|  | /* | 
|  | * Copyright (c) 2018 Nordic Semiconductor ASA | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | #define ADC_CONTEXT_USES_KERNEL_TIMER | 
|  | #include "adc_context.h" | 
|  | #include <hal/nrf_saadc.h> | 
|  |  | 
|  | #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL | 
|  | #include <logging/log.h> | 
|  | LOG_MODULE_REGISTER(adc_nrfx_saadc); | 
|  |  | 
|  | struct driver_data { | 
|  | struct adc_context ctx; | 
|  |  | 
|  | u8_t positive_inputs[SAADC_CH_NUM]; | 
|  | }; | 
|  |  | 
|  | static struct driver_data m_data = { | 
|  | ADC_CONTEXT_INIT_TIMER(m_data, ctx), | 
|  | ADC_CONTEXT_INIT_LOCK(m_data, ctx), | 
|  | ADC_CONTEXT_INIT_SYNC(m_data, ctx), | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Implementation of the ADC driver API function: adc_channel_setup. */ | 
|  | static int adc_nrfx_channel_setup(struct device *dev, | 
|  | const struct adc_channel_cfg *channel_cfg) | 
|  | { | 
|  | nrf_saadc_channel_config_t config = { | 
|  | .resistor_p = NRF_SAADC_RESISTOR_DISABLED, | 
|  | .resistor_n = NRF_SAADC_RESISTOR_DISABLED, | 
|  | .burst      = NRF_SAADC_BURST_DISABLED, | 
|  | }; | 
|  | u8_t channel_id = channel_cfg->channel_id; | 
|  |  | 
|  | if (channel_id >= SAADC_CH_NUM) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (channel_cfg->gain) { | 
|  | case ADC_GAIN_1_6: | 
|  | config.gain = NRF_SAADC_GAIN1_6; | 
|  | break; | 
|  | case ADC_GAIN_1_5: | 
|  | config.gain = NRF_SAADC_GAIN1_5; | 
|  | break; | 
|  | case ADC_GAIN_1_4: | 
|  | config.gain = NRF_SAADC_GAIN1_4; | 
|  | break; | 
|  | case ADC_GAIN_1_3: | 
|  | config.gain = NRF_SAADC_GAIN1_3; | 
|  | break; | 
|  | case ADC_GAIN_1_2: | 
|  | config.gain = NRF_SAADC_GAIN1_2; | 
|  | break; | 
|  | case ADC_GAIN_1: | 
|  | config.gain = NRF_SAADC_GAIN1; | 
|  | break; | 
|  | case ADC_GAIN_2: | 
|  | config.gain = NRF_SAADC_GAIN2; | 
|  | break; | 
|  | case ADC_GAIN_4: | 
|  | config.gain = NRF_SAADC_GAIN4; | 
|  | break; | 
|  | default: | 
|  | LOG_ERR("Selected ADC gain is not valid"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (channel_cfg->reference) { | 
|  | case ADC_REF_INTERNAL: | 
|  | config.reference = NRF_SAADC_REFERENCE_INTERNAL; | 
|  | break; | 
|  | case ADC_REF_VDD_1_4: | 
|  | config.reference = NRF_SAADC_REFERENCE_VDD4; | 
|  | break; | 
|  | default: | 
|  | LOG_ERR("Selected ADC reference is not valid"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (channel_cfg->acquisition_time) { | 
|  | case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3): | 
|  | config.acq_time = NRF_SAADC_ACQTIME_3US; | 
|  | break; | 
|  | case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5): | 
|  | config.acq_time = NRF_SAADC_ACQTIME_5US; | 
|  | break; | 
|  | case ADC_ACQ_TIME_DEFAULT: | 
|  | case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10): | 
|  | config.acq_time = NRF_SAADC_ACQTIME_10US; | 
|  | break; | 
|  | case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15): | 
|  | config.acq_time = NRF_SAADC_ACQTIME_15US; | 
|  | break; | 
|  | case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20): | 
|  | config.acq_time = NRF_SAADC_ACQTIME_20US; | 
|  | break; | 
|  | case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40): | 
|  | config.acq_time = NRF_SAADC_ACQTIME_40US; | 
|  | break; | 
|  | default: | 
|  | LOG_ERR("Selected ADC acquisition time is not valid"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | config.mode = (channel_cfg->differential ? | 
|  | NRF_SAADC_MODE_DIFFERENTIAL : NRF_SAADC_MODE_SINGLE_ENDED); | 
|  |  | 
|  | /* Keep the channel disabled in hardware (set positive input to | 
|  | * NRF_SAADC_INPUT_DISABLED) until it is selected to be included | 
|  | * in a sampling sequence. | 
|  | */ | 
|  |  | 
|  | nrf_saadc_channel_init(NRF_SAADC, channel_id, &config); | 
|  | nrf_saadc_channel_input_set(NRF_SAADC, | 
|  | channel_id, | 
|  | NRF_SAADC_INPUT_DISABLED, | 
|  | channel_cfg->input_negative); | 
|  |  | 
|  | /* Store the positive input selection in a dedicated array, | 
|  | * to get it later when the channel is selected for a sampling | 
|  | * and to mark the channel as configured (ready to be selected). | 
|  | */ | 
|  | m_data.positive_inputs[channel_id] = channel_cfg->input_positive; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void adc_context_start_sampling(struct adc_context *ctx) | 
|  | { | 
|  | nrf_saadc_enable(NRF_SAADC); | 
|  |  | 
|  | if (ctx->sequence.calibrate) { | 
|  | nrf_saadc_task_trigger(NRF_SAADC, | 
|  | NRF_SAADC_TASK_CALIBRATEOFFSET); | 
|  | } else { | 
|  | nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START); | 
|  | nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void adc_context_update_buffer_pointer(struct adc_context *ctx, | 
|  | bool repeat) | 
|  | { | 
|  | ARG_UNUSED(ctx); | 
|  |  | 
|  | if (!repeat) { | 
|  | nrf_saadc_buffer_pointer_set( | 
|  | NRF_SAADC, | 
|  | nrf_saadc_buffer_pointer_get(NRF_SAADC) + | 
|  | nrf_saadc_amount_get(NRF_SAADC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int set_resolution(const struct adc_sequence *sequence) | 
|  | { | 
|  | nrf_saadc_resolution_t nrf_resolution; | 
|  |  | 
|  | switch (sequence->resolution) { | 
|  | case  8: | 
|  | nrf_resolution = NRF_SAADC_RESOLUTION_8BIT; | 
|  | break; | 
|  | case 10: | 
|  | nrf_resolution = NRF_SAADC_RESOLUTION_10BIT; | 
|  | break; | 
|  | case 12: | 
|  | nrf_resolution = NRF_SAADC_RESOLUTION_12BIT; | 
|  | break; | 
|  | case 14: | 
|  | nrf_resolution = NRF_SAADC_RESOLUTION_14BIT; | 
|  | break; | 
|  | default: | 
|  | LOG_ERR("ADC resolution value %d is not valid", | 
|  | sequence->resolution); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nrf_saadc_resolution_set(NRF_SAADC, nrf_resolution); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_oversampling(const struct adc_sequence *sequence, | 
|  | u8_t active_channels) | 
|  | { | 
|  | nrf_saadc_oversample_t nrf_oversampling; | 
|  |  | 
|  | if ((active_channels > 1) && (sequence->oversampling > 0)) { | 
|  | LOG_ERR( | 
|  | "Oversampling is supported for single channel only"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (sequence->oversampling) { | 
|  | case 0: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_DISABLED; | 
|  | break; | 
|  | case 1: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_2X; | 
|  | break; | 
|  | case 2: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_4X; | 
|  | break; | 
|  | case 3: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_8X; | 
|  | break; | 
|  | case 4: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_16X; | 
|  | break; | 
|  | case 5: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_32X; | 
|  | break; | 
|  | case 6: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_64X; | 
|  | break; | 
|  | case 7: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_128X; | 
|  | break; | 
|  | case 8: | 
|  | nrf_oversampling = NRF_SAADC_OVERSAMPLE_256X; | 
|  | break; | 
|  | default: | 
|  | LOG_ERR("Oversampling value %d is not valid", | 
|  | sequence->oversampling); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nrf_saadc_oversample_set(NRF_SAADC, nrf_oversampling); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_buffer_size(const struct adc_sequence *sequence, | 
|  | u8_t active_channels) | 
|  | { | 
|  | size_t needed_buffer_size; | 
|  |  | 
|  | needed_buffer_size = active_channels * sizeof(nrf_saadc_value_t); | 
|  | if (sequence->options) { | 
|  | needed_buffer_size *= (1 + sequence->options->extra_samplings); | 
|  | } | 
|  |  | 
|  | if (sequence->buffer_size < needed_buffer_size) { | 
|  | LOG_ERR("Provided buffer is too small (%u/%u)", | 
|  | sequence->buffer_size, needed_buffer_size); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int start_read(struct device *dev, const struct adc_sequence *sequence) | 
|  | { | 
|  | int error; | 
|  | u32_t selected_channels = sequence->channels; | 
|  | u8_t active_channels; | 
|  | u8_t channel_id; | 
|  |  | 
|  | /* Signal an error if channel selection is invalid (no channels or | 
|  | * a non-existing one is selected). | 
|  | */ | 
|  | if (!selected_channels || | 
|  | (selected_channels & ~BIT_MASK(SAADC_CH_NUM))) { | 
|  | LOG_ERR("Invalid selection of channels"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | active_channels = 0U; | 
|  |  | 
|  | /* Enable only the channels selected for the pointed sequence. | 
|  | * Disable all the rest. | 
|  | */ | 
|  | channel_id = 0U; | 
|  | do { | 
|  | if (selected_channels & BIT(channel_id)) { | 
|  | /* Signal an error if a selected channel has not been | 
|  | * configured yet. | 
|  | */ | 
|  | if (m_data.positive_inputs[channel_id] == 0U) { | 
|  | LOG_ERR("Channel %u not configured", | 
|  | channel_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* When oversampling is used, the burst mode needs to | 
|  | * be activated. Unfortunately, this mode cannot be | 
|  | * activated permanently in the channel setup, because | 
|  | * then the multiple channel sampling fails (the END | 
|  | * event is not generated) after switching to a single | 
|  | * channel sampling and back. Thus, when oversampling | 
|  | * is not used (hence, the multiple channel sampling is | 
|  | * possible), the burst mode have to be deactivated. | 
|  | */ | 
|  | nrf_saadc_burst_set(NRF_SAADC, channel_id, | 
|  | (sequence->oversampling != 0U ? | 
|  | NRF_SAADC_BURST_ENABLED : | 
|  | NRF_SAADC_BURST_DISABLED)); | 
|  | nrf_saadc_channel_pos_input_set( | 
|  | NRF_SAADC, | 
|  | channel_id, | 
|  | m_data.positive_inputs[channel_id]); | 
|  | ++active_channels; | 
|  | } else { | 
|  | nrf_saadc_channel_pos_input_set( | 
|  | NRF_SAADC, | 
|  | channel_id, | 
|  | NRF_SAADC_INPUT_DISABLED); | 
|  | } | 
|  | } while (++channel_id < SAADC_CH_NUM); | 
|  |  | 
|  | error = set_resolution(sequence); | 
|  | if (error) { | 
|  | return error; | 
|  | } | 
|  |  | 
|  | error = set_oversampling(sequence, active_channels); | 
|  | if (error) { | 
|  | return error; | 
|  | } | 
|  |  | 
|  | error = check_buffer_size(sequence, active_channels); | 
|  | if (error) { | 
|  | return error; | 
|  | } | 
|  |  | 
|  | nrf_saadc_buffer_init(NRF_SAADC, | 
|  | (nrf_saadc_value_t *)sequence->buffer, | 
|  | active_channels); | 
|  |  | 
|  | adc_context_start_read(&m_data.ctx, sequence); | 
|  |  | 
|  | error = adc_context_wait_for_completion(&m_data.ctx); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Implementation of the ADC driver API function: adc_read. */ | 
|  | static int adc_nrfx_read(struct device *dev, | 
|  | const struct adc_sequence *sequence) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | adc_context_lock(&m_data.ctx, false, NULL); | 
|  | error = start_read(dev, sequence); | 
|  | adc_context_release(&m_data.ctx, error); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ADC_ASYNC | 
|  | /* Implementation of the ADC driver API function: adc_read_async. */ | 
|  | static int adc_nrfx_read_async(struct device *dev, | 
|  | const struct adc_sequence *sequence, | 
|  | struct k_poll_signal *async) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | adc_context_lock(&m_data.ctx, true, async); | 
|  | error = start_read(dev, sequence); | 
|  | adc_context_release(&m_data.ctx, error); | 
|  |  | 
|  | return error; | 
|  | } | 
|  | #endif /* CONFIG_ADC_ASYNC */ | 
|  |  | 
|  | static void saadc_irq_handler(void *param) | 
|  | { | 
|  | struct device *dev = (struct device *)param; | 
|  |  | 
|  | if (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END)) { | 
|  | nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END); | 
|  |  | 
|  | nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP); | 
|  | nrf_saadc_disable(NRF_SAADC); | 
|  |  | 
|  | adc_context_on_sampling_done(&m_data.ctx, dev); | 
|  | } else if (nrf_saadc_event_check(NRF_SAADC, | 
|  | NRF_SAADC_EVENT_CALIBRATEDONE)) { | 
|  | nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE); | 
|  |  | 
|  | /* | 
|  | * The workaround for Nordic nRF52832 anomalies 86 and | 
|  | * 178 is an explicit STOP after CALIBRATEOFFSET | 
|  | * before issuing START. | 
|  | */ | 
|  | nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP); | 
|  | nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START); | 
|  | nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEVICE_DECLARE(adc_0); | 
|  |  | 
|  | static int init_saadc(struct device *dev) | 
|  | { | 
|  | nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END); | 
|  | nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE); | 
|  | nrf_saadc_int_enable(NRF_SAADC, | 
|  | NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE); | 
|  | NRFX_IRQ_ENABLE(DT_NORDIC_NRF_SAADC_ADC_0_IRQ_0); | 
|  |  | 
|  | IRQ_CONNECT(DT_NORDIC_NRF_SAADC_ADC_0_IRQ_0, | 
|  | DT_NORDIC_NRF_SAADC_ADC_0_IRQ_0_PRIORITY, | 
|  | saadc_irq_handler, DEVICE_GET(adc_0), 0); | 
|  |  | 
|  | adc_context_unlock_unconditionally(&m_data.ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct adc_driver_api adc_nrfx_driver_api = { | 
|  | .channel_setup = adc_nrfx_channel_setup, | 
|  | .read          = adc_nrfx_read, | 
|  | #ifdef CONFIG_ADC_ASYNC | 
|  | .read_async    = adc_nrfx_read_async, | 
|  | #endif | 
|  | .ref_internal  = 600, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ADC_0 | 
|  | DEVICE_AND_API_INIT(adc_0, DT_NORDIC_NRF_SAADC_ADC_0_LABEL, | 
|  | init_saadc, NULL, NULL, | 
|  | POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, | 
|  | &adc_nrfx_driver_api); | 
|  | #endif /* CONFIG_ADC_0 */ |