| /* |
| * Copyright (c) 2025 Renesas Electronics Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/device.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/drivers/interrupt_controller/gic.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/irq.h> |
| #include <zephyr/sys_clock.h> |
| |
| #define DT_DRV_COMPAT renesas_rza2m_ostm |
| |
| DEVICE_MMIO_TOPLEVEL_STATIC(ostm_base, DT_DRV_INST(0)); |
| |
| /* The interrupt numbers in the device tree are interrupt IDs and need to be converted to SPI |
| * interrupt numbers |
| */ |
| #define OSTM_IRQ_NUM (DT_INST_IRQN(0) - GIC_SPI_INT_BASE) |
| |
| #if defined(CONFIG_TEST) |
| const int32_t z_sys_timer_irq_for_test = OSTM_IRQ_NUM; |
| #endif |
| |
| #define cycle_diff_t uint32_t |
| #define CYCLE_DIFF_MAX (~(cycle_diff_t)0) |
| |
| #define OSTM_REG_ADDR(off) ((mm_reg_t)(DEVICE_MMIO_TOPLEVEL_GET(ostm_base) + (off))) |
| |
| #define OSTM_CMP_OFFSET 0x0 /* Compare register */ |
| #define OSTM_CNT_OFFSET 0x4 /* Counter register */ |
| |
| #define OSTM_TE_OFFSET 0x10 /* Count enable status register */ |
| #define OSTM_TE_ENABLE BIT(0) /* Timer enabled */ |
| |
| #define OSTM_TS_OFFSET 0x14 /* Count start trigger register */ |
| #define OSTM_TS_START BIT(0) /* Trigger start of the timer */ |
| |
| #define OSTM_TT_OFFSET 0x18 /* Count stop trigger register */ |
| #define OSTM_TT_STOP BIT(0) /* Trigger stop of the timer */ |
| |
| #define OSTM_CTL_OFFSET 0x20 /* Control register */ |
| /* |
| * Bit 0 of CTL controls enabling/disabling of OSTMnTINT interrupt requests when counting starts |
| * 0: Disables the interrupts when counting starts |
| * 1: Enables the interrupts when counting starts |
| */ |
| #define OSTM_CTL_TRIG_IRQ_ON_START 1 |
| /* |
| * Bit 1 of CTL specifies the operating mode for the counter |
| * 0: Interval timer mode |
| * 1: Free-running comparison mode |
| */ |
| #define OSTM_CTL_INTERVAL 0 |
| #define OSTM_CTL_FREERUN 2 |
| |
| /* |
| * We have two constraints on the maximum number of cycles we can wait for. |
| * |
| * 1) sys_clock_announce() accepts at most INT32_MAX ticks. |
| * |
| * 2) The number of cycles between two reports must fit in a cycle_diff_t |
| * variable before converting it to ticks. |
| * |
| * Then: |
| * |
| * 3) Pick the smallest between (1) and (2). |
| * |
| * 4) Take into account some room for the unavoidable IRQ servicing latency. |
| * Let's use 3/4 of the max range. |
| * |
| * Finally let's add the LSB value to the result so to clear out a bunch of |
| * consecutive set bits coming from the original max values to produce a |
| * nicer literal for assembly generation. |
| */ |
| #define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) |
| #define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) |
| #define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) |
| #define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) |
| #define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) |
| |
| /* Precompute CYCLES_MAX and CYC_PER_TICK at driver init to avoid runtime double divisions */ |
| static uint64_t cycles_max; |
| static uint32_t cyc_per_tick; |
| #define CYCLES_MAX cycles_max |
| #define CYC_PER_TICK cyc_per_tick |
| |
| static struct k_spinlock lock; |
| static uint64_t last_cycle; |
| static uint64_t last_tick; |
| static uint32_t last_elapsed; |
| extern unsigned int z_clock_hw_cycles_per_sec; |
