| /* MCUX Ethernet Driver |
| * |
| * Copyright (c) 2016-2017 ARM Ltd |
| * Copyright (c) 2016 Linaro Ltd |
| * Copyright (c) 2018 Intel Coporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /* Driver Limitations: |
| * |
| * There is no statistics collection for either normal operation or |
| * error behaviour. |
| */ |
| |
| #define LOG_MODULE_NAME eth_mcux |
| #define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL |
| |
| #include <logging/log.h> |
| LOG_MODULE_REGISTER(LOG_MODULE_NAME); |
| |
| #include <device.h> |
| #include <misc/util.h> |
| #include <kernel.h> |
| #include <net/net_pkt.h> |
| #include <net/net_if.h> |
| #include <net/ethernet.h> |
| #include <ethernet/eth_stats.h> |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| #include <ptp_clock.h> |
| #include <net/gptp.h> |
| #endif |
| |
| #include "fsl_enet.h" |
| #include "fsl_phy.h" |
| |
| enum eth_mcux_phy_state { |
| eth_mcux_phy_state_initial, |
| eth_mcux_phy_state_reset, |
| eth_mcux_phy_state_autoneg, |
| eth_mcux_phy_state_restart, |
| eth_mcux_phy_state_read_status, |
| eth_mcux_phy_state_read_duplex, |
| eth_mcux_phy_state_wait, |
| eth_mcux_phy_state_closing |
| |
| }; |
| |
| static const char * |
| phy_state_name(enum eth_mcux_phy_state state) __attribute__((unused)); |
| |
| static const char *phy_state_name(enum eth_mcux_phy_state state) |
| { |
| static const char * const name[] = { |
| "initial", |
| "reset", |
| "autoneg", |
| "restart", |
| "read-status", |
| "read-duplex", |
| "wait", |
| "closing" |
| }; |
| |
| return name[state]; |
| } |
| |
| struct eth_context { |
| /* If VLAN is enabled, there can be multiple VLAN interfaces related to |
| * this physical device. In that case, this pointer value is not really |
| * used for anything. |
| */ |
| struct net_if *iface; |
| enet_handle_t enet_handle; |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| struct device *ptp_clock; |
| enet_ptp_config_t ptp_config; |
| float clk_ratio; |
| #endif |
| struct k_sem tx_buf_sem; |
| enum eth_mcux_phy_state phy_state; |
| bool enabled; |
| bool link_up; |
| phy_duplex_t phy_duplex; |
| phy_speed_t phy_speed; |
| u8_t mac_addr[6]; |
| struct k_work phy_work; |
| struct k_delayed_work delayed_phy_work; |
| /* TODO: FIXME. This Ethernet frame sized buffer is used for |
| * interfacing with MCUX. How it works is that hardware uses |
| * DMA scatter buffers to receive a frame, and then public |
| * MCUX call gathers them into this buffer (there's no other |
| * public interface). All this happens only for this driver |
| * to scatter this buffer again into Zephyr fragment buffers. |
| * This is not efficient, but proper resolution of this issue |
| * depends on introduction of zero-copy networking support |
| * in Zephyr, and adding needed interface to MCUX (or |
| * bypassing it and writing a more complex driver working |
| * directly with hardware). |
| * |
| * Note that we do not copy FCS into this buffer thus the |
| * size is 1514 bytes. |
| */ |
| u8_t frame_buf[NET_ETH_MAX_FRAME_SIZE]; /* Max MTU + ethernet header */ |
| }; |
| |
| static void eth_0_config_func(void); |
| |
| #ifdef CONFIG_HAS_MCUX_CACHE |
| static __nocache enet_rx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT) |
| rx_buffer_desc[CONFIG_ETH_MCUX_RX_BUFFERS]; |
| |
| static __nocache enet_tx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT) |
| tx_buffer_desc[CONFIG_ETH_MCUX_TX_BUFFERS]; |
| #else |
| static enet_rx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT) |
| rx_buffer_desc[CONFIG_ETH_MCUX_RX_BUFFERS]; |
| |
| static enet_tx_bd_struct_t __aligned(ENET_BUFF_ALIGNMENT) |
| tx_buffer_desc[CONFIG_ETH_MCUX_TX_BUFFERS]; |
| #endif |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| /* Packets to be timestamped. */ |
| static struct net_pkt *ts_tx_pkt[CONFIG_ETH_MCUX_TX_BUFFERS]; |
| static int ts_tx_rd, ts_tx_wr; |
| #endif |
| |
| /* Use ENET_FRAME_MAX_VALNFRAMELEN for VLAN frame size |
| * Use ENET_FRAME_MAX_FRAMELEN for ethernet frame size |
| */ |
| #if defined(CONFIG_NET_VLAN) |
| #if !defined(ENET_FRAME_MAX_VALNFRAMELEN) |
| #define ENET_FRAME_MAX_VALNFRAMELEN (ENET_FRAME_MAX_FRAMELEN + 4) |
| #endif |
| #define ETH_MCUX_BUFFER_SIZE \ |
| ROUND_UP(ENET_FRAME_MAX_VALNFRAMELEN, ENET_BUFF_ALIGNMENT) |
