blob: 78bb94691607a89a3cc7ce57730aaf36f7459a80 [file] [log] [blame]
/*
* Copyright (c) 2016 Open-RnD Sp. z o.o.
* Copyright (c) 2016 Linaro Limited.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Driver for UART port on STM32F10x family processor.
*
* Based on reference manual:
* STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx
* advanced ARM ® -based 32-bit MCUs
*
* Chapter 27: Universal synchronous asynchronous receiver
* transmitter (USART)
*/
#include <kernel.h>
#include <arch/cpu.h>
#include <misc/__assert.h>
#include <board.h>
#include <init.h>
#include <uart.h>
#include <clock_control.h>
#include <sections.h>
#include <clock_control/stm32_clock_control.h>
#include "uart_stm32.h"
/* convenience defines */
#define DEV_CFG(dev) \
((const struct uart_stm32_config * const)(dev)->config->config_info)
#define DEV_DATA(dev) \
((struct uart_stm32_data * const)(dev)->driver_data)
#define UART_STRUCT(dev) \
((USART_TypeDef *)(DEV_CFG(dev))->uconf.base)
#define TIMEOUT 1000
static int uart_stm32_poll_in(struct device *dev, unsigned char *c)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
if (HAL_UART_Receive(UartHandle, (u8_t *)c, 1, TIMEOUT) == HAL_OK) {
return 0;
} else {
return -1;
}
}
static unsigned char uart_stm32_poll_out(struct device *dev,
unsigned char c)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
HAL_UART_Transmit(UartHandle, (u8_t *)&c, 1, TIMEOUT);
return c;
}
static inline void __uart_stm32_get_clock(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
struct device *clk =
device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clk);
data->clock = clk;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_stm32_fifo_fill(struct device *dev, const u8_t *tx_data,
int size)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
u8_t num_tx = 0;
while ((size - num_tx > 0) && __HAL_UART_GET_FLAG(UartHandle,
UART_FLAG_TXE)) {
/* TXE flag will be cleared with byte write to DR register */
/* Send a character (8bit , parity none) */
#if defined(CONFIG_SOC_SERIES_STM32F1X) || defined(CONFIG_SOC_SERIES_STM32F4X)
/* Use direct access for F1, F4 until Low Level API is available
* Once it is we can remove the if/else
*/
UartHandle->Instance->DR = (tx_data[num_tx++] &
(u8_t)0x00FF);
#else
LL_USART_TransmitData8(UartHandle->Instance, tx_data[num_tx++]);
#endif
}
return num_tx;
}
static int uart_stm32_fifo_read(struct device *dev, u8_t *rx_data,
const int size)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
u8_t num_rx = 0;
while ((size - num_rx > 0) && __HAL_UART_GET_FLAG(UartHandle,
UART_FLAG_RXNE)) {
/* Clear the interrupt */
__HAL_UART_CLEAR_FLAG(UartHandle, UART_FLAG_RXNE);
/* Receive a character (8bit , parity none) */
#if defined(CONFIG_SOC_SERIES_STM32F1X) || defined(CONFIG_SOC_SERIES_STM32F4X)
/* Use direct access for F1, F4 until Low Level API is available
* Once it is we can remove the if/else
*/
rx_data[num_rx++] = (u8_t)(UartHandle->Instance->DR &
(u8_t)0x00FF);
#else
rx_data[num_rx++] = LL_USART_ReceiveData8(UartHandle->Instance);
#endif
}
return num_rx;
}
static void uart_stm32_irq_tx_enable(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
__HAL_UART_ENABLE_IT(UartHandle, UART_IT_TC);
}
static void uart_stm32_irq_tx_disable(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
__HAL_UART_DISABLE_IT(UartHandle, UART_IT_TC);
}
static int uart_stm32_irq_tx_ready(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_TXE);
}
static int uart_stm32_irq_tx_complete(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_TXE);
}
static void uart_stm32_irq_rx_enable(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
__HAL_UART_ENABLE_IT(UartHandle, UART_IT_RXNE);
}
static void uart_stm32_irq_rx_disable(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
__HAL_UART_DISABLE_IT(UartHandle, UART_IT_RXNE);
}
static int uart_stm32_irq_rx_ready(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_RXNE);
}
static void uart_stm32_irq_err_enable(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
/* Enable FE, ORE interruptions */
__HAL_UART_ENABLE_IT(UartHandle, UART_IT_ERR);
/* Enable Line break detection */
__HAL_UART_ENABLE_IT(UartHandle, UART_IT_LBD);
/* Enable parity error interruption */
__HAL_UART_ENABLE_IT(UartHandle, UART_IT_PE);
}
static void uart_stm32_irq_err_disable(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
/* Disable FE, ORE interruptions */
__HAL_UART_DISABLE_IT(UartHandle, UART_IT_ERR);
/* Disable Line break detection */
__HAL_UART_DISABLE_IT(UartHandle, UART_IT_LBD);
/* Disable parity error interruption */
__HAL_UART_DISABLE_IT(UartHandle, UART_IT_PE);
}
static int uart_stm32_irq_is_pending(struct device *dev)
{
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_TXE | UART_FLAG_RXNE);
}
static int uart_stm32_irq_update(struct device *dev)
{
return 1;
}
static void uart_stm32_irq_callback_set(struct device *dev,
uart_irq_callback_t cb)
{
struct uart_stm32_data *data = DEV_DATA(dev);
data->user_cb = cb;
}
static void uart_stm32_isr(void *arg)
{
struct device *dev = arg;
struct uart_stm32_data *data = DEV_DATA(dev);
if (data->user_cb) {
data->user_cb(dev);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_driver_api uart_stm32_driver_api = {
.poll_in = uart_stm32_poll_in,
.poll_out = uart_stm32_poll_out,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_stm32_fifo_fill,
.fifo_read = uart_stm32_fifo_read,
.irq_tx_enable = uart_stm32_irq_tx_enable,
.irq_tx_disable = uart_stm32_irq_tx_disable,
.irq_tx_ready = uart_stm32_irq_tx_ready,
.irq_tx_complete = uart_stm32_irq_tx_complete,
.irq_rx_enable = uart_stm32_irq_rx_enable,
.irq_rx_disable = uart_stm32_irq_rx_disable,
.irq_rx_ready = uart_stm32_irq_rx_ready,
.irq_err_enable = uart_stm32_irq_err_enable,
.irq_err_disable = uart_stm32_irq_err_disable,
.irq_is_pending = uart_stm32_irq_is_pending,
.irq_update = uart_stm32_irq_update,
.irq_callback_set = uart_stm32_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0
*/
static int uart_stm32_init(struct device *dev)
{
const struct uart_stm32_config *config = DEV_CFG(dev);
struct uart_stm32_data *data = DEV_DATA(dev);
UART_HandleTypeDef *UartHandle = &data->huart;
__uart_stm32_get_clock(dev);
/* enable clock */
#ifdef CONFIG_CLOCK_CONTROL_STM32_CUBE
clock_control_on(data->clock,
(clock_control_subsys_t *)&config->pclken);
#else
clock_control_on(data->clock, config->clock_subsys);
#endif
UartHandle->Instance = UART_STRUCT(dev);
UartHandle->Init.WordLength = UART_WORDLENGTH_8B;
UartHandle->Init.StopBits = UART_STOPBITS_1;
UartHandle->Init.Parity = UART_PARITY_NONE;
UartHandle->Init.HwFlowCtl = UART_HWCONTROL_NONE;
UartHandle->Init.Mode = UART_MODE_TX_RX;
UartHandle->Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(UartHandle);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->uconf.irq_config_func(dev);
#endif
return 0;
}
#ifdef CONFIG_UART_STM32_PORT_1
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_1(struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_stm32_config uart_stm32_dev_cfg_1 = {