| |
| static void ostm_irq_handler(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| uint32_t delta_cycles = sys_clock_cycle_get_32() - last_cycle; |
| uint32_t delta_ticks = delta_cycles / CYC_PER_TICK; |
| |
| last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK; |
| last_tick += delta_ticks; |
| last_elapsed = 0; |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| uint32_t next_cycle = last_cycle + CYC_PER_TICK; |
| |
| sys_write32(next_cycle, OSTM_REG_ADDR(OSTM_CMP_OFFSET)); |
| } else { |
| irq_disable(OSTM_IRQ_NUM); |
| } |
| |
| /* Announce to the kernel */ |
| sys_clock_announce(delta_ticks); |
| } |
| |
| void sys_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return; |
| } |
| |
| if (idle && ticks == K_TICKS_FOREVER) { |
| return; |
| } |
| |
| uint32_t next_cycle; |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| if (ticks == K_TICKS_FOREVER) { |
| next_cycle = last_cycle + CYCLES_MAX; |
| } else { |
| next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK; |
| if ((next_cycle - last_cycle) > CYCLES_MAX) { |
| next_cycle = last_cycle + CYCLES_MAX; |
| } |
| } |
| |
| sys_write32(next_cycle, OSTM_REG_ADDR(OSTM_CMP_OFFSET)); |
| irq_enable(OSTM_IRQ_NUM); |
| |
| k_spin_unlock(&lock, key); |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return 0; |
| } |
| |
| uint32_t delta_cycles = sys_clock_cycle_get_32() - last_cycle; |
| uint32_t delta_ticks = delta_cycles / CYC_PER_TICK; |
| |
| last_elapsed = delta_ticks; |
| |
| return delta_ticks; |
| } |
| |
| void sys_clock_disable(void) |
| { |
| if ((sys_read8(OSTM_REG_ADDR(OSTM_TE_OFFSET)) & OSTM_TE_ENABLE) != OSTM_TE_ENABLE) { |
| return; |
| } |
| |
| sys_write8(OSTM_TT_STOP, OSTM_REG_ADDR(OSTM_TT_OFFSET)); |
| while ((sys_read8(OSTM_REG_ADDR(OSTM_TE_OFFSET)) & OSTM_TE_ENABLE) == OSTM_TE_ENABLE) { |
| ; |
| } |
| } |
| |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint32_t ostm_cnt = sys_read32(OSTM_REG_ADDR(OSTM_CNT_OFFSET)); |
| |
| k_spin_unlock(&lock, key); |
| |
| return ostm_cnt; |
| } |
| |
| static int sys_clock_driver_init(void) |
| { |
| int ret; |
| const struct device *clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)); |
| uint32_t clock_subsys = DT_INST_CLOCKS_CELL(0, clk_id); |
| |
| if (!device_is_ready(clock_dev)) { |
| return -ENODEV; |
| } |
| |
| ret = clock_control_on(clock_dev, (clock_control_subsys_t)&clock_subsys); |
| |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = clock_control_get_rate(clock_dev, (clock_control_subsys_t)&clock_subsys, |
| &z_clock_hw_cycles_per_sec); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| last_tick = 0; |
| last_cycle = 0; |
| cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC; |
| cycles_max = CYCLES_MAX_5; |
| |
| DEVICE_MMIO_TOPLEVEL_MAP(ostm_base, K_MEM_CACHE_NONE); |
| |
| IRQ_CONNECT(OSTM_IRQ_NUM, DT_INST_IRQ(0, priority), ostm_irq_handler, NULL, |
| DT_INST_IRQ(0, flags)); |
| |
| /* Restarting the timer will cause reset of CNT register in free-running mode */ |
| sys_clock_disable(); |
| |
| sys_write32(cyc_per_tick, OSTM_REG_ADDR(OSTM_CMP_OFFSET)); |
| sys_write8(OSTM_CTL_FREERUN, OSTM_REG_ADDR(OSTM_CTL_OFFSET)); |
| sys_write8(OSTM_TS_START, OSTM_REG_ADDR(OSTM_TS_OFFSET)); |
| |
| irq_enable(OSTM_IRQ_NUM); |
| return 0; |
| } |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |