | GPIO_INT_DEBOUNCE))) {
LOG_ERR("Unable to configure GPIO pin %u", dev_cfg->int_pin);
return -EINVAL;
}
gpio_init_callback(&(dev_data->int_gpio_cb), mcp2515_int_gpio_callback,
BIT(dev_cfg->int_pin));
if (gpio_add_callback(dev_data->int_gpio, &(dev_data->int_gpio_cb))) {
return -EINVAL;
}
if (gpio_pin_enable_callback(dev_data->int_gpio, dev_cfg->int_pin)) {
return -EINVAL;
}
k_thread_create(&dev_data->int_thread, dev_data->int_thread_stack,
dev_cfg->int_thread_stack_size,
(k_thread_entry_t) mcp2515_int_thread, (void *)dev,
NULL, NULL, K_PRIO_COOP(dev_cfg->int_thread_priority),
0, K_NO_WAIT);
(void)memset(dev_data->filter_response, 0,
sizeof(dev_data->filter_response));
(void)memset(dev_data->filter, 0, sizeof(dev_data->filter));
ret = mcp2515_configure(dev, CAN_NORMAL_MODE, dev_cfg->bus_speed);
return ret;
}
#ifdef CONFIG_CAN_1
static K_THREAD_STACK_DEFINE(mcp2515_int_thread_stack,
CONFIG_CAN_MCP2515_INT_THREAD_STACK_SIZE);
static struct mcp2515_data mcp2515_data_1 = {
.int_thread_stack = mcp2515_int_thread_stack,
.tx_cb[0].cb = NULL,
.tx_cb[1].cb = NULL,
.tx_cb[2].cb = NULL,
.tx_busy_map = 0U,
.filter_usage = 0U,
.filter_response_type = 0U,
};
static const struct mcp2515_config mcp2515_config_1 = {
.spi_port = DT_MICROCHIP_MCP2515_0_BUS_NAME,
.spi_freq = DT_MICROCHIP_MCP2515_0_SPI_MAX_FREQUENCY,
.spi_slave = DT_MICROCHIP_MCP2515_0_BASE_ADDRESS,
.int_pin = DT_MICROCHIP_MCP2515_0_INT_GPIOS_PIN,
.int_port = DT_MICROCHIP_MCP2515_0_INT_GPIOS_CONTROLLER,
.int_thread_stack_size = CONFIG_CAN_MCP2515_INT_THREAD_STACK_SIZE,
.int_thread_priority = CONFIG_CAN_MCP2515_INT_THREAD_PRIO,
#ifdef DT_MICROCHIP_MCP2515_0_CS_GPIO_PIN
.spi_cs_pin = DT_MICROCHIP_MCP2515_0_CS_GPIO_PIN,
.spi_cs_port = DT_MICROCHIP_MCP2515_0_CS_GPIO_CONTROLLER,
#endif /* DT_MICROCHIP_MCP2515_0_CS_GPIO_PIN */
.tq_sjw = CONFIG_CAN_SJW,
.tq_prop = CONFIG_CAN_PROP_SEG,
.tq_bs1 = CONFIG_CAN_PHASE_SEG1,
.tq_bs2 = CONFIG_CAN_PHASE_SEG2,
.bus_speed = DT_MICROCHIP_MCP2515_0_BUS_SPEED,
};
DEVICE_AND_API_INIT(can_mcp2515_1, DT_MICROCHIP_MCP2515_0_LABEL, &mcp2515_init,
&mcp2515_data_1, &mcp2515_config_1, POST_KERNEL,
CONFIG_CAN_MCP2515_INIT_PRIORITY, &can_api_funcs);
#endif /* CONFIG_CAN_1 */