| /* |
| * Copyright (c) 2016 BayLibre, SAS |
| * Copyright (c) 2017 Linaro Ltd |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| * I2C Driver for: STM32F0, STM32F3, STM32F7, STM32L0, STM32L4, STM32WB and |
| * STM32WL |
| * |
| */ |
| |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/sys/util.h> |
| #include <zephyr/kernel.h> |
| #include <soc.h> |
| #include <stm32_cache.h> |
| #include <stm32_ll_i2c.h> |
| #include <errno.h> |
| #include <zephyr/drivers/i2c.h> |
| #include <zephyr/pm/device.h> |
| #include <zephyr/pm/device_runtime.h> |
| #include <stm32_cache.h> |
| #include <zephyr/cache.h> |
| #include <zephyr/linker/linker-defs.h> |
| #include <zephyr/mem_mgmt/mem_attr.h> |
| #include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h> |
| |
| #define LOG_LEVEL CONFIG_I2C_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(i2c_ll_stm32_v2); |
| |
| #include "i2c_ll_stm32.h" |
| #include "i2c-priv.h" |
| |
| #ifdef CONFIG_I2C_STM32_V2_TIMING |
| /* Use the algorithm to calcuate the I2C timing */ |
| #ifndef I2C_STM32_VALID_TIMING_NBR |
| #define I2C_STM32_VALID_TIMING_NBR 128U |
| #endif |
| #define I2C_STM32_SPEED_FREQ_STANDARD 0U /* 100 kHz */ |
| #define I2C_STM32_SPEED_FREQ_FAST 1U /* 400 kHz */ |
| #define I2C_STM32_SPEED_FREQ_FAST_PLUS 2U /* 1 MHz */ |
| #define I2C_STM32_ANALOG_FILTER_DELAY_MIN 50U /* ns */ |
| #define I2C_STM32_ANALOG_FILTER_DELAY_MAX 260U /* ns */ |
| #define I2C_STM32_USE_ANALOG_FILTER 1U |
| #define I2C_STM32_DIGITAL_FILTER_COEF 0U |
| #define I2C_STM32_PRESC_MAX 16U |
| #define I2C_STM32_SCLDEL_MAX 16U |
| #define I2C_STM32_SDADEL_MAX 16U |
| #define I2C_STM32_SCLH_MAX 256U |
| #define I2C_STM32_SCLL_MAX 256U |
| |
| /* I2C_DEVICE_Private_Types */ |
| struct i2c_stm32_charac_t { |
| uint32_t freq; /* Frequency in Hz */ |
| uint32_t freq_min; /* Minimum frequency in Hz */ |
| uint32_t freq_max; /* Maximum frequency in Hz */ |
| uint32_t hddat_min; /* Minimum data hold time in ns */ |
| uint32_t vddat_max; /* Maximum data valid time in ns */ |
| uint32_t sudat_min; /* Minimum data setup time in ns */ |
| uint32_t lscl_min; /* Minimum low period of the SCL clock in ns */ |
| uint32_t hscl_min; /* Minimum high period of SCL clock in ns */ |
| uint32_t trise; /* Rise time in ns */ |
| uint32_t tfall; /* Fall time in ns */ |
| uint32_t dnf; /* Digital noise filter coefficient */ |
| }; |
| |
| struct i2c_stm32_timings_t { |
| uint32_t presc; /* Timing prescaler */ |
| uint32_t tscldel; /* SCL delay */ |
| uint32_t tsdadel; /* SDA delay */ |
| uint32_t sclh; /* SCL high period */ |
| uint32_t scll; /* SCL low period */ |
| }; |
| |
| /* I2C_DEVICE Private Constants */ |
| static const struct i2c_stm32_charac_t i2c_stm32_charac[] = { |
| [I2C_STM32_SPEED_FREQ_STANDARD] = { |
| .freq = 100000, |
| .freq_min = 80000, |
| .freq_max = 120000, |
| .hddat_min = 0, |
| .vddat_max = 3450, |
| .sudat_min = 250, |
| .lscl_min = 4700, |
| .hscl_min = 4000, |
| .trise = 640, |
| .tfall = 20, |
| .dnf = I2C_STM32_DIGITAL_FILTER_COEF, |
| }, |
| [I2C_STM32_SPEED_FREQ_FAST] = { |
| .freq = 400000, |
| .freq_min = 320000, |
| .freq_max = 480000, |
| .hddat_min = 0, |
| .vddat_max = 900, |
| .sudat_min = 100, |
| .lscl_min = 1300, |
| .hscl_min = 600, |
| .trise = 250, |
| .tfall = 100, |
| .dnf = I2C_STM32_DIGITAL_FILTER_COEF, |
| }, |
| [I2C_STM32_SPEED_FREQ_FAST_PLUS] = { |
| .freq = 1000000, |
| .freq_min = 800000, |
| .freq_max = 1200000, |
| .hddat_min = 0, |
| .vddat_max = 450, |
| .sudat_min = 50, |
| .lscl_min = 500, |
| .hscl_min = 260, |
| .trise = 60, |
| .tfall = 100, |
| .dnf = I2C_STM32_DIGITAL_FILTER_COEF, |
| }, |
| }; |
| |
| static struct i2c_stm32_timings_t i2c_valid_timing[I2C_STM32_VALID_TIMING_NBR]; |
| static uint32_t i2c_valid_timing_nbr; |
| #endif /* CONFIG_I2C_STM32_V2_TIMING */ |
| |
| #ifdef CONFIG_I2C_STM32_V2_DMA |
| static int configure_dma(struct stream const *dma, struct dma_config *dma_cfg, |
| struct dma_block_config *blk_cfg) |
| { |
| if (!device_is_ready(dma->dev_dma)) { |
| LOG_ERR("DMA device not ready"); |
| return -ENODEV; |
| } |
| |
| dma_cfg->head_block = blk_cfg; |
| dma_cfg->block_count = 1; |
| |
| int ret = dma_config(dma->dev_dma, dma->dma_channel, dma_cfg); |
| |
| if (ret != 0) { |
| LOG_ERR("Problem setting up DMA: %d", ret); |
| return ret; |
| } |
| |
| ret = dma_start(dma->dev_dma, dma->dma_channel); |
| |
| if (ret != 0) { |
| LOG_ERR("Problem starting DMA: %d", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int dma_xfer_start(const struct device *dev, struct i2c_msg *msg) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| int ret = 0; |
| |
| if ((msg->flags & I2C_MSG_READ) != 0U) { |
| /* Configure RX DMA */ |
| data->dma_blk_cfg.source_address = LL_I2C_DMA_GetRegAddr( |
| cfg->i2c, LL_I2C_DMA_REG_DATA_RECEIVE); |
| data->dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| data->dma_blk_cfg.dest_address = (uint32_t)data->current.buf; |
| data->dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| data->dma_blk_cfg.block_size = data->current.len; |
| |