| #else |
| #define ETH_MCUX_BUFFER_SIZE \ |
| ROUND_UP(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT) |
| #endif /* CONFIG_NET_VLAN */ |
| |
| static u8_t __aligned(ENET_BUFF_ALIGNMENT) |
| rx_buffer[CONFIG_ETH_MCUX_RX_BUFFERS][ETH_MCUX_BUFFER_SIZE]; |
| |
| static u8_t __aligned(ENET_BUFF_ALIGNMENT) |
| tx_buffer[CONFIG_ETH_MCUX_TX_BUFFERS][ETH_MCUX_BUFFER_SIZE]; |
| |
| static void eth_mcux_decode_duplex_and_speed(u32_t status, |
| phy_duplex_t *p_phy_duplex, |
| phy_speed_t *p_phy_speed) |
| { |
| switch (status & PHY_CTL1_SPEEDUPLX_MASK) { |
| case PHY_CTL1_10FULLDUPLEX_MASK: |
| *p_phy_duplex = kPHY_FullDuplex; |
| *p_phy_speed = kPHY_Speed10M; |
| break; |
| case PHY_CTL1_100FULLDUPLEX_MASK: |
| *p_phy_duplex = kPHY_FullDuplex; |
| *p_phy_speed = kPHY_Speed100M; |
| break; |
| case PHY_CTL1_100HALFDUPLEX_MASK: |
| *p_phy_duplex = kPHY_HalfDuplex; |
| *p_phy_speed = kPHY_Speed100M; |
| break; |
| case PHY_CTL1_10HALFDUPLEX_MASK: |
| *p_phy_duplex = kPHY_HalfDuplex; |
| *p_phy_speed = kPHY_Speed10M; |
| break; |
| } |
| } |
| |
| static inline struct net_if *get_iface(struct eth_context *ctx, u16_t vlan_tag) |
| { |
| #if defined(CONFIG_NET_VLAN) |
| struct net_if *iface; |
| |
| iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag); |
| if (!iface) { |
| return ctx->iface; |
| } |
| |
| return iface; |
| #else |
| ARG_UNUSED(vlan_tag); |
| |
| return ctx->iface; |
| #endif |
| } |
| |
| static void eth_mcux_phy_enter_reset(struct eth_context *context) |
| { |
| const u32_t phy_addr = 0U; |
| |
| /* Reset the PHY. */ |
| ENET_StartSMIWrite(ENET, phy_addr, PHY_BASICCONTROL_REG, |
| kENET_MiiWriteValidFrame, |
| PHY_BCTL_RESET_MASK); |
| context->phy_state = eth_mcux_phy_state_reset; |
| } |
| |
| static void eth_mcux_phy_start(struct eth_context *context) |
| { |
| const u32_t phy_addr = 0U; |
| #ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG |
| LOG_DBG("phy_state=%s", phy_state_name(context->phy_state)); |
| #endif |
| |
| context->enabled = true; |
| |
| switch (context->phy_state) { |
| case eth_mcux_phy_state_initial: |
| ENET_ActiveRead(ENET); |
| /* Reset the PHY. */ |
| ENET_StartSMIWrite(ENET, phy_addr, PHY_BASICCONTROL_REG, |
| kENET_MiiWriteValidFrame, |
| PHY_BCTL_RESET_MASK); |
| context->phy_state = eth_mcux_phy_state_initial; |
| break; |
| case eth_mcux_phy_state_reset: |
| eth_mcux_phy_enter_reset(context); |
| break; |
| case eth_mcux_phy_state_autoneg: |
| case eth_mcux_phy_state_restart: |
| case eth_mcux_phy_state_read_status: |
| case eth_mcux_phy_state_read_duplex: |
| case eth_mcux_phy_state_wait: |
| case eth_mcux_phy_state_closing: |
| break; |
| } |
| } |
| |
| void eth_mcux_phy_stop(struct eth_context *context) |
| { |
| #ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG |
| LOG_DBG("phy_state=%s", phy_state_name(context->phy_state)); |
| #endif |
| |
| context->enabled = false; |
| |
| switch (context->phy_state) { |
| case eth_mcux_phy_state_initial: |
| case eth_mcux_phy_state_reset: |
| case eth_mcux_phy_state_autoneg: |
| case eth_mcux_phy_state_restart: |
| case eth_mcux_phy_state_read_status: |
| case eth_mcux_phy_state_read_duplex: |
| /* Do nothing, let the current communication complete |
| * then deal with shutdown. |
| */ |
| context->phy_state = eth_mcux_phy_state_closing; |
| break; |
| case eth_mcux_phy_state_wait: |
| k_delayed_work_cancel(&context->delayed_phy_work); |
| /* @todo, actually power downt he PHY ? */ |
| context->phy_state = eth_mcux_phy_state_initial; |
| break; |
| case eth_mcux_phy_state_closing: |
| /* We are already going down. */ |
| break; |
| } |
| } |
| |
| static void eth_mcux_phy_event(struct eth_context *context) |
| { |
| u32_t status; |
| bool link_up; |
| phy_duplex_t phy_duplex = kPHY_FullDuplex; |
| phy_speed_t phy_speed = kPHY_Speed100M; |
| const u32_t phy_addr = 0U; |
| |
| #ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG |
| LOG_DBG("phy_state=%s", phy_state_name(context->phy_state)); |
| #endif |
| switch (context->phy_state) { |
| case eth_mcux_phy_state_initial: |
| #ifdef CONFIG_SOC_SERIES_IMX_RT |
| ENET_StartSMIRead(ENET, phy_addr, PHY_CONTROL2_REG, |
| kENET_MiiReadValidFrame); |
| ENET_StartSMIWrite(ENET, phy_addr, PHY_CONTROL2_REG, |
