| /* |
| * Copyright (c) 2010-2014 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief Kernel thread support |
| * |
| * This module provides general purpose thread support. |
| */ |
| |
| #include <kernel.h> |
| |
| #include <toolchain.h> |
| #include <linker/sections.h> |
| |
| #include <spinlock.h> |
| #include <kernel_structs.h> |
| #include <misc/printk.h> |
| #include <sys_clock.h> |
| #include <drivers/system_timer.h> |
| #include <ksched.h> |
| #include <wait_q.h> |
| #include <atomic.h> |
| #include <syscall_handler.h> |
| #include <kernel_internal.h> |
| #include <kswap.h> |
| #include <init.h> |
| #include <tracing.h> |
| #include <stdbool.h> |
| |
| extern struct _static_thread_data _static_thread_data_list_start[]; |
| extern struct _static_thread_data _static_thread_data_list_end[]; |
| |
| static struct k_spinlock lock; |
| |
| #define _FOREACH_STATIC_THREAD(thread_data) \ |
| for (struct _static_thread_data *thread_data = \ |
| _static_thread_data_list_start; \ |
| thread_data < _static_thread_data_list_end; \ |
| thread_data++) |
| |
| void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data) |
| { |
| #if defined(CONFIG_THREAD_MONITOR) |
| struct k_thread *thread; |
| k_spinlock_key_t key; |
| |
| __ASSERT(user_cb != NULL, "user_cb can not be NULL"); |
| |
| /* |
| * Lock is needed to make sure that the _kernel.threads is not being |
| * modified by the user_cb either directly or indirectly. |
| * The indirect ways are through calling k_thread_create and |
| * k_thread_abort from user_cb. |
| */ |
| key = k_spin_lock(&lock); |
| for (thread = _kernel.threads; thread; thread = thread->next_thread) { |
| user_cb(thread, user_data); |
| } |
| k_spin_unlock(&lock, key); |
| #endif |
| } |
| |
| bool k_is_in_isr(void) |
| { |
| return z_is_in_isr(); |
| } |
| |
| /* |
| * This function tags the current thread as essential to system operation. |
| * Exceptions raised by this thread will be treated as a fatal system error. |
| */ |
| void z_thread_essential_set(void) |
| { |
| _current->base.user_options |= K_ESSENTIAL; |
| } |
| |
| /* |
| * This function tags the current thread as not essential to system operation. |
| * Exceptions raised by this thread may be recoverable. |
| * (This is the default tag for a thread.) |
| */ |
| void z_thread_essential_clear(void) |
| { |
| _current->base.user_options &= ~K_ESSENTIAL; |
| } |
| |
| /* |
| * This routine indicates if the current thread is an essential system thread. |
| * |
| * Returns true if current thread is essential, false if it is not. |
| */ |
| bool z_is_thread_essential(void) |
| { |
| return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL; |
| } |
| |
| #ifdef CONFIG_SYS_CLOCK_EXISTS |
| void z_impl_k_busy_wait(u32_t usec_to_wait) |
| { |
| #if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT) |
| /* use 64-bit math to prevent overflow when multiplying */ |
| u32_t cycles_to_wait = (u32_t)( |
| (u64_t)usec_to_wait * |
| (u64_t)sys_clock_hw_cycles_per_sec() / |
| (u64_t)USEC_PER_SEC |
| ); |
| u32_t start_cycles = k_cycle_get_32(); |
| |
| for (;;) { |
| u32_t current_cycles = k_cycle_get_32(); |
| |
| /* this handles the rollover on an unsigned 32-bit value */ |
| if ((current_cycles - start_cycles) >= cycles_to_wait) { |
| break; |
| } |
| } |
| #else |
| z_arch_busy_wait(usec_to_wait); |
| #endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */ |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_busy_wait, usec_to_wait) |
| { |
| z_impl_k_busy_wait(usec_to_wait); |
| return 0; |
| } |
| #endif /* CONFIG_USERSPACE */ |
| #endif /* CONFIG_SYS_CLOCK_EXISTS */ |
| |
| #ifdef CONFIG_THREAD_CUSTOM_DATA |