| ret = configure_dma(&cfg->rx_dma, &data->dma_rx_cfg, &data->dma_blk_cfg); |
| if (ret != 0) { |
| return ret; |
| } |
| LL_I2C_EnableDMAReq_RX(i2c); |
| } else { |
| if (data->current.len != 0U) { |
| /* Configure TX DMA */ |
| data->dma_blk_cfg.source_address = (uint32_t)data->current.buf; |
| data->dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| data->dma_blk_cfg.dest_address = LL_I2C_DMA_GetRegAddr( |
| cfg->i2c, LL_I2C_DMA_REG_DATA_TRANSMIT); |
| data->dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| data->dma_blk_cfg.block_size = data->current.len; |
| |
| ret = configure_dma(&cfg->tx_dma, &data->dma_tx_cfg, &data->dma_blk_cfg); |
| if (ret != 0) { |
| return ret; |
| } |
| LL_I2C_EnableDMAReq_TX(i2c); |
| } |
| } |
| return 0; |
| } |
| |
| static void dma_finish(const struct device *dev, struct i2c_msg *msg) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| |
| if ((msg->flags & I2C_MSG_READ) != 0U) { |
| dma_stop(cfg->rx_dma.dev_dma, cfg->rx_dma.dma_channel); |
| LL_I2C_DisableDMAReq_RX(cfg->i2c); |
| if (!stm32_buf_in_nocache((uintptr_t)msg->buf, msg->len)) { |
| sys_cache_data_invd_range(msg->buf, msg->len); |
| } |
| } else { |
| dma_stop(cfg->tx_dma.dev_dma, cfg->tx_dma.dma_channel); |
| LL_I2C_DisableDMAReq_TX(cfg->i2c); |
| } |
| } |
| |
| #endif /* CONFIG_I2C_STM32_V2_DMA */ |
| |
| #ifdef CONFIG_I2C_STM32_INTERRUPT |
| |
| static void i2c_stm32_disable_transfer_interrupts(const struct device *dev) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| |
| LL_I2C_DisableIT_TX(i2c); |
| LL_I2C_DisableIT_RX(i2c); |
| LL_I2C_DisableIT_STOP(i2c); |
| LL_I2C_DisableIT_NACK(i2c); |
| LL_I2C_DisableIT_TC(i2c); |
| |
| if (!data->smbalert_active) { |
| LL_I2C_DisableIT_ERR(i2c); |
| } |
| } |
| |
| #if defined(CONFIG_I2C_TARGET) |
| static void i2c_stm32_slave_event(const struct device *dev) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| const struct i2c_target_callbacks *slave_cb; |
| struct i2c_target_config *slave_cfg; |
| |
| if (data->slave_cfg->flags != I2C_TARGET_FLAGS_ADDR_10_BITS) { |
| uint8_t slave_address; |
| |
| /* Choose the right slave from the address match code */ |
| slave_address = LL_I2C_GetAddressMatchCode(i2c) >> 1; |
| if (data->slave_cfg != NULL && |
| slave_address == data->slave_cfg->address) { |
| slave_cfg = data->slave_cfg; |
| } else if (data->slave2_cfg != NULL && |
| slave_address == data->slave2_cfg->address) { |
| slave_cfg = data->slave2_cfg; |
| } else { |
| __ASSERT_NO_MSG(0); |
| return; |
| } |
| } else { |
| /* On STM32 the LL_I2C_GetAddressMatchCode & (ISR register) returns |
| * only 7bits of address match so 10 bit dual addressing is broken. |
| * Revert to assuming single address match. |
| */ |
| if (data->slave_cfg != NULL) { |
| slave_cfg = data->slave_cfg; |
| } else { |
| __ASSERT_NO_MSG(0); |
| return; |
| } |
| } |
| |
| slave_cb = slave_cfg->callbacks; |
| |
| if (LL_I2C_IsActiveFlag_TXIS(i2c)) { |
| uint8_t val = 0x00; |
| |
| if (slave_cb->read_processed(slave_cfg, &val) < 0) { |
| LOG_ERR("Error continuing reading"); |
| } |
| |
| LL_I2C_TransmitData8(i2c, val); |
| |
| return; |
| } |
| |
| if (LL_I2C_IsActiveFlag_RXNE(i2c)) { |
| uint8_t val = LL_I2C_ReceiveData8(i2c); |
| |
| if (slave_cb->write_received(slave_cfg, val)) { |
| LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); |
| } |
| return; |
| } |
| |
| if (LL_I2C_IsActiveFlag_NACK(i2c)) { |
| LL_I2C_ClearFlag_NACK(i2c); |
| } |
| |
| if (LL_I2C_IsActiveFlag_STOP(i2c)) { |
| i2c_stm32_disable_transfer_interrupts(dev); |
| |
| /* Flush remaining TX byte before clearing Stop Flag */ |
| LL_I2C_ClearFlag_TXE(i2c); |
| |
| LL_I2C_ClearFlag_STOP(i2c); |
| |
| slave_cb->stop(slave_cfg); |
| |
| /* Prepare to ACK next transmissions address byte */ |
| LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK); |
| } |
| |
| if (LL_I2C_IsActiveFlag_ADDR(i2c)) { |
| uint32_t dir; |
| |
| LL_I2C_ClearFlag_ADDR(i2c); |
| |
| dir = LL_I2C_GetTransferDirection(i2c); |
| if (dir == LL_I2C_DIRECTION_WRITE) { |
| if (slave_cb->write_requested(slave_cfg) < 0) { |
| LOG_ERR("Error initiating writing"); |
| } else { |
| LL_I2C_EnableIT_RX(i2c); |
| } |
| } else { |
| uint8_t val; |
| |
| if (slave_cb->read_requested(slave_cfg, &val) < 0) { |
| LOG_ERR("Error initiating reading"); |
| } else { |
| LL_I2C_TransmitData8(i2c, val); |
| LL_I2C_EnableIT_TX(i2c); |
| } |
| } |
| |
| LL_I2C_EnableIT_STOP(i2c); |
| LL_I2C_EnableIT_NACK(i2c); |
| LL_I2C_EnableIT_TC(i2c); |
| LL_I2C_EnableIT_ERR(i2c); |
| } |
| } |
| |
| /* Attach and start I2C as target */ |
| int i2c_stm32_target_register(const struct device *dev, |
| struct i2c_target_config *config) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| uint32_t bitrate_cfg; |
| int ret; |
| |
| if (!config) { |
| return -EINVAL; |
| } |
| |
| if (data->slave_cfg && data->slave2_cfg) { |
| return -EBUSY; |
| } |
| |
| if (data->master_active) { |
| return -EBUSY; |
| } |
| |
| bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate); |
| |
| ret = i2c_stm32_runtime_configure(dev, bitrate_cfg); |
| if (ret < 0) { |
| LOG_ERR("i2c: failure initializing"); |
| return ret; |
| } |
| |
| /* Mark device as active */ |
| (void)pm_device_runtime_get(dev); |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32F7X) |
| if (pm_device_wakeup_is_capable(dev)) { |
| /* Enable wake-up from stop */ |
| LOG_DBG("i2c: enabling wakeup from stop"); |
| LL_I2C_EnableWakeUpFromStop(cfg->i2c); |
| } |
| #endif /* CONFIG_SOC_SERIES_STM32F7X */ |
| |
| LL_I2C_Enable(i2c); |
| |
| if (!data->slave_cfg) { |
| data->slave_cfg = config; |
| if (data->slave_cfg->flags == I2C_TARGET_FLAGS_ADDR_10_BITS) { |
| LL_I2C_SetOwnAddress1(i2c, config->address, LL_I2C_OWNADDRESS1_10BIT); |
| LOG_DBG("i2c: target #1 registered with 10-bit address"); |
| } else { |
| LL_I2C_SetOwnAddress1(i2c, config->address << 1U, LL_I2C_OWNADDRESS1_7BIT); |
| LOG_DBG("i2c: target #1 registered with 7-bit address"); |
| } |
| |
| LL_I2C_EnableOwnAddress1(i2c); |
| |
| LOG_DBG("i2c: target #1 registered"); |
| } else { |
| data->slave2_cfg = config; |
| |
| if (data->slave2_cfg->flags == I2C_TARGET_FLAGS_ADDR_10_BITS) { |
| return -EINVAL; |
| } |
| LL_I2C_SetOwnAddress2(i2c, config->address << 1U, |
| LL_I2C_OWNADDRESS2_NOMASK); |
| LL_I2C_EnableOwnAddress2(i2c); |
| LOG_DBG("i2c: target #2 registered"); |
| } |
| |
| data->slave_attached = true; |
| |
| LL_I2C_EnableIT_ADDR(i2c); |
| |
| return 0; |
| } |
| |
| int i2c_stm32_target_unregister(const struct device *dev, |
| struct i2c_target_config *config) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| |
| if (!data->slave_attached) { |
| return -EINVAL; |
| } |
| |
| if (data->master_active) { |
| return -EBUSY; |
| } |
| |
| if (config == data->slave_cfg) { |
| LL_I2C_DisableOwnAddress1(i2c); |
| data->slave_cfg = NULL; |
| |
| LOG_DBG("i2c: slave #1 unregistered"); |
| } else if (config == data->slave2_cfg) { |
| LL_I2C_DisableOwnAddress2(i2c); |
| data->slave2_cfg = NULL; |
| |
| LOG_DBG("i2c: slave #2 unregistered"); |
| } else { |
| return -EINVAL; |
| } |
| |
| /* Return if there is a slave remaining */ |
| if (data->slave_cfg || data->slave2_cfg) { |
| LOG_DBG("i2c: target#%c still registered", data->slave_cfg?'1':'2'); |
| return 0; |
| } |
| |
| /* Otherwise disable I2C */ |
| LL_I2C_DisableIT_ADDR(i2c); |
| i2c_stm32_disable_transfer_interrupts(dev); |
| |
| LL_I2C_ClearFlag_NACK(i2c); |
| LL_I2C_ClearFlag_STOP(i2c); |
| LL_I2C_ClearFlag_ADDR(i2c); |
| |
| if (!data->smbalert_active) { |
| LL_I2C_Disable(i2c); |
| } |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32F7X) |
| if (pm_device_wakeup_is_capable(dev)) { |
| /* Disable wake-up from STOP */ |
| LOG_DBG("i2c: disabling wakeup from stop"); |
| LL_I2C_DisableWakeUpFromStop(i2c); |
| } |
| #endif /* CONFIG_SOC_SERIES_STM32F7X */ |
| |
| /* Release the device */ |
| (void)pm_device_runtime_put(dev); |
| |
| data->slave_attached = false; |
| |
| return 0; |
| } |
| #endif /* defined(CONFIG_I2C_TARGET) */ |
| |
| void i2c_stm32_event(const struct device *dev) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *regs = cfg->i2c; |
| uint32_t isr = LL_I2C_ReadReg(regs, ISR); |
| |
| #if defined(CONFIG_I2C_TARGET) |
| if (data->slave_attached && !data->master_active) { |
| i2c_stm32_slave_event(dev); |
| return; |
| } |
| #endif |
| |
| if ((isr & I2C_ISR_NACKF) != 0U) { |
| /* NACK received, a STOP will automatically be sent */ |
| LL_I2C_ClearFlag_NACK(regs); |
| data->current.is_nack = 1U; |
| |
| } else if ((isr & I2C_ISR_STOPF) != 0U) { |
| /* STOP detected, either caused by automatic STOP after NACK or |
| * by request below in transfer complete |
| */ |
| /* Acknowledge stop condition */ |
| LL_I2C_ClearFlag_STOP(regs); |
| /* Flush I2C controller TX buffer */ |
| LL_I2C_ClearFlag_TXE(regs); |
| goto irq_xfer_completed; |
| |
| } else if ((isr & I2C_ISR_RXNE) != 0U) { |
| __ASSERT_NO_MSG(data->current.len != 0U); |
| *data->current.buf = LL_I2C_ReceiveData8(regs); |
| data->current.len--; |
| data->current.buf++; |
| |
| } else if ((isr & I2C_ISR_TCR) != 0U) { |
| /* Transfer complete with reload flag set means more data shall be transferred |
| * in same direction (No RESTART or STOP) |
| */ |
| uint32_t cr2 = LL_I2C_ReadReg(regs, CR2); |
| #ifdef CONFIG_I2C_STM32_V2_DMA |
| /* Get number of bytes bytes transferred by DMA */ |
| uint32_t xfer_len = (cr2 & I2C_CR2_NBYTES_Msk) >> I2C_CR2_NBYTES_Pos; |
| |
| data->current.len -= xfer_len; |
| data->current.buf += xfer_len; |
| #endif |
| |
| if (data->current.len == 0U) { |
| /* In this state all data from current message is transferred |
| * and that reload was used indicates that next message will |
| * contain more data in the same direction |
| * So keep reload turned on and let thread continue with next message |
| */ |
| goto irq_xfer_completed; |
| } else if (data->current.len > 255U) { |
| /* More data exceeding I2C controllers maximum single transfer length |
| * remaining in current message |
| * Keep RELOAD mode and set NBYTES to 255 again |
| */ |
| LL_I2C_WriteReg(regs, CR2, cr2); |
| } else { |
