blob: bc4fc0421bf575c54d2b891e3575eb1e9e53fb5e [file] [log] [blame]
/*
* Copyright (c) 2022 Libre Solar Technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_usb_serial
#include <hal/usb_serial_jtag_ll.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <errno.h>
#include <soc.h>
#include <zephyr/drivers/uart.h>
#if defined(CONFIG_SOC_SERIES_ESP32C3) || defined(CONFIG_SOC_SERIES_ESP32C6)
#include <zephyr/drivers/interrupt_controller/intc_esp32c3.h>
#else
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
#endif
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <esp_attr.h>
#if defined(CONFIG_SOC_SERIES_ESP32C3) || defined(CONFIG_SOC_SERIES_ESP32C6)
#define ISR_HANDLER isr_handler_t
#else
#define ISR_HANDLER intr_handler_t
#endif
/*
* Timeout after which the poll_out function stops waiting for space in the tx fifo.
*
* Without this timeout, the function would get stuck forever and block the processor if no host is
* connected to the USB port.
*
* USB full-speed uses a frame rate of 1 ms. Thus, a timeout of 50 ms provides plenty of safety
* margin even for a loaded bus. This is the same value as used in the ESP-IDF.
*/
#define USBSERIAL_POLL_OUT_TIMEOUT_MS (50U)
struct serial_esp32_usb_config {
const struct device *clock_dev;
const clock_control_subsys_t clock_subsys;
int irq_source;
int irq_priority;
int irq_flags;
};
struct serial_esp32_usb_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t irq_cb;
void *irq_cb_data;
#endif
int64_t last_tx_time;
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void serial_esp32_usb_isr(void *arg);
#endif
static int serial_esp32_usb_poll_in(const struct device *dev, unsigned char *p_char)
{
if (!usb_serial_jtag_ll_rxfifo_data_available()) {
return -1;
}
usb_serial_jtag_ll_read_rxfifo(p_char, 1);
return 0;
}
static void serial_esp32_usb_poll_out(const struct device *dev, unsigned char c)
{
struct serial_esp32_usb_data *data = dev->data;
/*
* If there is no USB host connected, this function will busy-wait once for the timeout
* period, but return immediately for subsequent calls.
*/
do {
if (usb_serial_jtag_ll_txfifo_writable()) {
usb_serial_jtag_ll_write_txfifo(&c, 1);
usb_serial_jtag_ll_txfifo_flush();
data->last_tx_time = k_uptime_get();
return;
}
} while ((k_uptime_get() - data->last_tx_time) < USBSERIAL_POLL_OUT_TIMEOUT_MS);
}
static int serial_esp32_usb_err_check(const struct device *dev)
{
ARG_UNUSED(dev);
return 0;
}
static int serial_esp32_usb_init(const struct device *dev)
{
const struct serial_esp32_usb_config *config = dev->config;
if (!device_is_ready(config->clock_dev)) {
return -ENODEV;
}
int ret = clock_control_on(config->clock_dev, config->clock_subsys);
if (ret != 0) {
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
ret = esp_intr_alloc(config->irq_source,
ESP_PRIO_TO_FLAGS(config->irq_priority) |
ESP_INT_FLAGS_CHECK(config->irq_flags),
(ISR_HANDLER)serial_esp32_usb_isr,
(void *)dev, NULL);
#endif
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int serial_esp32_usb_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len)
{
ARG_UNUSED(dev);
int ret = usb_serial_jtag_ll_write_txfifo(tx_data, len);
usb_serial_jtag_ll_txfifo_flush();
return ret;
}
static int serial_esp32_usb_fifo_read(const struct device *dev, uint8_t *rx_data, const int len)
{
ARG_UNUSED(dev);
return usb_serial_jtag_ll_read_rxfifo(rx_data, len);
}
static void serial_esp32_usb_irq_tx_enable(const struct device *dev)
{
struct serial_esp32_usb_data *data = dev->data;
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
if (data->irq_cb != NULL) {
unsigned int key = irq_lock();
data->irq_cb(dev, data->irq_cb_data);
arch_irq_unlock(key);
}
}
static void serial_esp32_usb_irq_tx_disable(const struct device *dev)
{
ARG_UNUSED(dev);
usb_serial_jtag_ll_disable_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
}
static int serial_esp32_usb_irq_tx_ready(const struct device *dev)
{
ARG_UNUSED(dev);
return (usb_serial_jtag_ll_txfifo_writable() &&
usb_serial_jtag_ll_get_intr_ena_status() & USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
}
static void serial_esp32_usb_irq_rx_enable(const struct device *dev)
{
ARG_UNUSED(dev);
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_SERIAL_OUT_RECV_PKT);
usb_serial_jtag_ll_ena_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_OUT_RECV_PKT);
}
static void serial_esp32_usb_irq_rx_disable(const struct device *dev)
{
ARG_UNUSED(dev);
usb_serial_jtag_ll_disable_intr_mask(USB_SERIAL_JTAG_INTR_SERIAL_OUT_RECV_PKT);
}
static int serial_esp32_usb_irq_tx_complete(const struct device *dev)
{
ARG_UNUSED(dev);
return usb_serial_jtag_ll_txfifo_writable();
}
static int serial_esp32_usb_irq_rx_ready(const struct device *dev)
{
ARG_UNUSED(dev);
return usb_serial_jtag_ll_rxfifo_data_available();
}
static void serial_esp32_usb_irq_err_enable(const struct device *dev)
{
ARG_UNUSED(dev);
}
static void serial_esp32_usb_irq_err_disable(const struct device *dev)
{
ARG_UNUSED(dev);
}
static int serial_esp32_usb_irq_is_pending(const struct device *dev)
{
return serial_esp32_usb_irq_rx_ready(dev) || serial_esp32_usb_irq_tx_ready(dev);
}
static int serial_esp32_usb_irq_update(const struct device *dev)
{
ARG_UNUSED(dev);
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_SERIAL_OUT_RECV_PKT);
usb_serial_jtag_ll_clr_intsts_mask(USB_SERIAL_JTAG_INTR_SERIAL_IN_EMPTY);
return 1;
}
static void serial_esp32_usb_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb, void *cb_data)
{
struct serial_esp32_usb_data *data = dev->data;
data->irq_cb_data = cb_data;
data->irq_cb = cb;
}
static void serial_esp32_usb_isr(void *arg)
{
const struct device *dev = (const struct device *)arg;
struct serial_esp32_usb_data *data = dev->data;
uint32_t uart_intr_status = usb_serial_jtag_ll_get_intsts_mask();
if (uart_intr_status == 0) {
return;
}
usb_serial_jtag_ll_clr_intsts_mask(uart_intr_status);
if (data->irq_cb != NULL) {
data->irq_cb(dev, data->irq_cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const DRAM_ATTR struct uart_driver_api serial_esp32_usb_api = {
.poll_in = serial_esp32_usb_poll_in,
.poll_out = serial_esp32_usb_poll_out,
.err_check = serial_esp32_usb_err_check,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = serial_esp32_usb_fifo_fill,
.fifo_read = serial_esp32_usb_fifo_read,
.irq_tx_enable = serial_esp32_usb_irq_tx_enable,
.irq_tx_disable = serial_esp32_usb_irq_tx_disable,
.irq_tx_ready = serial_esp32_usb_irq_tx_ready,
.irq_rx_enable = serial_esp32_usb_irq_rx_enable,
.irq_rx_disable = serial_esp32_usb_irq_rx_disable,
.irq_tx_complete = serial_esp32_usb_irq_tx_complete,
.irq_rx_ready = serial_esp32_usb_irq_rx_ready,
.irq_err_enable = serial_esp32_usb_irq_err_enable,
.irq_err_disable = serial_esp32_usb_irq_err_disable,
.irq_is_pending = serial_esp32_usb_irq_is_pending,
.irq_update = serial_esp32_usb_irq_update,
.irq_callback_set = serial_esp32_usb_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
static const DRAM_ATTR struct serial_esp32_usb_config serial_esp32_usb_cfg = {
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)),
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(0, offset),
.irq_source = DT_INST_IRQ_BY_IDX(0, 0, irq),
.irq_priority = DT_INST_IRQ_BY_IDX(0, 0, priority),
.irq_flags = DT_INST_IRQ_BY_IDX(0, 0, flags)
};
static struct serial_esp32_usb_data serial_esp32_usb_data_0;
DEVICE_DT_INST_DEFINE(0, serial_esp32_usb_init, NULL, &serial_esp32_usb_data_0,
&serial_esp32_usb_cfg, PRE_KERNEL_1,
CONFIG_SERIAL_INIT_PRIORITY, &serial_esp32_usb_api);