| void z_impl_k_thread_custom_data_set(void *value) |
| { |
| _current->custom_data = value; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_thread_custom_data_set, data) |
| { |
| z_impl_k_thread_custom_data_set((void *)data); |
| return 0; |
| } |
| #endif |
| |
| void *z_impl_k_thread_custom_data_get(void) |
| { |
| return _current->custom_data; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER0_SIMPLE(k_thread_custom_data_get); |
| #endif /* CONFIG_USERSPACE */ |
| #endif /* CONFIG_THREAD_CUSTOM_DATA */ |
| |
| #if defined(CONFIG_THREAD_MONITOR) |
| /* |
| * Remove a thread from the kernel's list of active threads. |
| */ |
| void z_thread_monitor_exit(struct k_thread *thread) |
| { |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| if (thread == _kernel.threads) { |
| _kernel.threads = _kernel.threads->next_thread; |
| } else { |
| struct k_thread *prev_thread; |
| |
| prev_thread = _kernel.threads; |
| while ((prev_thread != NULL) && |
| (thread != prev_thread->next_thread)) { |
| prev_thread = prev_thread->next_thread; |
| } |
| if (prev_thread != NULL) { |
| prev_thread->next_thread = thread->next_thread; |
| } |
| } |
| |
| k_spin_unlock(&lock, key); |
| } |
| #endif |
| |
| int z_impl_k_thread_name_set(struct k_thread *thread, const char *value) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| if (thread == NULL) { |
| thread = _current; |
| } |
| |
| strncpy(thread->name, value, CONFIG_THREAD_MAX_NAME_LEN); |
| thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0'; |
| return 0; |
| #else |
| ARG_UNUSED(thread); |
| ARG_UNUSED(value); |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_thread_name_set, thread, str_param) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| struct k_thread *t = (struct k_thread *)thread; |
| size_t len; |
| int err; |
| const char *str = (const char *)str_param; |
| |
| if (t != NULL) { |
| if (Z_SYSCALL_OBJ(t, K_OBJ_THREAD) != 0) { |
| return -EINVAL; |
| } |
| } |
| |
| len = z_user_string_nlen(str, CONFIG_THREAD_MAX_NAME_LEN, &err); |
| if (err != 0) { |
| return -EFAULT; |
| } |
| if (Z_SYSCALL_MEMORY_READ(str, len) != 0) { |
| return -EFAULT; |
| } |
| |
| return z_impl_k_thread_name_set(t, str); |
| #else |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| #endif /* CONFIG_USERSPACE */ |
| |
| const char *k_thread_name_get(struct k_thread *thread) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| return (const char *)thread->name; |
| #else |
| ARG_UNUSED(thread); |
| return NULL; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| |
| int z_impl_k_thread_name_copy(k_tid_t thread_id, char *buf, size_t size) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| strncpy(buf, thread_id->name, size); |
| return 0; |
| #else |
| ARG_UNUSED(thread_id); |
| ARG_UNUSED(buf); |
| ARG_UNUSED(size); |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_thread_name_copy, thread_id, buf, size) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| size_t len; |
| struct k_thread *t = (struct k_thread *)thread_id; |
| struct _k_object *ko = z_object_find(t); |
| |
| /* Special case: we allow reading the names of initialized threads |
| * even if we don't have permission on them |
| */ |
| if (t == NULL || ko->type != K_OBJ_THREAD || |
| (ko->flags & K_OBJ_FLAG_INITIALIZED) == 0) { |
| return -EINVAL; |
| } |
| if (Z_SYSCALL_MEMORY_WRITE(buf, size) != 0) { |
| return -EFAULT; |
| } |
| len = strlen(t->name); |
| if (len + 1 > size) { |
| return -ENOSPC; |
| } |
| |
| return z_user_to_copy((void *)buf, t->name, len + 1); |
| #else |
| ARG_UNUSED(thread_id); |
| ARG_UNUSED(buf); |
| ARG_UNUSED(size); |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| #endif /* CONFIG_USERSPACE */ |
| |
| |
| #ifdef CONFIG_STACK_SENTINEL |
| /* Check that the stack sentinel is still present |
| * |
| * The stack sentinel feature writes a magic value to the lowest 4 bytes of |
| * the thread's stack when the thread is initialized. This value gets checked |
| * in a few places: |
| * |
| * 1) In k_yield() if the current thread is not swapped out |
| * 2) After servicing a non-nested interrupt |
| * 3) In z_swap(), check the sentinel in the outgoing thread |
| * |
| * Item 2 requires support in arch/ code. |
| * |
| * If the check fails, the thread will be terminated appropriately through |
| * the system fatal error handler. |
| */ |
| void z_check_stack_sentinel(void) |
| { |
| u32_t *stack; |
| |
| if ((_current->base.thread_state & _THREAD_DUMMY) != 0) { |
| return; |
| } |
| |
| stack = (u32_t *)_current->stack_info.start; |
| if (*stack != STACK_SENTINEL) { |
| /* Restore it so further checks don't trigger this same error */ |
| *stack = STACK_SENTINEL; |
| z_except_reason(_NANO_ERR_STACK_CHK_FAIL); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_MULTITHREADING |
| void z_impl_k_thread_start(struct k_thread *thread) |
| { |
| k_spinlock_key_t key = k_spin_lock(&lock); /* protect kernel queues */ |
| |
| if (z_has_thread_started(thread)) { |
| k_spin_unlock(&lock, key); |
| return; |
| } |
| |
| z_mark_thread_as_started(thread); |
| z_ready_thread(thread); |
| z_reschedule(&lock, key); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_start, K_OBJ_THREAD, struct k_thread *); |
| #endif |
| #endif |
| |
| #ifdef CONFIG_MULTITHREADING |
| static void schedule_new_thread(struct k_thread *thread, s32_t delay) |
| { |
| #ifdef CONFIG_SYS_CLOCK_EXISTS |
| if (delay == 0) { |
| k_thread_start(thread); |
| } else { |
| s32_t ticks = _TICK_ALIGN + z_ms_to_ticks(delay); |
| |
| z_add_thread_timeout(thread, ticks); |
| } |
| #else |
| ARG_UNUSED(delay); |
| k_thread_start(thread); |
| #endif |
| } |
| #endif |
| |
| #if !CONFIG_STACK_POINTER_RANDOM |
| static inline size_t adjust_stack_size(size_t stack_size) |
| { |
| return stack_size; |
| } |
| #else |
| int z_stack_adjust_initialized; |
| |
| static inline size_t adjust_stack_size(size_t stack_size) |
| { |
| size_t random_val; |
| |
| if (!z_stack_adjust_initialized) { |
| random_val = z_early_boot_rand32_get(); |
| } else { |
| random_val = sys_rand32_get(); |
| } |
| |
| /* Don't need to worry about alignment of the size here, z_new_thread() |
| * is required to do it |
| * |
| * FIXME: Not the best way to get a random number in a range. |
| * See #6493 |
| */ |
| const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM; |
| |
| if (unlikely(fuzz * 2 > stack_size)) { |
| return stack_size; |
| } |
| |
| return stack_size - fuzz; |
| } |
| #if defined(CONFIG_STACK_GROWS_UP) |
| /* This is so rare not bothering for now */ |
| #error "Stack pointer randomization not implemented for upward growing stacks" |
| #endif /* CONFIG_STACK_GROWS_UP */ |
| |
| #endif /* CONFIG_STACK_POINTER_RANDOM */ |
| |
| /* |
| * Note: |
| * The caller must guarantee that the stack_size passed here corresponds |
| * to the amount of stack memory available for the thread. |
| */ |
| void z_setup_new_thread(struct k_thread *new_thread, |
| k_thread_stack_t *stack, size_t stack_size, |
| k_thread_entry_t entry, |
| void *p1, void *p2, void *p3, |
| int prio, u32_t options, const char *name) |
| { |
| stack_size = adjust_stack_size(stack_size); |
| |
| #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA |
| #ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP |
| /* reserve space on top of stack for local data */ |
| stack_size = STACK_ROUND_DOWN(stack_size |
| - sizeof(*new_thread->userspace_local_data)); |
| #endif |
| #endif |
| |
| z_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3, |
| prio, options); |
| |
| #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA |
| #ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP |
| /* don't set again if the arch's own code in z_new_thread() has |
| * already set the pointer. |
| */ |
| new_thread->userspace_local_data = |
| (struct _thread_userspace_local_data *) |
| (Z_THREAD_STACK_BUFFER(stack) + stack_size); |
| #endif |
| #endif |
| |
| #ifdef CONFIG_THREAD_MONITOR |
| new_thread->entry.pEntry = entry; |
| new_thread->entry.parameter1 = p1; |
| new_thread->entry.parameter2 = p2; |
| new_thread->entry.parameter3 = p3; |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| new_thread->next_thread = _kernel.threads; |
| _kernel.threads = new_thread; |
| k_spin_unlock(&lock, key); |
| #endif |
| #ifdef CONFIG_THREAD_NAME |
| if (name != NULL) { |
| strncpy(new_thread->name, name, |
| CONFIG_THREAD_MAX_NAME_LEN - 1); |
| /* Ensure NULL termination, truncate if longer */ |
| new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0'; |
| } |
| #endif |
| #ifdef CONFIG_USERSPACE |
| z_object_init(new_thread); |
| z_object_init(stack); |
| new_thread->stack_obj = stack; |
| |
| /* Any given thread has access to itself */ |
| k_object_access_grant(new_thread, new_thread); |
| #endif |
| #ifdef CONFIG_SCHED_CPU_MASK |
| new_thread->base.cpu_mask = -1; |
| #endif |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
| /* _current may be null if the dummy thread is not used */ |
| if (!_current) { |
| new_thread->resource_pool = NULL; |
| return; |
| } |
| #endif |
| #ifdef CONFIG_USERSPACE |
| /* New threads inherit any memory domain membership by the parent */ |
| if (_current->mem_domain_info.mem_domain != NULL) { |
| k_mem_domain_add_thread(_current->mem_domain_info.mem_domain, |
| new_thread); |
| } |
| |
| if ((options & K_INHERIT_PERMS) != 0U) { |
| z_thread_perms_inherit(_current, new_thread); |
| } |
| #endif |
| #ifdef CONFIG_SCHED_DEADLINE |
| new_thread->base.prio_deadline = 0; |
| #endif |
| new_thread->resource_pool = _current->resource_pool; |
| sys_trace_thread_create(new_thread); |
| } |
| |
| #ifdef CONFIG_MULTITHREADING |
| k_tid_t z_impl_k_thread_create(struct k_thread *new_thread, |
| k_thread_stack_t *stack, |
| size_t stack_size, k_thread_entry_t entry, |
| void *p1, void *p2, void *p3, |
| int prio, u32_t options, s32_t delay) |
| { |
| __ASSERT(!z_is_in_isr(), "Threads may not be created in ISRs"); |
| |
| /* Special case, only for unit tests */ |
| #if defined(CONFIG_TEST) && defined(CONFIG_ARCH_HAS_USERSPACE) && !defined(CONFIG_USERSPACE) |
| __ASSERT((options & K_USER) == 0, |
| "Platform is capable of user mode, and test thread created with K_USER option, but CONFIG_TEST_USERSPACE or CONFIG_USERSPACE is not set\n"); |
| #endif |
| |
| z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3, |
| prio, options, NULL); |
| |
| if (delay != K_FOREVER) { |
| schedule_new_thread(new_thread, delay); |
| } |
| |
| return new_thread; |
| } |
| |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER(k_thread_create, |
| new_thread_p, stack_p, stack_size, entry, p1, more_args) |
| { |
| int prio; |
| u32_t options, delay; |
| u32_t total_size; |
| |
| struct _k_object *stack_object; |
| struct k_thread *new_thread = (struct k_thread *)new_thread_p; |
| volatile struct _syscall_10_args *margs = |
| (volatile struct _syscall_10_args *)more_args; |
| k_thread_stack_t *stack = (k_thread_stack_t *)stack_p; |