| /* Data for a single transfer remains in buffer, set its length and |
| * - If more messages follow and transfer direction for next message is |
| * same, keep reload on |
| * - If direction changes or current message is the last, |
| * end reload mode and wait for TC |
| */ |
| cr2 &= ~I2C_CR2_NBYTES_Msk; |
| cr2 |= data->current.len << I2C_CR2_NBYTES_Pos; |
| /* If no more message data remains to be sent in current direction */ |
| if (!data->current.continue_in_next) { |
| /* Disable reload mode, expect I2C_ISR_TC next */ |
| cr2 &= ~I2C_CR2_RELOAD; |
| } |
| LL_I2C_WriteReg(regs, CR2, cr2); |
| } |
| |
| } else if ((isr & I2C_ISR_TXIS) != 0U) { |
| __ASSERT_NO_MSG(data->current.len != 0U); |
| LL_I2C_TransmitData8(regs, *data->current.buf); |
| data->current.len--; |
| data->current.buf++; |
| |
| } else if ((isr & I2C_ISR_TC) != 0U) { |
| /* Transfer Complete, (I2C_ISR_TC is set) no reload this time so either do |
| * stop now or restart in thread |
| */ |
| |
| /* Send stop if flag set in message */ |
| if ((data->current.msg->flags & I2C_MSG_STOP) != 0U) { |
| /* Setting STOP here will clear TC, expect I2C_ISR_STOPF next */ |
| LL_I2C_GenerateStopCondition(regs); |
| } else { |
| /* Keep TC set and handover to thread for restart */ |
| goto irq_xfer_completed; |
| } |
| } else { |
| /* Should not happen */ |
| __ASSERT_NO_MSG(0); |
| } |
| |
| return; |
| |
| irq_xfer_completed: |
| /* Disable IRQ:s involved in data transfer */ |
| i2c_stm32_disable_transfer_interrupts(dev); |
| /* Wakeup thread */ |
| k_sem_give(&data->device_sync_sem); |
| } |
| |
| int i2c_stm32_error(const struct device *dev) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| |
| #if defined(CONFIG_I2C_TARGET) |
| if (data->slave_attached && !data->master_active) { |
| /* No need for a slave error function right now. */ |
| return 0; |
| } |
| #endif |
| |
| if (LL_I2C_IsActiveFlag_ARLO(i2c)) { |
| LL_I2C_ClearFlag_ARLO(i2c); |
| data->current.is_arlo = 1U; |
| goto end; |
| } |
| |
| /* Don't end a transaction on bus error in master mode |
| * as errata sheet says that spurious false detections |
| * of BERR can happen which shall be ignored. |
| * If a real Bus Error occurs, transaction will time out. |
| */ |
| if (LL_I2C_IsActiveFlag_BERR(i2c)) { |
| LL_I2C_ClearFlag_BERR(i2c); |
| data->current.is_err = 1U; |
| } |
| |
| #if defined(CONFIG_SMBUS_STM32_SMBALERT) |
| if (LL_I2C_IsActiveSMBusFlag_ALERT(i2c)) { |
| LL_I2C_ClearSMBusFlag_ALERT(i2c); |
| if (data->smbalert_cb_func != NULL) { |
| data->smbalert_cb_func(data->smbalert_cb_dev); |
| } |
| goto end; |
| } |
| #endif |
| |
| return 0; |
| end: |
| i2c_stm32_disable_transfer_interrupts(dev); |
| /* Wakeup thread */ |
| k_sem_give(&data->device_sync_sem); |
| return -EIO; |
| } |
| |
| static int stm32_i2c_irq_msg_finish(const struct device *dev, struct i2c_msg *msg) |
| { |
| struct i2c_stm32_data *data = dev->data; |
| const struct i2c_stm32_config *cfg = dev->config; |
| bool keep_enabled = (msg->flags & I2C_MSG_STOP) == 0U; |
| int ret; |
| |
| /* Wait for IRQ to complete or timeout */ |
| ret = k_sem_take(&data->device_sync_sem, K_MSEC(CONFIG_I2C_STM32_TRANSFER_TIMEOUT_MSEC)); |
| |
| #ifdef CONFIG_I2C_STM32_V2_DMA |
| /* Stop DMA and invalidate cache if needed */ |
| dma_finish(dev, msg); |
| #endif |
| |
| /* Check for transfer errors or timeout */ |
| if (data->current.is_nack || data->current.is_arlo || (ret != 0)) { |
| |
| if (data->current.is_arlo) { |
| LOG_DBG("ARLO"); |
| } |
| |
| if (data->current.is_nack) { |
| LOG_DBG("NACK"); |
| } |
| |
| if (data->current.is_err) { |
| LOG_DBG("ERR %d", data->current.is_err); |
| } |
| |
| if (ret != 0) { |
| LOG_DBG("TIMEOUT"); |
| } |
| ret = -EIO; |
| } |
| |
| #if defined(CONFIG_I2C_TARGET) |
| if (!keep_enabled || (ret != 0)) { |
| data->master_active = false; |
| } |
| /* Don't disable I2C if a slave is attached */ |
| if (data->slave_attached) { |
| keep_enabled = true; |
| } |
| #endif |
| |
| /* Don't disable I2C if SMBus Alert is active */ |
| if (data->smbalert_active) { |
| keep_enabled = true; |
| } |
| |
| /* If I2C no longer need to be enabled or on error */ |
| if (!keep_enabled || (ret != 0)) { |
| LL_I2C_Disable(cfg->i2c); |
| } |
| |
| return ret; |
| } |
| |
| static int stm32_i2c_irq_xfer(const struct device *dev, struct i2c_msg *msg, |
| uint8_t *next_msg_flags, uint16_t slave) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *regs = cfg->i2c; |
| |
| data->current.len = msg->len; |
| data->current.buf = msg->buf; |
| data->current.is_arlo = 0U; |
| data->current.is_nack = 0U; |
| data->current.is_err = 0U; |
| data->current.msg = msg; |
| |
| #if defined(CONFIG_I2C_TARGET) |
| data->master_active = true; |
| #endif |
| |
| #if defined(CONFIG_I2C_STM32_V2_DMA) |
| if (!stm32_buf_in_nocache((uintptr_t)msg->buf, msg->len) && |
| ((msg->flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE)) { |
| sys_cache_data_flush_range(msg->buf, msg->len); |
| } |
| #endif /* CONFIG_I2C_STM32_V2_DMA */ |
| |
| /* Flush TX register */ |
| LL_I2C_ClearFlag_TXE(regs); |
| |
| /* Enable I2C peripheral if not already done */ |
| LL_I2C_Enable(regs); |
| |
| uint32_t cr2 = LL_I2C_ReadReg(regs, CR2); |
| uint32_t isr = LL_I2C_ReadReg(regs, ISR); |
| |
| /* Clear fields in CR2 which will be filled in later in function */ |
| cr2 &= ~(I2C_CR2_RELOAD | I2C_CR2_AUTOEND | I2C_CR2_NBYTES_Msk | I2C_CR2_SADD_Msk | |
| I2C_CR2_ADD10); |
| |
| if ((I2C_ADDR_10_BITS & data->dev_config) != 0U) { |
| cr2 |= (uint32_t)slave | I2C_CR2_ADD10; |
| } else { |
| cr2 |= (uint32_t)slave << 1; |
| } |
| |
| /* If this is not a stop message and more messages follow without change of direction, |
| * reload mode must be used during this transaction |
| * also a helper variable is set to inform IRQ handler about that it should |
| * keep reload mode turned on ready for next message |
| */ |
| if (((msg->flags & I2C_MSG_STOP) == 0U) && (next_msg_flags != NULL) && |
| ((*next_msg_flags & I2C_MSG_RESTART) == 0U)) { |
| cr2 |= I2C_CR2_RELOAD; |
| data->current.continue_in_next = true; |
| } else { |
| data->current.continue_in_next = false; |
| } |
| |
| /* For messages larger than 255 bytes, transactions must be split in chunks |
| * Use reload mode and let IRQ handler take care of jumping to next chunk |
| */ |
| if (msg->len > 255U) { |
| cr2 |= (255U << I2C_CR2_NBYTES_Pos) | I2C_CR2_RELOAD; |
| } else { |
| /* Whole message can be sent in one I2C HW transaction */ |
| cr2 |= msg->len << I2C_CR2_NBYTES_Pos; |
| } |
| |
| /* If a reload mode transfer is pending since last message then skip |
| * checking for transfer complete or restart flag in message |
| * Reload transfer will start right after writing new length |
| * to CR2 below |
| */ |
| if ((isr & I2C_ISR_TCR) == 0U) { |
| |
| /* As TCR is not set, expect TC to be set or that this is a (re)start message |
| * - msg->flags contains I2C_MSG_RESTART (for first start) or |
| * - TC in ISR register is set which happens when IRQ handler |
| * has finalized its transfer and is waiting for restart |
| * For both cases, a new start condition shall be sent |
| */ |
| __ASSERT_NO_MSG(((isr & I2C_ISR_TC) != 0U) || |
| ((msg->flags & I2C_MSG_RESTART) != 0U)); |
| |
| if ((msg->flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) { |
| cr2 &= ~I2C_CR2_RD_WRN; |
| #ifndef CONFIG_I2C_STM32_V2_DMA |
| /* Prepare first byte in TX buffer before transfer start as a |
| * workaround for errata: "Transmission stalled after first byte transfer" |
| */ |
| if (data->current.len > 0U) { |
| LL_I2C_TransmitData8(regs, *data->current.buf); |
| data->current.len--; |
| data->current.buf++; |
| } |
| #endif |
| |
| } else { |
| cr2 |= I2C_CR2_RD_WRN; |
| } |
| /* Issue (re)start condition */ |
| cr2 |= I2C_CR2_START; |
| } |
| |
| /* Set common interrupt enable bits */ |
| uint32_t cr1 = I2C_CR1_ERRIE | I2C_CR1_STOPIE | I2C_CR1_TCIE | I2C_CR1_NACKIE; |
| |
| #ifdef CONFIG_I2C_STM32_V2_DMA |
| if (dma_xfer_start(dev, msg) != 0) { |
| LL_I2C_Disable(regs); |
| #if defined(CONFIG_I2C_TARGET) |
| data->master_active = false; |
| #endif |
| return -EIO; |
| } |
| #else |
| /* If not using DMA, also enable RX and TX empty interrupts */ |
| cr1 |= I2C_CR1_TXIE | I2C_CR1_RXIE; |
| #endif /* CONFIG_I2C_STM32_V2_DMA */ |
| |
| /* Commit configuration to I2C controller and start transfer */ |
| LL_I2C_WriteReg(regs, CR2, cr2); |
| |
| cr1 |= LL_I2C_ReadReg(regs, CR1); |
| |
| /* Enable interrupts */ |
| LL_I2C_WriteReg(regs, CR1, cr1); |
| |
| /* Wait for transfer to finish */ |
| return stm32_i2c_irq_msg_finish(dev, msg); |
| } |
| |
| #else /* !CONFIG_I2C_STM32_INTERRUPT */ |
| static inline int check_errors(const struct device *dev, const char *funcname) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| I2C_TypeDef *i2c = cfg->i2c; |
| |
| if (LL_I2C_IsActiveFlag_NACK(i2c)) { |
| LL_I2C_ClearFlag_NACK(i2c); |
| LOG_DBG("%s: NACK", funcname); |
| goto error; |
| } |
| |
| if (LL_I2C_IsActiveFlag_ARLO(i2c)) { |
| LL_I2C_ClearFlag_ARLO(i2c); |
| LOG_DBG("%s: ARLO", funcname); |
| goto error; |
| } |
| |
| if (LL_I2C_IsActiveFlag_OVR(i2c)) { |
| LL_I2C_ClearFlag_OVR(i2c); |
| LOG_DBG("%s: OVR", funcname); |
| goto error; |
| } |
| |
| if (LL_I2C_IsActiveFlag_BERR(i2c)) { |
| LL_I2C_ClearFlag_BERR(i2c); |
| LOG_DBG("%s: BERR", funcname); |
| goto error; |
| } |
| |
| return 0; |
| error: |
| if (LL_I2C_IsEnabledReloadMode(i2c)) { |
| LL_I2C_DisableReloadMode(i2c); |
| } |
| return -EIO; |
| } |
| |
| static inline void msg_init(const struct device *dev, struct i2c_msg *msg, |
| uint8_t *next_msg_flags, uint16_t slave, |
| uint32_t transfer) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| |
| if (LL_I2C_IsEnabledReloadMode(i2c)) { |
| LL_I2C_SetTransferSize(i2c, msg->len); |
| } else { |
| if (I2C_ADDR_10_BITS & data->dev_config) { |
| LL_I2C_SetMasterAddressingMode(i2c, |
| LL_I2C_ADDRESSING_MODE_10BIT); |
| LL_I2C_SetSlaveAddr(i2c, (uint32_t) slave); |
| } else { |
| LL_I2C_SetMasterAddressingMode(i2c, |
| LL_I2C_ADDRESSING_MODE_7BIT); |
| LL_I2C_SetSlaveAddr(i2c, (uint32_t) slave << 1); |
| } |
| |
| if (!(msg->flags & I2C_MSG_STOP) && next_msg_flags && |
| !(*next_msg_flags & I2C_MSG_RESTART)) { |
| LL_I2C_EnableReloadMode(i2c); |
| } else { |
| LL_I2C_DisableReloadMode(i2c); |
| } |
| LL_I2C_DisableAutoEndMode(i2c); |
| LL_I2C_SetTransferRequest(i2c, transfer); |
| LL_I2C_SetTransferSize(i2c, msg->len); |
| |
| #if defined(CONFIG_I2C_TARGET) |
| data->master_active = true; |
| #endif |
| LL_I2C_Enable(i2c); |
| |
| LL_I2C_GenerateStartCondition(i2c); |
| } |
| } |
| |
| static inline int msg_done(const struct device *dev, |
| unsigned int current_msg_flags) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| I2C_TypeDef *i2c = cfg->i2c; |
| int64_t start_time = k_uptime_get(); |
| |
| /* Wait for transfer to complete */ |
| while (!LL_I2C_IsActiveFlag_TC(i2c) && !LL_I2C_IsActiveFlag_TCR(i2c)) { |
| if (check_errors(dev, __func__)) { |
| return -EIO; |
| } |
| if ((k_uptime_get() - start_time) > |
| CONFIG_I2C_STM32_TRANSFER_TIMEOUT_MSEC) { |
| return -ETIMEDOUT; |
| } |
| } |
| /* Issue stop condition if necessary */ |
| if (current_msg_flags & I2C_MSG_STOP) { |
| LL_I2C_GenerateStopCondition(i2c); |
| while (!LL_I2C_IsActiveFlag_STOP(i2c)) { |
| if ((k_uptime_get() - start_time) > |
| CONFIG_I2C_STM32_TRANSFER_TIMEOUT_MSEC) { |
| return -ETIMEDOUT; |
| } |
| } |
| |
| LL_I2C_ClearFlag_STOP(i2c); |
| LL_I2C_DisableReloadMode(i2c); |
| } |
| |
| return 0; |
| } |
| |
| static int i2c_stm32_msg_write(const struct device *dev, struct i2c_msg *msg, |
| uint8_t *next_msg_flags, uint16_t slave) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| I2C_TypeDef *i2c = cfg->i2c; |
| unsigned int len = 0U; |
| uint8_t *buf = msg->buf; |
| int64_t start_time = k_uptime_get(); |
| |
| msg_init(dev, msg, next_msg_flags, slave, LL_I2C_REQUEST_WRITE); |
| |
| len = msg->len; |
| while (len) { |
| while (1) { |
| if (LL_I2C_IsActiveFlag_TXIS(i2c)) { |
| break; |
| } |
| |
| if (check_errors(dev, __func__)) { |
| return -EIO; |
| } |
| |
| if ((k_uptime_get() - start_time) > |
| CONFIG_I2C_STM32_TRANSFER_TIMEOUT_MSEC) { |
| return -ETIMEDOUT; |
| } |
| } |
| |
| LL_I2C_TransmitData8(i2c, *buf); |
| buf++; |
| len--; |
| } |
| |
| return msg_done(dev, msg->flags); |
| } |
| |
| static int i2c_stm32_msg_read(const struct device *dev, struct i2c_msg *msg, |
| uint8_t *next_msg_flags, uint16_t slave) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| I2C_TypeDef *i2c = cfg->i2c; |
| unsigned int len = 0U; |
| uint8_t *buf = msg->buf; |
| int64_t start_time = k_uptime_get(); |
| |
| msg_init(dev, msg, next_msg_flags, slave, LL_I2C_REQUEST_READ); |
| |
| len = msg->len; |
| while (len) { |
| while (!LL_I2C_IsActiveFlag_RXNE(i2c)) { |
| if (check_errors(dev, __func__)) { |
| return -EIO; |
| } |
| if ((k_uptime_get() - start_time) > |
| CONFIG_I2C_STM32_TRANSFER_TIMEOUT_MSEC) { |
| return -ETIMEDOUT; |
| } |
| } |
| |
| *buf = LL_I2C_ReceiveData8(i2c); |
| buf++; |
| len--; |
| } |
| |
| return msg_done(dev, msg->flags); |
| } |
| #endif |
| |
| #ifdef CONFIG_I2C_STM32_V2_TIMING |
| /* |
| * Macro used to fix the compliance check warning : |
| * "DEEP_INDENTATION: Too many leading tabs - consider code refactoring |
| * in the i2c_compute_scll_sclh() function below |
| */ |
| #define I2C_LOOP_SCLH(); \ |
| if ((tscl >= clk_min) && \ |
| (tscl <= clk_max) && \ |
| (tscl_h >= i2c_stm32_charac[i2c_speed].hscl_min) && \ |
| (ti2cclk < tscl_h)) { \ |
| \ |
| int32_t error = (int32_t)tscl - (int32_t)ti2cspeed; \ |
| \ |
| if (error < 0) { \ |
| error = -error; \ |
| } \ |
| \ |
| if ((uint32_t)error < prev_error) { \ |
| prev_error = (uint32_t)error; \ |
| i2c_valid_timing[count].scll = scll; \ |
| i2c_valid_timing[count].sclh = sclh; \ |
| ret = count; \ |
| } \ |
| } |
| |
| /* |
| * @brief Calculate SCLL and SCLH and find best configuration. |
| * @param clock_src_freq I2C source clock in Hz. |
| * @param i2c_speed I2C frequency (index). |
| * @retval config index (0 to I2C_VALID_TIMING_NBR], 0xFFFFFFFF for no valid config. |
| */ |
| uint32_t i2c_compute_scll_sclh(uint32_t clock_src_freq, uint32_t i2c_speed) |
| { |
| uint32_t ret = 0xFFFFFFFFU; |
| uint32_t ti2cclk; |
| uint32_t ti2cspeed; |
| uint32_t prev_error; |
| uint32_t dnf_delay; |
| uint32_t clk_min, clk_max; |
| uint32_t scll, sclh; |
| uint32_t tafdel_min; |
| |
| ti2cclk = (NSEC_PER_SEC + (clock_src_freq / 2U)) / clock_src_freq; |
| ti2cspeed = (NSEC_PER_SEC + (i2c_stm32_charac[i2c_speed].freq / 2U)) / |
| i2c_stm32_charac[i2c_speed].freq; |
| |
| tafdel_min = (I2C_STM32_USE_ANALOG_FILTER == 1U) ? |
| I2C_STM32_ANALOG_FILTER_DELAY_MIN : |
| 0U; |
| |
| /* tDNF = DNF x tI2CCLK */ |
| dnf_delay = i2c_stm32_charac[i2c_speed].dnf * ti2cclk; |
| |
| clk_max = NSEC_PER_SEC / i2c_stm32_charac[i2c_speed].freq_min; |
| clk_min = NSEC_PER_SEC / i2c_stm32_charac[i2c_speed].freq_max; |
| |
| prev_error = ti2cspeed; |
| |
| for (uint32_t count = 0; count < I2C_STM32_VALID_TIMING_NBR; count++) { |
| /* tPRESC = (PRESC+1) x tI2CCLK*/ |
| uint32_t tpresc = (i2c_valid_timing[count].presc + 1U) * ti2cclk; |
| |
| for (scll = 0; scll < I2C_STM32_SCLL_MAX; scll++) { |
| /* tLOW(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLL+1) x tPRESC ] */ |
| uint32_t tscl_l = tafdel_min + dnf_delay + |
| (2U * ti2cclk) + ((scll + 1U) * tpresc); |
| |
| /* |
| * The I2CCLK period tI2CCLK must respect the following conditions: |
| * tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH |
| */ |
| if ((tscl_l > i2c_stm32_charac[i2c_speed].lscl_min) && |
| (ti2cclk < ((tscl_l - tafdel_min - dnf_delay) / 4U))) { |
| for (sclh = 0; sclh < I2C_STM32_SCLH_MAX; sclh++) { |
| /* |
| * tHIGH(min) <= tAF(min) + tDNF + |
| * 2 x tI2CCLK + [(SCLH+1) x tPRESC] |
| */ |
| uint32_t tscl_h = tafdel_min + dnf_delay + |
| (2U * ti2cclk) + ((sclh + 1U) * tpresc); |
| |
| /* tSCL = tf + tLOW + tr + tHIGH */ |
| uint32_t tscl = tscl_l + |
| tscl_h + i2c_stm32_charac[i2c_speed].trise + |
| i2c_stm32_charac[i2c_speed].tfall; |
| |
| /* get timings with the lowest clock error */ |
| I2C_LOOP_SCLH(); |
| } |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Macro used to fix the compliance check warning : |
| * "DEEP_INDENTATION: Too many leading tabs - consider code refactoring |
| * in the i2c_compute_presc_scldel_sdadel() function below |
| */ |
| #define I2C_LOOP_SDADEL(); \ |
| \ |
| if ((tsdadel >= (uint32_t)tsdadel_min) && \ |
| (tsdadel <= (uint32_t)tsdadel_max)) { \ |
| if (presc != prev_presc) { \ |
| i2c_valid_timing[i2c_valid_timing_nbr].presc = presc; \ |
| i2c_valid_timing[i2c_valid_timing_nbr].tscldel = scldel; \ |
| i2c_valid_timing[i2c_valid_timing_nbr].tsdadel = sdadel; \ |
| prev_presc = presc; \ |
| i2c_valid_timing_nbr++; \ |
| \ |
| if (i2c_valid_timing_nbr >= I2C_STM32_VALID_TIMING_NBR) { \ |
| break; \ |
| } \ |
| } \ |
| } |
| |
| /* |
| * @brief Compute PRESC, SCLDEL and SDADEL. |
| * @param clock_src_freq I2C source clock in Hz. |
| * @param i2c_speed I2C frequency (index). |
| * @retval None. |
| */ |
| void i2c_compute_presc_scldel_sdadel(uint32_t clock_src_freq, uint32_t i2c_speed) |
| { |
| uint32_t prev_presc = I2C_STM32_PRESC_MAX; |
| uint32_t ti2cclk; |
| int32_t tsdadel_min, tsdadel_max; |
| int32_t tscldel_min; |
| uint32_t presc, scldel, sdadel; |
| uint32_t tafdel_min, tafdel_max; |
| |
| ti2cclk = (NSEC_PER_SEC + (clock_src_freq / 2U)) / clock_src_freq; |
| |
| tafdel_min = (I2C_STM32_USE_ANALOG_FILTER == 1U) ? |
| I2C_STM32_ANALOG_FILTER_DELAY_MIN : 0U; |
| tafdel_max = (I2C_STM32_USE_ANALOG_FILTER == 1U) ? |
| I2C_STM32_ANALOG_FILTER_DELAY_MAX : 0U; |
| /* |
| * tDNF = DNF x tI2CCLK |
| * tPRESC = (PRESC+1) x tI2CCLK |
| * SDADEL >= {tf +tHD;DAT(min) - tAF(min) - tDNF - [3 x tI2CCLK]} / {tPRESC} |
| * SDADEL <= {tVD;DAT(max) - tr - tAF(max) - tDNF- [4 x tI2CCLK]} / {tPRESC} |
| */ |
| tsdadel_min = (int32_t)i2c_stm32_charac[i2c_speed].tfall + |
| (int32_t)i2c_stm32_charac[i2c_speed].hddat_min - |
| (int32_t)tafdel_min - |
| (int32_t)(((int32_t)i2c_stm32_charac[i2c_speed].dnf + 3) * |
| (int32_t)ti2cclk); |
| |
| tsdadel_max = (int32_t)i2c_stm32_charac[i2c_speed].vddat_max - |
| (int32_t)i2c_stm32_charac[i2c_speed].trise - |
| (int32_t)tafdel_max - |
| (int32_t)(((int32_t)i2c_stm32_charac[i2c_speed].dnf + 4) * |
| (int32_t)ti2cclk); |
| |
| /* {[tr+ tSU;DAT(min)] / [tPRESC]} - 1 <= SCLDEL */ |
| tscldel_min = (int32_t)i2c_stm32_charac[i2c_speed].trise + |
| (int32_t)i2c_stm32_charac[i2c_speed].sudat_min; |
| |
| if (tsdadel_min <= 0) { |
| tsdadel_min = 0; |
| } |
| |
| if (tsdadel_max <= 0) { |
| tsdadel_max = 0; |
| } |
| |
| for (presc = 0; presc < I2C_STM32_PRESC_MAX; presc++) { |
| for (scldel = 0; scldel < I2C_STM32_SCLDEL_MAX; scldel++) { |
| /* TSCLDEL = (SCLDEL+1) * (PRESC+1) * TI2CCLK */ |
| uint32_t tscldel = (scldel + 1U) * (presc + 1U) * ti2cclk; |
| |
| if (tscldel >= (uint32_t)tscldel_min) { |
| for (sdadel = 0; sdadel < I2C_STM32_SDADEL_MAX; sdadel++) { |
| /* TSDADEL = SDADEL * (PRESC+1) * TI2CCLK */ |
| uint32_t tsdadel = (sdadel * (presc + 1U)) * ti2cclk; |
| |
| I2C_LOOP_SDADEL(); |
| } |
| |
| if (i2c_valid_timing_nbr >= I2C_STM32_VALID_TIMING_NBR) { |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| int i2c_stm32_configure_timing(const struct device *dev, uint32_t clock) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| uint32_t timing = 0U; |
| uint32_t idx; |
| uint32_t speed = 0U; |
| uint32_t i2c_freq = cfg->bitrate; |
| |
| /* Reset valid timing count at the beginning of each new computation */ |
| i2c_valid_timing_nbr = 0; |
| |
| if ((clock != 0U) && (i2c_freq != 0U)) { |
| for (speed = 0 ; speed <= (uint32_t)I2C_STM32_SPEED_FREQ_FAST_PLUS ; speed++) { |
| if ((i2c_freq >= i2c_stm32_charac[speed].freq_min) && |
| (i2c_freq <= i2c_stm32_charac[speed].freq_max)) { |
| i2c_compute_presc_scldel_sdadel(clock, speed); |
| idx = i2c_compute_scll_sclh(clock, speed); |
| if (idx < I2C_STM32_VALID_TIMING_NBR) { |
| timing = ((i2c_valid_timing[idx].presc & |
| 0x0FU) << 28) | |
| ((i2c_valid_timing[idx].tscldel & 0x0FU) << 20) | |
| ((i2c_valid_timing[idx].tsdadel & 0x0FU) << 16) | |
| ((i2c_valid_timing[idx].sclh & 0xFFU) << 8) | |
| ((i2c_valid_timing[idx].scll & 0xFFU) << 0); |
