blob: f620ab473f9e066ab3c73fd1001cab660a550a48 [file] [log] [blame]
/*
* Copyright (c) 2020 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT qemu_ivshmem
#define LOG_LEVEL CONFIG_IVSHMEM_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(ivshmem);
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/pcie/cap.h>
#include <zephyr/init.h>
#include <zephyr/drivers/virtualization/ivshmem.h>
#include "virt_ivshmem.h"
#ifdef CONFIG_IVSHMEM_DOORBELL
static void ivshmem_doorbell(const void *arg)
{
const struct ivshmem_param *param = arg;
LOG_DBG("Interrupt received on vector %u", param->vector);
if (param->signal != NULL) {
k_poll_signal_raise(param->signal, param->vector);
}
}
static bool ivshmem_configure_msi_x_interrupts(const struct device *dev)
{
#if defined(CONFIG_PCIE_MSI_X) && defined(CONFIG_PCIE_MSI_MULTI_VECTOR)
struct ivshmem *data = dev->data;
bool ret = false;
uint8_t n_vectors;
uint32_t key;
int i;
key = irq_lock();
n_vectors = pcie_msi_vectors_allocate(data->pcie->bdf,
CONFIG_IVSHMEM_INT_PRIORITY,
data->vectors,
CONFIG_IVSHMEM_MSI_X_VECTORS);
if (n_vectors == 0) {
LOG_ERR("Could not allocate %u MSI-X vectors",
CONFIG_IVSHMEM_MSI_X_VECTORS);
goto out;
}
LOG_DBG("Allocated %u vectors", n_vectors);
for (i = 0; i < n_vectors; i++) {
data->params[i].dev = dev;
data->params[i].vector = i;
if (!pcie_msi_vector_connect(data->pcie->bdf,
&data->vectors[i],
ivshmem_doorbell,
&data->params[i], 0)) {
LOG_ERR("Failed to connect MSI-X vector %u", i);
goto out;
}
}
LOG_INF("%u MSI-X Vectors connected", n_vectors);
if (!pcie_msi_enable(data->pcie->bdf, data->vectors, n_vectors, 0)) {
LOG_ERR("Could not enable MSI-X");
goto out;
}
data->n_vectors = n_vectors;
ret = true;
LOG_DBG("MSI-X configured");
out:
irq_unlock(key);
return ret;
#else
return false;
#endif
}
#ifdef CONFIG_IVSHMEM_V2
static bool ivshmem_configure_int_x_interrupts(const struct device *dev)
{
struct ivshmem *data = dev->data;
const struct ivshmem_cfg *cfg = dev->config;
uint32_t cfg_int = pcie_conf_read(data->pcie->bdf, PCIE_CONF_INTR);
uint32_t cfg_intx_pin = PCIE_CONF_INTR_PIN(cfg_int);
if (!IN_RANGE(cfg_intx_pin, PCIE_INTX_PIN_MIN, PCIE_INTX_PIN_MAX)) {
LOG_ERR("Invalid INTx pin %u", cfg_intx_pin);
return false;
}
/* Ensure INTx is enabled */
pcie_set_cmd(data->pcie->bdf, PCIE_CONF_CMDSTAT_INTX_DISABLE, false);
const struct intx_info *intx = &cfg->intx_info[cfg_intx_pin - 1];
data->params[0].dev = dev;
data->params[0].vector = 0;
LOG_INF("Enabling INTx IRQ %u (pin %u)", intx->irq, cfg_intx_pin);
if (intx->irq == INTX_IRQ_UNUSED ||
!pcie_connect_dynamic_irq(
data->pcie->bdf, intx->irq, intx->priority,
ivshmem_doorbell, &data->params[0], intx->flags)) {
LOG_ERR("Failed to connect INTx ISR %u", cfg_intx_pin);
return false;
}
data->n_vectors = 1;
pcie_irq_enable(data->pcie->bdf, intx->irq);
return true;
}
#endif /* CONFIG_IVSHMEM_V2 */
static void register_signal(const struct device *dev,
struct k_poll_signal *signal,
uint16_t vector)
{
struct ivshmem *data = dev->data;
data->params[vector].signal = signal;
}
#else
#define ivshmem_configure_msi_x_interrupts(...) true
#define ivshmem_configure_int_x_interrupts(...) true
#define register_signal(...)
#endif /* CONFIG_IVSHMEM_DOORBELL */
static const struct ivshmem_reg no_reg;
__maybe_unused static uint64_t pcie_conf_read_u64(pcie_bdf_t bdf, unsigned int reg)
{
uint64_t lo = pcie_conf_read(bdf, reg);
uint64_t hi = pcie_conf_read(bdf, reg + 1);
return hi << 32 | lo;
}
static bool ivshmem_configure(const struct device *dev)
{
struct ivshmem *data = dev->data;
struct pcie_bar mbar_regs, mbar_msi_x, mbar_shmem;
if (!pcie_get_mbar(data->pcie->bdf, IVSHMEM_PCIE_REG_BAR_IDX, &mbar_regs)) {
if (IS_ENABLED(CONFIG_IVSHMEM_DOORBELL)
IF_ENABLED(CONFIG_IVSHMEM_V2, (|| data->ivshmem_v2))) {
LOG_ERR("ivshmem regs bar not found");
return false;
}
LOG_INF("ivshmem regs bar not found");
device_map(DEVICE_MMIO_RAM_PTR(dev), (uintptr_t)&no_reg,
sizeof(struct ivshmem_reg), K_MEM_CACHE_NONE);
} else {
pcie_set_cmd(data->pcie->bdf, PCIE_CONF_CMDSTAT_MEM |
PCIE_CONF_CMDSTAT_MASTER, true);
device_map(DEVICE_MMIO_RAM_PTR(dev), mbar_regs.phys_addr,
mbar_regs.size, K_MEM_CACHE_NONE);
}
bool msi_x_bar_present = pcie_get_mbar(
data->pcie->bdf, IVSHMEM_PCIE_MSI_X_BAR_IDX, &mbar_msi_x);
bool shmem_bar_present = pcie_get_mbar(
data->pcie->bdf, IVSHMEM_PCIE_SHMEM_BAR_IDX, &mbar_shmem);
LOG_INF("MSI-X bar present: %s", msi_x_bar_present ? "yes" : "no");
LOG_INF("SHMEM bar present: %s", shmem_bar_present ? "yes" : "no");
uintptr_t shmem_phys_addr = mbar_shmem.phys_addr;
#ifdef CONFIG_IVSHMEM_V2
if (data->ivshmem_v2) {
if (mbar_regs.size < sizeof(struct ivshmem_v2_reg)) {
LOG_ERR("Invalid ivshmem regs size %zu", mbar_regs.size);
return false;
}
volatile struct ivshmem_v2_reg *regs =
(volatile struct ivshmem_v2_reg *)DEVICE_MMIO_GET(dev);
data->max_peers = regs->max_peers;
if (!IN_RANGE(data->max_peers, 2, CONFIG_IVSHMEM_V2_MAX_PEERS)) {
LOG_ERR("Invalid max peers %u", data->max_peers);
return false;
}
uint32_t vendor_cap = pcie_get_cap(data->pcie->bdf, PCI_CAP_ID_VNDR);
uint32_t cap_pos;
if (!shmem_bar_present) {
cap_pos = vendor_cap + IVSHMEM_CFG_ADDRESS / 4;
shmem_phys_addr = pcie_conf_read_u64(data->pcie->bdf, cap_pos);
}
/* State table R/O */
cap_pos = vendor_cap + IVSHMEM_CFG_STATE_TAB_SZ / 4;
size_t state_table_size = pcie_conf_read(data->pcie->bdf, cap_pos);
LOG_INF("State table size 0x%zX", state_table_size);
if (state_table_size < sizeof(uint32_t) * data->max_peers) {
LOG_ERR("Invalid state table size %zu", state_table_size);
return false;
}
z_phys_map((uint8_t **)&data->state_table_shmem,
shmem_phys_addr, state_table_size,
K_MEM_CACHE_WB | K_MEM_PERM_USER);
/* R/W section (optional) */
cap_pos = vendor_cap + IVSHMEM_CFG_RW_SECTION_SZ / 4;
data->rw_section_size = pcie_conf_read_u64(data->pcie->bdf, cap_pos);
size_t rw_section_offset = state_table_size;
LOG_INF("RW section size 0x%zX", data->rw_section_size);
if (data->rw_section_size > 0) {
z_phys_map((uint8_t **)&data->rw_section_shmem,
shmem_phys_addr + rw_section_offset, data->rw_section_size,
K_MEM_CACHE_WB | K_MEM_PERM_RW | K_MEM_PERM_USER);
}
/* Output sections */
cap_pos = vendor_cap + IVSHMEM_CFG_OUTPUT_SECTION_SZ / 4;
data->output_section_size = pcie_conf_read_u64(data->pcie->bdf, cap_pos);
size_t output_section_offset = rw_section_offset + data->rw_section_size;
LOG_INF("Output section size 0x%zX", data->output_section_size);
for (uint32_t i = 0; i < data->max_peers; i++) {
uintptr_t phys_addr = shmem_phys_addr +
output_section_offset +
(data->output_section_size * i);
uint32_t flags = K_MEM_CACHE_WB | K_MEM_PERM_USER;
/* Only your own output section is R/W */
if (i == regs->id) {
flags |= K_MEM_PERM_RW;
}
z_phys_map((uint8_t **)&data->output_section_shmem[i],
phys_addr, data->output_section_size, flags);
}
data->size = output_section_offset +
data->output_section_size * data->max_peers;
/* Ensure one-shot ISR mode is disabled */
cap_pos = vendor_cap + IVSHMEM_CFG_PRIV_CNTL / 4;
uint32_t cfg_priv_cntl = pcie_conf_read(data->pcie->bdf, cap_pos);
cfg_priv_cntl &= ~(IVSHMEM_PRIV_CNTL_ONESHOT_INT <<
((IVSHMEM_CFG_PRIV_CNTL % 4) * 8));
pcie_conf_write(data->pcie->bdf, cap_pos, cfg_priv_cntl);
} else
#endif /* CONFIG_IVSHMEM_V2 */
{
if (!shmem_bar_present) {
LOG_ERR("ivshmem mem bar not found");
return false;
}
data->size = mbar_shmem.size;
z_phys_map((uint8_t **)&data->shmem,
shmem_phys_addr, data->size,
K_MEM_CACHE_WB | K_MEM_PERM_RW | K_MEM_PERM_USER);
}
if (msi_x_bar_present) {
if (!ivshmem_configure_msi_x_interrupts(dev)) {
LOG_ERR("MSI-X init failed");
return false;
}
}
#ifdef CONFIG_IVSHMEM_V2
else if (data->ivshmem_v2) {
if (!ivshmem_configure_int_x_interrupts(dev)) {
LOG_ERR("INTx init failed");
return false;
}
}
#endif
LOG_INF("ivshmem configured:");
LOG_INF("- Registers at 0x%lX (mapped to 0x%lX)",
mbar_regs.phys_addr, DEVICE_MMIO_GET(dev));
LOG_INF("- Shared memory of 0x%zX bytes at 0x%lX (mapped to 0x%lX)",
data->size, shmem_phys_addr, data->shmem);
return true;
}
static size_t ivshmem_api_get_mem(const struct device *dev,
uintptr_t *memmap)
{
struct ivshmem *data = dev->data;
#ifdef CONFIG_IVSHMEM_V2
if (data->ivshmem_v2) {
*memmap = 0;
return 0;
}
#endif
*memmap = data->shmem;
return data->size;
}
static uint32_t ivshmem_api_get_id(const struct device *dev)
{
uint32_t id;
#ifdef CONFIG_IVSHMEM_V2
struct ivshmem *data = dev->data;
if (data->ivshmem_v2) {
volatile struct ivshmem_v2_reg *regs =
(volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev);
id = regs->id;
} else
#endif
{
volatile struct ivshmem_reg *regs =
(volatile struct ivshmem_reg *) DEVICE_MMIO_GET(dev);
id = regs->iv_position;
}
return id;
}
static uint16_t ivshmem_api_get_vectors(const struct device *dev)
{
#if CONFIG_IVSHMEM_DOORBELL
struct ivshmem *data = dev->data;
return data->n_vectors;
#else
return 0;
#endif
}
static int ivshmem_api_int_peer(const struct device *dev,
uint32_t peer_id, uint16_t vector)
{
#if CONFIG_IVSHMEM_DOORBELL
struct ivshmem *data = dev->data;
volatile uint32_t *doorbell_reg;
uint32_t doorbell = IVSHMEM_GEN_DOORBELL(peer_id, vector);
if (vector >= data->n_vectors) {
return -EINVAL;
}
#ifdef CONFIG_IVSHMEM_V2
if (data->ivshmem_v2 && peer_id >= data->max_peers) {
return -EINVAL;
}
if (data->ivshmem_v2) {
volatile struct ivshmem_v2_reg *regs =
(volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev);
doorbell_reg = &regs->doorbell;
} else
#endif
{
volatile struct ivshmem_reg *regs =
(volatile struct ivshmem_reg *) DEVICE_MMIO_GET(dev);
doorbell_reg = &regs->doorbell;
}
*doorbell_reg = doorbell;
return 0;
#else
return -ENOSYS;
#endif
}
static int ivshmem_api_register_handler(const struct device *dev,
struct k_poll_signal *signal,
uint16_t vector)
{
#if CONFIG_IVSHMEM_DOORBELL
struct ivshmem *data = dev->data;
if (vector >= data->n_vectors) {
return -EINVAL;
}
register_signal(dev, signal, vector);
return 0;
#else
return -ENOSYS;
#endif
}
#ifdef CONFIG_IVSHMEM_V2
static size_t ivshmem_api_get_rw_mem_section(const struct device *dev,
uintptr_t *memmap)
{
struct ivshmem *data = dev->data;
if (!data->ivshmem_v2) {
*memmap = 0;
return 0;
}
*memmap = data->rw_section_shmem;
return data->rw_section_size;
}
static size_t ivshmem_api_get_output_mem_section(const struct device *dev,
uint32_t peer_id,
uintptr_t *memmap)
{
struct ivshmem *data = dev->data;
if (!data->ivshmem_v2 || peer_id >= data->max_peers) {
*memmap = 0;
return 0;
}
*memmap = data->output_section_shmem[peer_id];
return data->output_section_size;
}
static uint32_t ivshmem_api_get_state(const struct device *dev,
uint32_t peer_id)
{
struct ivshmem *data = dev->data;
if (!data->ivshmem_v2 || peer_id >= data->max_peers) {
return 0;
}
const volatile uint32_t *state_table =
(const volatile uint32_t *)data->state_table_shmem;
return state_table[peer_id];
}
static int ivshmem_api_set_state(const struct device *dev,
uint32_t state)
{
struct ivshmem *data = dev->data;
if (!data->ivshmem_v2) {
return -ENOSYS;
}
volatile struct ivshmem_v2_reg *regs =
(volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev);
regs->state = state;
return 0;
}
static uint32_t ivshmem_api_get_max_peers(const struct device *dev)
{
struct ivshmem *data = dev->data;
if (!data->ivshmem_v2) {
return 0;
}
return data->max_peers;
}
static uint16_t ivshmem_api_get_protocol(const struct device *dev)
{
struct ivshmem *data = dev->data;
if (!data->ivshmem_v2) {
return 0;
}
uint16_t protocol = (data->pcie->class_rev >> 8) & 0xFFFF;
return protocol;
}
static int ivshmem_api_enable_interrupts(const struct device *dev,
bool enable)
{
struct ivshmem *data = dev->data;
if (!data->ivshmem_v2) {
return -ENOSYS;
}
volatile struct ivshmem_v2_reg *regs =
(volatile struct ivshmem_v2_reg *) DEVICE_MMIO_GET(dev);
regs->int_control = enable ? IVSHMEM_INT_ENABLE : 0;
return 0;
}
#endif /* CONFIG_IVSHMEM_V2 */
static const struct ivshmem_driver_api ivshmem_api = {
.get_mem = ivshmem_api_get_mem,
.get_id = ivshmem_api_get_id,
.get_vectors = ivshmem_api_get_vectors,
.int_peer = ivshmem_api_int_peer,
.register_handler = ivshmem_api_register_handler,
#ifdef CONFIG_IVSHMEM_V2
.get_rw_mem_section = ivshmem_api_get_rw_mem_section,
.get_output_mem_section = ivshmem_api_get_output_mem_section,
.get_state = ivshmem_api_get_state,
.set_state = ivshmem_api_set_state,
.get_max_peers = ivshmem_api_get_max_peers,
.get_protocol = ivshmem_api_get_protocol,
.enable_interrupts = ivshmem_api_enable_interrupts
#endif
};
static int ivshmem_init(const struct device *dev)
{
struct ivshmem *data = dev->data;
if (data->pcie->bdf == PCIE_BDF_NONE) {
LOG_WRN("ivshmem device not found");
return -ENOTSUP;
}
LOG_INF("PCIe: ID 0x%08X, BDF 0x%X, class-rev 0x%08X",
data->pcie->id, data->pcie->bdf, data->pcie->class_rev);
if (!ivshmem_configure(dev)) {
return -EIO;
}
return 0;
}
#define IVSHMEM_INTX_INFO(intx_idx, drv_idx) { \
COND_CODE_1(DT_IRQ_HAS_IDX(DT_DRV_INST(drv_idx), intx_idx), \
( \
.irq = DT_IRQ_BY_IDX(DT_DRV_INST(drv_idx), intx_idx, irq), \
.priority = DT_IRQ_BY_IDX(DT_DRV_INST(drv_idx), intx_idx, priority), \
.flags = DT_IRQ_BY_IDX(DT_DRV_INST(drv_idx), intx_idx, flags), \
), \
(.irq = INTX_IRQ_UNUSED)) \
}
#define IVSHMEM_DEVICE_INIT(n) \
BUILD_ASSERT(!IS_ENABLED(CONFIG_IVSHMEM_DOORBELL) || \
((IS_ENABLED(CONFIG_PCIE_MSI_X) && \
IS_ENABLED(CONFIG_PCIE_MSI_MULTI_VECTOR)) || \
(DT_INST_PROP(n, ivshmem_v2) && \
DT_INST_NODE_HAS_PROP(n, interrupts))), \
"IVSHMEM_DOORBELL requires either MSI-X or INTx support"); \
BUILD_ASSERT(IS_ENABLED(CONFIG_IVSHMEM_V2) || !DT_INST_PROP(n, ivshmem_v2), \
"CONFIG_IVSHMEM_V2 must be enabled for ivshmem-v2"); \
DEVICE_PCIE_INST_DECLARE(n); \
static struct ivshmem ivshmem_data_##n = { \
DEVICE_PCIE_INST_INIT(n, pcie), \
IF_ENABLED(CONFIG_IVSHMEM_V2, \
(.ivshmem_v2 = DT_INST_PROP(n, ivshmem_v2),)) \
}; \
IF_ENABLED(CONFIG_IVSHMEM_V2, ( \
static struct ivshmem_cfg ivshmem_cfg_##n = { \
.intx_info = \
{ FOR_EACH_FIXED_ARG(IVSHMEM_INTX_INFO, (,), n, 0, 1, 2, 3) } \
}; \
)); \
DEVICE_DT_INST_DEFINE(n, &ivshmem_init, NULL, \
&ivshmem_data_##n, \
COND_CODE_1(CONFIG_IVSHMEM_V2, (&ivshmem_cfg_##n), (NULL)), \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&ivshmem_api);
DT_INST_FOREACH_STATUS_OKAY(IVSHMEM_DEVICE_INIT)