| kENET_MiiWriteValidFrame, PHY_CTL2_REFCLK_SELECT_MASK); |
| context->phy_state = eth_mcux_phy_state_reset; |
| #endif |
| break; |
| case eth_mcux_phy_state_closing: |
| if (context->enabled) { |
| eth_mcux_phy_enter_reset(context); |
| } else { |
| /* @todo, actually power down the PHY ? */ |
| context->phy_state = eth_mcux_phy_state_initial; |
| } |
| break; |
| case eth_mcux_phy_state_reset: |
| /* Setup PHY autonegotiation. */ |
| ENET_StartSMIWrite(ENET, phy_addr, PHY_AUTONEG_ADVERTISE_REG, |
| kENET_MiiWriteValidFrame, |
| (PHY_100BASETX_FULLDUPLEX_MASK | |
| PHY_100BASETX_HALFDUPLEX_MASK | |
| PHY_10BASETX_FULLDUPLEX_MASK | |
| PHY_10BASETX_HALFDUPLEX_MASK | 0x1U)); |
| context->phy_state = eth_mcux_phy_state_autoneg; |
| break; |
| case eth_mcux_phy_state_autoneg: |
| /* Setup PHY autonegotiation. */ |
| ENET_StartSMIWrite(ENET, phy_addr, PHY_BASICCONTROL_REG, |
| kENET_MiiWriteValidFrame, |
| (PHY_BCTL_AUTONEG_MASK | |
| PHY_BCTL_RESTART_AUTONEG_MASK)); |
| context->phy_state = eth_mcux_phy_state_restart; |
| break; |
| case eth_mcux_phy_state_wait: |
| case eth_mcux_phy_state_restart: |
| /* Start reading the PHY basic status. */ |
| ENET_StartSMIRead(ENET, phy_addr, PHY_BASICSTATUS_REG, |
| kENET_MiiReadValidFrame); |
| context->phy_state = eth_mcux_phy_state_read_status; |
| break; |
| case eth_mcux_phy_state_read_status: |
| /* PHY Basic status is available. */ |
| status = ENET_ReadSMIData(ENET); |
| link_up = status & PHY_BSTATUS_LINKSTATUS_MASK; |
| if (link_up && !context->link_up) { |
| /* Start reading the PHY control register. */ |
| ENET_StartSMIRead(ENET, phy_addr, PHY_CONTROL1_REG, |
| kENET_MiiReadValidFrame); |
| context->link_up = link_up; |
| context->phy_state = eth_mcux_phy_state_read_duplex; |
| net_eth_carrier_on(context->iface); |
| k_sleep(USEC_PER_MSEC); |
| } else if (!link_up && context->link_up) { |
| LOG_INF("Link down"); |
| context->link_up = link_up; |
| k_delayed_work_submit(&context->delayed_phy_work, |
| CONFIG_ETH_MCUX_PHY_TICK_MS); |
| context->phy_state = eth_mcux_phy_state_wait; |
| net_eth_carrier_off(context->iface); |
| } else { |
| k_delayed_work_submit(&context->delayed_phy_work, |
| CONFIG_ETH_MCUX_PHY_TICK_MS); |
| context->phy_state = eth_mcux_phy_state_wait; |
| } |
| |
| break; |
| case eth_mcux_phy_state_read_duplex: |
| /* PHY control register is available. */ |
| status = ENET_ReadSMIData(ENET); |
| eth_mcux_decode_duplex_and_speed(status, |
| &phy_duplex, |
| &phy_speed); |
| if (phy_speed != context->phy_speed || |
| phy_duplex != context->phy_duplex) { |
| context->phy_speed = phy_speed; |
| context->phy_duplex = phy_duplex; |
| ENET_SetMII(ENET, |
| (enet_mii_speed_t) phy_speed, |
| (enet_mii_duplex_t) phy_duplex); |
| } |
| |
| LOG_INF("Enabled %sM %s-duplex mode.", |
| (phy_speed ? "100" : "10"), |
| (phy_duplex ? "full" : "half")); |
| k_delayed_work_submit(&context->delayed_phy_work, |
| CONFIG_ETH_MCUX_PHY_TICK_MS); |
| context->phy_state = eth_mcux_phy_state_wait; |
| break; |
| } |
| } |
| |
| static void eth_mcux_phy_work(struct k_work *item) |
| { |
| struct eth_context *context = |
| CONTAINER_OF(item, struct eth_context, phy_work); |
| |
| eth_mcux_phy_event(context); |
| } |
| |
| static void eth_mcux_delayed_phy_work(struct k_work *item) |
| { |
| struct eth_context *context = |
| CONTAINER_OF(item, struct eth_context, delayed_phy_work); |
| |
| eth_mcux_phy_event(context); |
| } |
| |
| static void eth_mcux_phy_setup(void) |
| { |
| #ifdef CONFIG_SOC_SERIES_IMX_RT |
| const u32_t phy_addr = 0U; |
| u32_t status; |
| |
| /* Prevent PHY entering NAND Tree mode override*/ |
| ENET_StartSMIRead(ENET, phy_addr, PHY_OMS_STATUS_REG, |
| kENET_MiiReadValidFrame); |
| status = ENET_ReadSMIData(ENET); |
| |
| if (status & PHY_OMS_NANDTREE_MASK) { |
| status &= ~PHY_OMS_NANDTREE_MASK; |
| ENET_StartSMIWrite(ENET, phy_addr, PHY_OMS_OVERRIDE_REG, |
| kENET_MiiWriteValidFrame, status); |
| } |
| #endif |
| } |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| static enet_ptp_time_data_t ptp_rx_buffer[CONFIG_ETH_MCUX_PTP_RX_BUFFERS]; |
| static enet_ptp_time_data_t ptp_tx_buffer[CONFIG_ETH_MCUX_PTP_TX_BUFFERS]; |
| |
| static bool eth_get_ptp_data(struct net_if *iface, struct net_pkt *pkt, |
| enet_ptp_time_data_t *ptpTsData, bool is_tx) |
| { |
| int eth_hlen; |
| |
| #if defined(CONFIG_NET_VLAN) |
| struct net_eth_vlan_hdr *hdr_vlan; |
| struct ethernet_context *eth_ctx; |
| bool vlan_enabled = false; |
| |
| eth_ctx = net_if_l2_data(iface); |
| if (net_eth_is_vlan_enabled(eth_ctx, iface)) { |
| hdr_vlan = (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt); |
| vlan_enabled = true; |
| |
| if (ntohs(hdr_vlan->type) != NET_ETH_PTYPE_PTP) { |
| return false; |
| } |
| |
| eth_hlen = sizeof(struct net_eth_vlan_hdr); |
| } else |
| #endif |
| { |
| if (ntohs(NET_ETH_HDR(pkt)->type) != NET_ETH_PTYPE_PTP) { |
| return false; |
| } |
| |
| eth_hlen = sizeof(struct net_eth_hdr); |
| } |
| |
| net_pkt_set_priority(pkt, NET_PRIORITY_CA); |
| |
| if (ptpTsData) { |
| /* Cannot use GPTP_HDR as net_pkt fields are not all filled */ |
| struct gptp_hdr *hdr; |
| |
| /* In TX, the first net_buf contains the Ethernet header |
| * and the actual gPTP header is in the second net_buf. |
| * In RX, the Ethernet header + other headers are in the |
| * first net_buf. |
| */ |
| if (is_tx) { |
| if (pkt->frags->frags == NULL) { |
| return false; |
| } |
| |
| hdr = (struct gptp_hdr *)pkt->frags->frags->data; |
| } else { |
| hdr = (struct gptp_hdr *)(pkt->frags->data + |
| eth_hlen); |
| } |
| |
| ptpTsData->version = hdr->ptp_version; |
| memcpy(ptpTsData->sourcePortId, &hdr->port_id, |
| kENET_PtpSrcPortIdLen); |
| ptpTsData->messageType = hdr->message_type; |
| ptpTsData->sequenceId = ntohs(hdr->sequence_id); |
| |
| #ifdef CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG |
| LOG_DBG("PTP packet: ver %d type %d len %d seq %d", |
| ptpTsData->version, |
| ptpTsData->messageType, |
| ntohs(hdr->message_length), |
| ptpTsData->sequenceId); |
| LOG_DBG(" clk %02x%02x%02x%02x%02x%02x%02x%02x port %d", |
| hdr->port_id.clk_id[0], |
| hdr->port_id.clk_id[1], |
| hdr->port_id.clk_id[2], |
| hdr->port_id.clk_id[3], |
| hdr->port_id.clk_id[4], |
| hdr->port_id.clk_id[5], |
| hdr->port_id.clk_id[6], |
| hdr->port_id.clk_id[7], |
| ntohs(hdr->port_id.port_number)); |
| #endif |
| } |
| |
| return true; |
| } |
| #endif /* CONFIG_PTP_CLOCK_MCUX */ |
| |
| static int eth_tx(struct device *dev, struct net_pkt *pkt) |
| { |
| struct eth_context *context = dev->driver_data; |
| u16_t total_len = net_pkt_get_len(pkt); |
| status_t status; |
| unsigned int imask; |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| bool timestamped_frame; |
| #endif |
| |
| /* As context->frame_buf is shared resource used by both eth_tx |
| * and eth_rx, we need to protect it with irq_lock. |
| */ |
| imask = irq_lock(); |
| |
| if (net_pkt_read(pkt, context->frame_buf, total_len)) { |
| irq_unlock(imask); |
| return -EIO; |
| } |
| |
| /* FIXME: Dirty workaround. |
| * With current implementation of ENET_StoreTxFrameTime in the MCUX |
| * library, a frame may not be timestamped when a non-timestamped frame |
| * is sent. |
| */ |
| #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE |
| context->enet_handle.txBdDirtyTime[0] = |
| context->enet_handle.txBdCurrent[0]; |
| #endif |
| |
| status = ENET_SendFrame(ENET, &context->enet_handle, context->frame_buf, |
| total_len); |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| timestamped_frame = eth_get_ptp_data(net_pkt_iface(pkt), pkt, NULL, |
| true); |
| if (timestamped_frame) { |
| if (!status) { |
| ts_tx_pkt[ts_tx_wr] = net_pkt_ref(pkt); |
| } else { |
| ts_tx_pkt[ts_tx_wr] = NULL; |
| } |
| |
| ts_tx_wr++; |
| if (ts_tx_wr >= CONFIG_ETH_MCUX_TX_BUFFERS) { |
| ts_tx_wr = 0; |
| } |
| } |
| #endif |
| |
| irq_unlock(imask); |
| |
| if (status) { |
| LOG_ERR("ENET_SendFrame error: %d", (int)status); |
| return -1; |
| } |
| |
| k_sem_take(&context->tx_buf_sem, K_FOREVER); |
| |
| return 0; |
| } |
| |
| static void eth_rx(struct device *iface) |
| { |
| struct eth_context *context = iface->driver_data; |
| u16_t vlan_tag = NET_VLAN_TAG_UNSPEC; |
| u32_t frame_length = 0U; |
| struct net_pkt *pkt; |
| status_t status; |
| unsigned int imask; |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| enet_ptp_time_data_t ptpTimeData; |
| #endif |
| |
| status = ENET_GetRxFrameSize(&context->enet_handle, |
| (uint32_t *)&frame_length); |
| if (status) { |
| enet_data_error_stats_t error_stats; |
| |
| LOG_ERR("ENET_GetRxFrameSize return: %d", (int)status); |
| |
| ENET_GetRxErrBeforeReadFrame(&context->enet_handle, |
| &error_stats); |
| goto flush; |
| } |
| |
| if (sizeof(context->frame_buf) < frame_length) { |
| LOG_ERR("frame too large (%d)", frame_length); |
| goto flush; |
| } |
| |
| /* Using root iface. It will be updated in net_recv_data() */ |
| pkt = net_pkt_rx_alloc_with_buffer(context->iface, frame_length, |
| AF_UNSPEC, 0, K_NO_WAIT); |
| if (!pkt) { |
| goto flush; |
| } |
| |
| /* As context->frame_buf is shared resource used by both eth_tx |
| * and eth_rx, we need to protect it with irq_lock. |
| */ |
| imask = irq_lock(); |
| |
| status = ENET_ReadFrame(ENET, &context->enet_handle, |
| context->frame_buf, frame_length); |
| if (status) { |
| irq_unlock(imask); |
| LOG_ERR("ENET_ReadFrame failed: %d", (int)status); |
| net_pkt_unref(pkt); |
| goto error; |
| } |
| |
| if (net_pkt_write(pkt, context->frame_buf, frame_length)) { |
| irq_unlock(imask); |
| LOG_ERR("Unable to write frame into the pkt"); |
| net_pkt_unref(pkt); |
| goto error; |
| } |
| |
| #if defined(CONFIG_NET_VLAN) |
| { |
| struct net_eth_hdr *hdr = NET_ETH_HDR(pkt); |
| |
| if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) { |
| struct net_eth_vlan_hdr *hdr_vlan = |
| (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt); |
| |
| net_pkt_set_vlan_tci(pkt, ntohs(hdr_vlan->vlan.tci)); |
| vlan_tag = net_pkt_vlan_tag(pkt); |
| |
| #if CONFIG_NET_TC_RX_COUNT > 1 |
| { |
| enum net_priority prio; |
| |
| prio = net_vlan2priority( |
| net_pkt_vlan_priority(pkt)); |
| net_pkt_set_priority(pkt, prio); |
| } |
| #endif |
| } |
| } |
| #endif |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| if (eth_get_ptp_data(get_iface(context, vlan_tag), pkt, |
| &ptpTimeData, false) && |
| (ENET_GetRxFrameTime(&context->enet_handle, |
| &ptpTimeData) == kStatus_Success)) { |
| pkt->timestamp.nanosecond = ptpTimeData.timeStamp.nanosecond; |
| pkt->timestamp.second = ptpTimeData.timeStamp.second; |
| } else { |
| /* Invalid value. */ |
| pkt->timestamp.nanosecond = UINT32_MAX; |
| pkt->timestamp.second = UINT64_MAX; |
| } |
| #endif /* CONFIG_PTP_CLOCK_MCUX */ |
| |
| irq_unlock(imask); |
| |
| if (net_recv_data(get_iface(context, vlan_tag), pkt) < 0) { |
| net_pkt_unref(pkt); |
| goto error; |
| } |
| |
| return; |
| flush: |
| /* Flush the current read buffer. This operation can |
| * only report failure if there is no frame to flush, |
| * which cannot happen in this context. |
| */ |
| status = ENET_ReadFrame(ENET, &context->enet_handle, NULL, 0); |
| assert(status == kStatus_Success); |
| error: |
| eth_stats_update_errors_rx(get_iface(context, vlan_tag)); |
| } |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| static inline void ts_register_tx_event(struct eth_context *context) |
| { |
| struct net_pkt *pkt; |
| enet_ptp_time_data_t timeData; |
| |
| pkt = ts_tx_pkt[ts_tx_rd]; |
| if (pkt && atomic_get(&pkt->atomic_ref) > 0) { |
| if (eth_get_ptp_data(net_pkt_iface(pkt), pkt, &timeData, |
| true)) { |
| int status; |
| |
| status = ENET_GetTxFrameTime(&context->enet_handle, |
| &timeData); |
| if (status == kStatus_Success) { |
| pkt->timestamp.nanosecond = |
| timeData.timeStamp.nanosecond; |
| pkt->timestamp.second = |
| timeData.timeStamp.second; |
| |
| net_if_add_tx_timestamp(pkt); |
| } |
| } |
| |
| net_pkt_unref(pkt); |
| } else { |
| if (IS_ENABLED(CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG) && pkt) { |
| LOG_ERR("pkt %p already freed", pkt); |
| } |
| } |
| |
| ts_tx_pkt[ts_tx_rd++] = NULL; |
| |
| if (ts_tx_rd >= CONFIG_ETH_MCUX_TX_BUFFERS) { |
| ts_tx_rd = 0; |
| } |
| } |
| #endif |
| |
| static void eth_callback(ENET_Type *base, enet_handle_t *handle, |
| enet_event_t event, void *param) |
| { |
| struct device *iface = param; |
| struct eth_context *context = iface->driver_data; |
| |
| switch (event) { |
| case kENET_RxEvent: |
| eth_rx(iface); |
| break; |
| case kENET_TxEvent: |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| /* Register event */ |
| ts_register_tx_event(context); |
| #endif /* CONFIG_PTP_CLOCK_MCUX */ |
| |
| /* Free the TX buffer. */ |
| k_sem_give(&context->tx_buf_sem); |
| break; |
| case kENET_ErrEvent: |
| /* Error event: BABR/BABT/EBERR/LC/RL/UN/PLR. */ |
| break; |
| case kENET_WakeUpEvent: |
| /* Wake up from sleep mode event. */ |
| break; |
| case kENET_TimeStampEvent: |
| /* Time stamp event. */ |
| /* Reset periodic timer to default value. */ |
| ENET->ATPER = NSEC_PER_SEC; |
| break; |
| case kENET_TimeStampAvailEvent: |
| /* Time stamp available event. */ |
| break; |
| } |
| } |
| |
| #if defined(CONFIG_ETH_MCUX_0_RANDOM_MAC) |
| static void generate_mac(u8_t *mac_addr) |
| { |
| u32_t entropy; |
| |
| entropy = sys_rand32_get(); |
| |
| mac_addr[3] = entropy >> 8; |
| mac_addr[4] = entropy >> 16; |
| /* Locally administered, unicast */ |
| mac_addr[5] = ((entropy >> 0) & 0xfc) | 0x02; |
| } |
| #elif defined(CONFIG_ETH_MCUX_0_UNIQUE_MAC) |
| static void generate_mac(u8_t *mac_addr) |
| { |
| /* Trivially "hash" up to 128 bits of MCU unique identifier */ |
| #ifdef CONFIG_SOC_SERIES_IMX_RT |
| u32_t id = OCOTP->CFG1 ^ OCOTP->CFG2; |
| #endif |
| #ifdef CONFIG_SOC_SERIES_KINETIS_K6X |
| u32_t id = SIM->UIDH ^ SIM->UIDMH ^ SIM->UIDML ^ SIM->UIDL; |
| #endif |
| |
| mac_addr[3] = id >> 8; |
| mac_addr[4] = id >> 16; |
| /* Locally administered, unicast */ |
| mac_addr[5] = ((id >> 0) & 0xfc) | 0x02; |
| } |
| #endif |
| |
| static int eth_0_init(struct device *dev) |
| { |
| struct eth_context *context = dev->driver_data; |
| enet_config_t enet_config; |
| u32_t sys_clock; |
| enet_buffer_config_t buffer_config = { |
| .rxBdNumber = CONFIG_ETH_MCUX_RX_BUFFERS, |
| .txBdNumber = CONFIG_ETH_MCUX_TX_BUFFERS, |
| .rxBuffSizeAlign = ETH_MCUX_BUFFER_SIZE, |
| .txBuffSizeAlign = ETH_MCUX_BUFFER_SIZE, |
| .rxBdStartAddrAlign = rx_buffer_desc, |
| .txBdStartAddrAlign = tx_buffer_desc, |
| .rxBufferAlign = rx_buffer[0], |
| .txBufferAlign = tx_buffer[0], |
| }; |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| u8_t ptp_multicast[6] = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x0E }; |
| #endif |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| ts_tx_rd = 0; |
| ts_tx_wr = 0; |
| (void)memset(ts_tx_pkt, 0, sizeof(ts_tx_pkt)); |
| #endif |
| |
| k_sem_init(&context->tx_buf_sem, |
| 0, CONFIG_ETH_MCUX_TX_BUFFERS); |
| k_work_init(&context->phy_work, eth_mcux_phy_work); |
| k_delayed_work_init(&context->delayed_phy_work, |
| eth_mcux_delayed_phy_work); |
| |
| eth_mcux_phy_setup(); |
| |
| sys_clock = CLOCK_GetFreq(kCLOCK_CoreSysClk); |
| |
| ENET_GetDefaultConfig(&enet_config); |
| enet_config.interrupt |= kENET_RxFrameInterrupt; |
| enet_config.interrupt |= kENET_TxFrameInterrupt; |
| enet_config.interrupt |= kENET_MiiInterrupt; |
| |
| #ifdef CONFIG_ETH_MCUX_PROMISCUOUS_MODE |
| enet_config.macSpecialConfig |= kENET_ControlPromiscuousEnable; |
| #endif |
| |
| #if defined(CONFIG_ETH_MCUX_0_UNIQUE_MAC) || \ |
| defined(CONFIG_ETH_MCUX_0_RANDOM_MAC) |
| generate_mac(context->mac_addr); |
| #endif |
| |
| #if defined(CONFIG_NET_VLAN) |
| enet_config.macSpecialConfig |= kENET_ControlVLANTagEnable; |
| #endif |
| |
| ENET_Init(ENET, |
| &context->enet_handle, |
| &enet_config, |
| &buffer_config, |
| context->mac_addr, |
| sys_clock); |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| ENET_AddMulticastGroup(ENET, ptp_multicast); |
| |
| context->ptp_config.ptpTsRxBuffNum = CONFIG_ETH_MCUX_PTP_RX_BUFFERS; |
| context->ptp_config.ptpTsTxBuffNum = CONFIG_ETH_MCUX_PTP_TX_BUFFERS; |
| context->ptp_config.rxPtpTsData = ptp_rx_buffer; |
| context->ptp_config.txPtpTsData = ptp_tx_buffer; |
| context->ptp_config.channel = kENET_PtpTimerChannel1; |
| context->ptp_config.ptp1588ClockSrc_Hz = |
| CONFIG_ETH_MCUX_PTP_CLOCK_SRC_HZ; |
| context->clk_ratio = 1.0; |
| |
| ENET_Ptp1588Configure(ENET, &context->enet_handle, |
| &context->ptp_config); |
| #endif |
| |
| ENET_SetSMI(ENET, sys_clock, false); |
| |
| LOG_DBG("MAC %02x:%02x:%02x:%02x:%02x:%02x", |
| context->mac_addr[0], context->mac_addr[1], |
| context->mac_addr[2], context->mac_addr[3], |
| context->mac_addr[4], context->mac_addr[5]); |
| |
| ENET_SetCallback(&context->enet_handle, eth_callback, dev); |
| eth_0_config_func(); |
| |
| eth_mcux_phy_start(context); |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_NET_IPV6) |
| static void net_if_mcast_cb(struct net_if *iface, |
| const struct in6_addr *addr, |
| bool is_joined) |
| { |
| struct net_eth_addr mac_addr; |
| |
| net_eth_ipv6_mcast_to_mac_addr(addr, &mac_addr); |
| |
| if (is_joined) { |
| ENET_AddMulticastGroup(ENET, mac_addr.addr); |
| } else { |
| ENET_LeaveMulticastGroup(ENET, mac_addr.addr); |
| } |
| } |
| #endif /* CONFIG_NET_IPV6 */ |
| |
| static void eth_iface_init(struct net_if *iface) |
| { |
| struct device *dev = net_if_get_device(iface); |
| struct eth_context *context = dev->driver_data; |
| |
| #if defined(CONFIG_NET_IPV6) |
| static struct net_if_mcast_monitor mon; |
| |
| net_if_mcast_mon_register(&mon, iface, net_if_mcast_cb); |
| #endif /* CONFIG_NET_IPV6 */ |
| |
| net_if_set_link_addr(iface, context->mac_addr, |
| sizeof(context->mac_addr), |
| NET_LINK_ETHERNET); |
| |
| /* For VLAN, this value is only used to get the correct L2 driver */ |
| context->iface = iface; |
| |
| ethernet_init(iface); |
| } |
| |
| static enum ethernet_hw_caps eth_mcux_get_capabilities(struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| return ETHERNET_HW_VLAN | ETHERNET_LINK_10BASE_T | |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| ETHERNET_PTP | |
| #endif |
| ETHERNET_LINK_100BASE_T; |
| } |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| static struct device *eth_mcux_get_ptp_clock(struct device *dev) |
| { |
| struct eth_context *context = dev->driver_data; |
| |
| return context->ptp_clock; |
| } |
| #endif |
| |
| static const struct ethernet_api api_funcs = { |
| .iface_api.init = eth_iface_init, |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| .get_ptp_clock = eth_mcux_get_ptp_clock, |
| #endif |
| .get_capabilities = eth_mcux_get_capabilities, |
| .send = eth_tx, |
| }; |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| static void eth_mcux_ptp_isr(void *p) |
| { |
| struct device *dev = p; |
| struct eth_context *context = dev->driver_data; |
| |
| ENET_Ptp1588TimerIRQHandler(ENET, &context->enet_handle); |
| } |
| #endif |
| |
| #if defined(DT_IRQ_ETH_COMMON) |
| static void eth_mcux_dispacher_isr(void *p) |
| { |
| struct device *dev = p; |
| struct eth_context *context = dev->driver_data; |
| u32_t EIR = ENET_GetInterruptStatus(ENET); |
| int irq_lock_key = irq_lock(); |
| |
| if (EIR & (kENET_RxBufferInterrupt | kENET_RxFrameInterrupt)) { |
| ENET_ReceiveIRQHandler(ENET, &context->enet_handle); |
| } else if (EIR & (kENET_TxBufferInterrupt | kENET_TxFrameInterrupt)) { |
| ENET_TransmitIRQHandler(ENET, &context->enet_handle); |
| } else if (EIR & ENET_EIR_MII_MASK) { |
| k_work_submit(&context->phy_work); |
| ENET_ClearInterruptStatus(ENET, kENET_MiiInterrupt); |
| } else if (EIR) { |
| ENET_ClearInterruptStatus(ENET, 0xFFFFFFFF); |
| } |
| |
| irq_unlock(irq_lock_key); |
| } |
| #endif |
| |
| #if defined(DT_IRQ_ETH_RX) |
| static void eth_mcux_rx_isr(void *p) |
| { |
| struct device *dev = p; |
| struct eth_context *context = dev->driver_data; |
| |
| ENET_ReceiveIRQHandler(ENET, &context->enet_handle); |
| } |
| #endif |
| |
| #if defined(DT_IRQ_ETH_TX) |
| static void eth_mcux_tx_isr(void *p) |
| { |
| struct device *dev = p; |
| struct eth_context *context = dev->driver_data; |
| |
| ENET_TransmitIRQHandler(ENET, &context->enet_handle); |
| } |
| #endif |
| |
| #if defined(DT_IRQ_ETH_ERR_MISC) |
| static void eth_mcux_error_isr(void *p) |
| { |
| struct device *dev = p; |
| struct eth_context *context = dev->driver_data; |
| u32_t pending = ENET_GetInterruptStatus(ENET); |
| |
| if (pending & ENET_EIR_MII_MASK) { |
| k_work_submit(&context->phy_work); |
| ENET_ClearInterruptStatus(ENET, kENET_MiiInterrupt); |
| } |
| } |
| #endif |
| |
| static struct eth_context eth_0_context = { |
| .phy_duplex = kPHY_FullDuplex, |
| .phy_speed = kPHY_Speed100M, |
| .mac_addr = { |
| /* Freescale's OUI */ |
| 0x00, |
| 0x04, |
| 0x9f, |
| #if defined(CONFIG_ETH_MCUX_0_MANUAL_MAC) |
| DT_ETH_MCUX_0_MAC3, |
| DT_ETH_MCUX_0_MAC4, |
| DT_ETH_MCUX_0_MAC5 |
| #endif |
| } |
| }; |
| |
| ETH_NET_DEVICE_INIT(eth_mcux_0, DT_ETH_MCUX_0_NAME, eth_0_init, |
| ð_0_context, NULL, CONFIG_ETH_INIT_PRIORITY, |
| &api_funcs, NET_ETH_MTU); |
| |
| static void eth_0_config_func(void) |
| { |
| #if defined(DT_IRQ_ETH_RX) |
| IRQ_CONNECT(DT_IRQ_ETH_RX, DT_ETH_MCUX_0_IRQ_PRI, |
| eth_mcux_rx_isr, DEVICE_GET(eth_mcux_0), 0); |
| irq_enable(DT_IRQ_ETH_RX); |
| #endif |
| |
| #if defined(DT_IRQ_ETH_TX) |
| IRQ_CONNECT(DT_IRQ_ETH_TX, DT_ETH_MCUX_0_IRQ_PRI, |
| eth_mcux_tx_isr, DEVICE_GET(eth_mcux_0), 0); |
| irq_enable(DT_IRQ_ETH_TX); |
| #endif |
| |
| #if defined(DT_IRQ_ETH_ERR_MISC) |
| IRQ_CONNECT(DT_IRQ_ETH_ERR_MISC, DT_ETH_MCUX_0_IRQ_PRI, |
| eth_mcux_error_isr, DEVICE_GET(eth_mcux_0), 0); |
| irq_enable(DT_IRQ_ETH_ERR_MISC); |
| #endif |
| |
| #if defined(DT_IRQ_ETH_COMMON) |
| IRQ_CONNECT(DT_IRQ_ETH_COMMON, DT_ETH_MCUX_0_IRQ_PRI, |
| eth_mcux_dispacher_isr, DEVICE_GET(eth_mcux_0), 0); |
| irq_enable(DT_IRQ_ETH_COMMON); |
| #endif |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| IRQ_CONNECT(DT_IRQ_ETH_IEEE1588_TMR, DT_ETH_MCUX_0_IRQ_PRI, |
| eth_mcux_ptp_isr, DEVICE_GET(eth_mcux_0), 0); |
| irq_enable(DT_IRQ_ETH_IEEE1588_TMR); |
| #endif |
| } |
| |
| #if defined(CONFIG_PTP_CLOCK_MCUX) |
| struct ptp_context { |
| struct eth_context *eth_context; |
| }; |
| |
| static struct ptp_context ptp_mcux_0_context; |
| |
| static int ptp_clock_mcux_set(struct device *dev, struct net_ptp_time *tm) |
| { |
| struct ptp_context *ptp_context = dev->driver_data; |
| struct eth_context *context = ptp_context->eth_context; |
| enet_ptp_time_t enet_time; |
| |
| enet_time.second = tm->second; |
| enet_time.nanosecond = tm->nanosecond; |
| |
| ENET_Ptp1588SetTimer(ENET, &context->enet_handle, &enet_time); |
| return 0; |
| } |
| |
| static int ptp_clock_mcux_get(struct device *dev, struct net_ptp_time *tm) |
| { |
| struct ptp_context *ptp_context = dev->driver_data; |
| struct eth_context *context = ptp_context->eth_context; |
| enet_ptp_time_t enet_time; |
| |
| ENET_Ptp1588GetTimer(ENET, &context->enet_handle, &enet_time); |
| |
| tm->second = enet_time.second; |
| tm->nanosecond = enet_time.nanosecond; |
| return 0; |
| } |
| |
| static int ptp_clock_mcux_adjust(struct device *dev, int increment) |
| { |
| int key, ret; |
| |
| ARG_UNUSED(dev); |
| |
| if ((increment <= -NSEC_PER_SEC) || (increment >= NSEC_PER_SEC)) { |
| ret = -EINVAL; |
| } else { |
| key = irq_lock(); |
| if (ENET->ATPER != NSEC_PER_SEC) { |
| ret = -EBUSY; |
| } else { |
| /* Seconds counter is handled by software. Change the |
| * period of one software second to adjust the clock. |
| */ |
| ENET->ATPER = NSEC_PER_SEC - increment; |
| ret = 0; |
| } |
| irq_unlock(key); |
| } |
| |
| return ret; |
| } |
| |
| static int ptp_clock_mcux_rate_adjust(struct device *dev, float ratio) |
| { |
| const int hw_inc = NSEC_PER_SEC / CONFIG_ETH_MCUX_PTP_CLOCK_SRC_HZ; |
| struct ptp_context *ptp_context = dev->driver_data; |
| struct eth_context *context = ptp_context->eth_context; |
| int corr; |
| s32_t mul; |
| float val; |
| |
| /* No change needed. */ |
| if (ratio == 1.0) { |
| return 0; |
| } |
| |
| ratio *= context->clk_ratio; |
| |
| /* Limit possible ratio. */ |
| if ((ratio > 1.0 + 1.0/(2 * hw_inc)) || |
| (ratio < 1.0 - 1.0/(2 * hw_inc))) { |
| return -EINVAL; |
| } |
| |
| /* Save new ratio. */ |
| context->clk_ratio = ratio; |
| |
| if (ratio < 1.0) { |
| corr = hw_inc - 1; |
| val = 1.0 / (hw_inc * (1.0 - ratio)); |
| } else if (ratio > 1.0) { |
| corr = hw_inc + 1; |
| val = 1.0 / (hw_inc * (ratio-1.0)); |
| } else { |
| val = 0; |
| corr = hw_inc; |
| } |
| |
| if (val >= INT32_MAX) { |
| /* Value is too high. |
| * It is not possible to adjust the rate of the clock. |
| */ |
| mul = 0; |
| } else { |
| mul = val; |
| } |
| |
| |
| ENET_Ptp1588AdjustTimer(ENET, corr, mul); |
| |
| return 0; |
| } |
| |
| static const struct ptp_clock_driver_api api = { |
| .set = ptp_clock_mcux_set, |
| .get = ptp_clock_mcux_get, |
| .adjust = ptp_clock_mcux_adjust, |
| .rate_adjust = ptp_clock_mcux_rate_adjust, |
| }; |
| |
| static int ptp_mcux_init(struct device *port) |
| { |
| struct device *eth_dev = DEVICE_GET(eth_mcux_0); |
| struct eth_context *context = eth_dev->driver_data; |
| struct ptp_context *ptp_context = port->driver_data; |
| |
| context->ptp_clock = port; |
| ptp_context->eth_context = context; |
| |
| return 0; |
| } |
| |
| DEVICE_AND_API_INIT(mcux_ptp_clock_0, PTP_CLOCK_NAME, ptp_mcux_init, |
| &ptp_mcux_0_context, NULL, POST_KERNEL, |
| CONFIG_APPLICATION_INIT_PRIORITY, &api); |
| |
| #endif /* CONFIG_PTP_CLOCK_MCUX */ |