| } |
| break; |
| } |
| } |
| } |
| |
| /* Fill the current timing value in data structure at runtime */ |
| data->current_timing.periph_clock = clock; |
| data->current_timing.i2c_speed = i2c_freq; |
| data->current_timing.timing_setting = timing; |
| |
| LL_I2C_SetTiming(i2c, timing); |
| |
| return 0; |
| } |
| #else/* CONFIG_I2C_STM32_V2_TIMING */ |
| |
| int i2c_stm32_configure_timing(const struct device *dev, uint32_t clock) |
| { |
| const struct i2c_stm32_config *cfg = dev->config; |
| struct i2c_stm32_data *data = dev->data; |
| I2C_TypeDef *i2c = cfg->i2c; |
| uint32_t i2c_hold_time_min, i2c_setup_time_min; |
| uint32_t i2c_h_min_time, i2c_l_min_time; |
| uint32_t presc = 1U; |
| uint32_t timing = 0U; |
| |
| /* Look for an adequate preset timing value */ |
| for (uint32_t i = 0; i < cfg->n_timings; i++) { |
| const struct i2c_config_timing *preset = &cfg->timings[i]; |
| uint32_t speed = i2c_map_dt_bitrate(preset->i2c_speed); |
| |
| if ((I2C_SPEED_GET(speed) == I2C_SPEED_GET(data->dev_config)) |
| && (preset->periph_clock == clock)) { |
| /* Found a matching periph clock and i2c speed */ |
| LL_I2C_SetTiming(i2c, preset->timing_setting); |
| return 0; |
| } |
| } |
| |
| /* No preset timing was provided, let's dynamically configure */ |
| switch (I2C_SPEED_GET(data->dev_config)) { |
| case I2C_SPEED_STANDARD: |
| i2c_h_min_time = 4000U; |
| i2c_l_min_time = 4700U; |
| i2c_hold_time_min = 500U; |
| i2c_setup_time_min = 1250U; |
| break; |
| case I2C_SPEED_FAST: |
| i2c_h_min_time = 600U; |
| i2c_l_min_time = 1300U; |
| i2c_hold_time_min = 375U; |
| i2c_setup_time_min = 500U; |
| break; |
| default: |
| LOG_ERR("i2c: speed above \"fast\" requires manual timing configuration, " |
| "see \"timings\" property of st,stm32-i2c-v2 devicetree binding"); |
| return -EINVAL; |
| } |
| |
| /* Calculate period until prescaler matches */ |
| do { |
| uint32_t t_presc = clock / presc; |
| uint32_t ns_presc = NSEC_PER_SEC / t_presc; |
| uint32_t sclh = i2c_h_min_time / ns_presc; |
| uint32_t scll = i2c_l_min_time / ns_presc; |
| uint32_t sdadel = i2c_hold_time_min / ns_presc; |
| uint32_t scldel = i2c_setup_time_min / ns_presc; |
| |
| if ((sclh - 1) > 255 || (scll - 1) > 255) { |
| ++presc; |
| continue; |
| } |
| |
| if (sdadel > 15 || (scldel - 1) > 15) { |
| ++presc; |
| continue; |
| } |
| |
| timing = __LL_I2C_CONVERT_TIMINGS(presc - 1, |
| scldel - 1, sdadel, sclh - 1, scll - 1); |
| break; |
| } while (presc < 16); |
| |
| if (presc >= 16U) { |
| LOG_ERR("I2C:failed to find prescaler value"); |
| return -EINVAL; |
| } |
| |
| LOG_DBG("I2C TIMING = 0x%x", timing); |
| LL_I2C_SetTiming(i2c, timing); |
| |
| return 0; |
| } |
| #endif /* CONFIG_I2C_STM32_V2_TIMING */ |
| |
| int i2c_stm32_transaction(const struct device *dev, |
| struct i2c_msg msg, uint8_t *next_msg_flags, |
| uint16_t periph) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_I2C_STM32_INTERRUPT |
| ret = stm32_i2c_irq_xfer(dev, &msg, next_msg_flags, periph); |
| #else |
| /* |
| * Perform a I2C transaction, while taking into account the STM32 I2C V2 |
| * peripheral has a limited maximum chunk size. Take appropriate action |
| * if the message to send exceeds that limit. |
| * |
| * The last chunk of a transmission uses this function's next_msg_flags |
| * parameter for its backend calls (_write/_read). Any previous chunks |
| * use a copy of the current message's flags, with the STOP and RESTART |
| * bits turned off. This will cause the backend to use reload-mode, |
| * which will make the combination of all chunks to look like one big |
| * transaction on the wire. |
| */ |
| struct i2c_stm32_data *data = dev->data; |
| const struct i2c_stm32_config *cfg = dev->config; |
| I2C_TypeDef *i2c = cfg->i2c; |
| const uint32_t i2c_stm32_maxchunk = 255U; |
| const uint8_t saved_flags = msg.flags; |
| uint8_t combine_flags = |
| saved_flags & ~(I2C_MSG_STOP | I2C_MSG_RESTART); |
| uint8_t *flagsp = NULL; |
| uint32_t rest = msg.len; |
| |
| do { /* do ... while to allow zero-length transactions */ |
| if (msg.len > i2c_stm32_maxchunk) { |
| msg.len = i2c_stm32_maxchunk; |
| msg.flags &= ~I2C_MSG_STOP; |
| flagsp = &combine_flags; |
| } else { |
| msg.flags = saved_flags; |
| flagsp = next_msg_flags; |
| } |
| if ((msg.flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) { |
| ret = i2c_stm32_msg_write(dev, &msg, flagsp, periph); |
| } else { |
| ret = i2c_stm32_msg_read(dev, &msg, flagsp, periph); |
| } |
| if (ret < 0) { |
| break; |
| } |
| rest -= msg.len; |
| msg.buf += msg.len; |
| msg.len = rest; |
| } while (rest > 0U); |
| |
| if (ret == -ETIMEDOUT) { |
| if (LL_I2C_IsEnabledReloadMode(i2c)) { |
| LL_I2C_DisableReloadMode(i2c); |
| } |
| #if defined(CONFIG_I2C_TARGET) |
| data->master_active = false; |
| if (!data->slave_attached && !data->smbalert_active) { |
| LL_I2C_Disable(i2c); |
| } |
| #else |
| if (!data->smbalert_active) { |
| LL_I2C_Disable(i2c); |
| } |
| #endif |
| return -EIO; |
| } |
| #endif /* CONFIG_I2C_STM32_INTERRUPT */ |
| |
| return ret; |
| } |