.uconf = {
.base = (u8_t *)CONFIG_UART_STM32_PORT_1_BASE_ADDRESS,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_stm32_irq_config_func_1,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
},
#ifdef CONFIG_CLOCK_CONTROL_STM32_CUBE
.pclken = { .bus = STM32_CLOCK_BUS_APB2,
.enr = LL_APB2_GRP1_PERIPH_USART1 },
#else
.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART1),
#endif /* CLOCK_CONTROL_STM32_CUBE */
};
static struct uart_stm32_data uart_stm32_dev_data_1 = {
.huart = {
.Init = {
.BaudRate = CONFIG_UART_STM32_PORT_1_BAUD_RATE
}
}
};
DEVICE_AND_API_INIT(uart_stm32_1, CONFIG_UART_STM32_PORT_1_NAME,
&uart_stm32_init,
&uart_stm32_dev_data_1, &uart_stm32_dev_cfg_1,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_stm32_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_1(struct device *dev)
{
IRQ_CONNECT(PORT_1_IRQ,
CONFIG_UART_STM32_PORT_1_IRQ_PRI,
uart_stm32_isr, DEVICE_GET(uart_stm32_1),
0);
irq_enable(PORT_1_IRQ);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#endif /* CONFIG_UART_STM32_PORT_1 */
#ifdef CONFIG_UART_STM32_PORT_2
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_2(struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_stm32_config uart_stm32_dev_cfg_2 = {
.uconf = {
.base = (u8_t *)CONFIG_UART_STM32_PORT_2_BASE_ADDRESS,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_stm32_irq_config_func_2,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
},
#ifdef CONFIG_CLOCK_CONTROL_STM32_CUBE
.pclken = { .bus = STM32_CLOCK_BUS_APB1,
.enr = LL_APB1_GRP1_PERIPH_USART2 },
#else
.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART2),
#endif /* CLOCK_CONTROL_STM32_CUBE */
};
static struct uart_stm32_data uart_stm32_dev_data_2 = {
.huart = {
.Init = {
.BaudRate = CONFIG_UART_STM32_PORT_2_BAUD_RATE} }
};
DEVICE_AND_API_INIT(uart_stm32_2, CONFIG_UART_STM32_PORT_2_NAME,
&uart_stm32_init,
&uart_stm32_dev_data_2, &uart_stm32_dev_cfg_2,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_stm32_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_2(struct device *dev)
{
IRQ_CONNECT(PORT_2_IRQ,
CONFIG_UART_STM32_PORT_2_IRQ_PRI,
uart_stm32_isr, DEVICE_GET(uart_stm32_2),
0);
irq_enable(PORT_2_IRQ);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#endif /* CONFIG_UART_STM32_PORT_2 */
#ifdef CONFIG_UART_STM32_PORT_3
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_3(struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_stm32_config uart_stm32_dev_cfg_3 = {
.uconf = {
.base = (u8_t *)CONFIG_UART_STM32_PORT_3_BASE_ADDRESS,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_stm32_irq_config_func_3,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
},
#ifdef CONFIG_CLOCK_CONTROL_STM32_CUBE
.pclken = { .bus = STM32_CLOCK_BUS_APB1,
.enr = LL_APB1_GRP1_PERIPH_USART3 },
#else
.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART3),
#endif /* CLOCK_CONTROL_STM32_CUBE */
};
static struct uart_stm32_data uart_stm32_dev_data_3 = {
.huart = {
.Init = {
.BaudRate = CONFIG_UART_STM32_PORT_3_BAUD_RATE} }
};
DEVICE_AND_API_INIT(uart_stm32_3, CONFIG_UART_STM32_PORT_3_NAME,
&uart_stm32_init,
&uart_stm32_dev_data_3, &uart_stm32_dev_cfg_3,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_stm32_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_3(struct device *dev)
{
IRQ_CONNECT(PORT_3_IRQ,
CONFIG_UART_STM32_PORT_3_IRQ_PRI,
uart_stm32_isr, DEVICE_GET(uart_stm32_3),
0);
irq_enable(PORT_3_IRQ);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#endif /* CONFIG_UART_STM32_PORT_3 */