| |
| /* The thread and stack objects *must* be in an uninitialized state */ |
| Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD)); |
| stack_object = z_object_find(stack); |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(z_obj_validation_check(stack_object, stack, |
| K_OBJ__THREAD_STACK_ELEMENT, |
| _OBJ_INIT_FALSE) == 0, |
| "bad stack object")); |
| |
| /* Verify that the stack size passed in is OK by computing the total |
| * size and comparing it with the size value in the object metadata |
| */ |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(!__builtin_uadd_overflow(K_THREAD_STACK_RESERVED, |
| stack_size, |
| &total_size), |
| "stack size overflow (%u+%u)", stack_size, |
| K_THREAD_STACK_RESERVED)); |
| |
| /* Testing less-than-or-equal since additional room may have been |
| * allocated for alignment constraints |
| */ |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_object->data, |
| "stack size %u is too big, max is %u", |
| total_size, stack_object->data)); |
| |
| /* Verify the struct containing args 6-10 */ |
| Z_OOPS(Z_SYSCALL_MEMORY_READ(margs, sizeof(*margs))); |
| |
| /* Stash struct arguments in local variables to prevent switcheroo |
| * attacks |
| */ |
| prio = margs->arg8; |
| options = margs->arg9; |
| delay = margs->arg10; |
| compiler_barrier(); |
| |
| /* User threads may only create other user threads and they can't |
| * be marked as essential |
| */ |
| Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER)); |
| Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL))); |
| |
| /* Check validity of prio argument; must be the same or worse priority |
| * than the caller |
| */ |
| Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL))); |
| Z_OOPS(Z_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio, |
| _current->base.prio))); |
| |
| z_setup_new_thread((struct k_thread *)new_thread, stack, stack_size, |
| (k_thread_entry_t)entry, (void *)p1, |
| (void *)margs->arg6, (void *)margs->arg7, prio, |
| options, NULL); |
| |
| if (delay != K_FOREVER) { |
| schedule_new_thread(new_thread, delay); |
| } |
| |
| return new_thread_p; |
| } |
| #endif /* CONFIG_USERSPACE */ |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| void z_thread_single_suspend(struct k_thread *thread) |
| { |
| if (z_is_thread_ready(thread)) { |
| z_remove_thread_from_ready_q(thread); |
| } |
| |
| z_mark_thread_as_suspended(thread); |
| } |
| |
| void z_impl_k_thread_suspend(struct k_thread *thread) |
| { |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| z_thread_single_suspend(thread); |
| |
| sys_trace_thread_suspend(thread); |
| |
| if (thread == _current) { |
| z_reschedule(&lock, key); |
| } else { |
| k_spin_unlock(&lock, key); |
| } |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_suspend, K_OBJ_THREAD, k_tid_t); |
| #endif |
| |
| void z_thread_single_resume(struct k_thread *thread) |
| { |
| z_mark_thread_as_not_suspended(thread); |
| z_ready_thread(thread); |
| } |
| |
| void z_impl_k_thread_resume(struct k_thread *thread) |
| { |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| z_thread_single_resume(thread); |
| |
| sys_trace_thread_resume(thread); |
| z_reschedule(&lock, key); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_resume, K_OBJ_THREAD, k_tid_t); |
| #endif |
| |
| void z_thread_single_abort(struct k_thread *thread) |
| { |
| if (thread->fn_abort != NULL) { |
| thread->fn_abort(); |
| } |
| |
| if (IS_ENABLED(CONFIG_SMP)) { |
| z_sched_abort(thread); |
| } |
| |
| if (z_is_thread_ready(thread)) { |
| z_remove_thread_from_ready_q(thread); |
| } else { |
| if (z_is_thread_pending(thread)) { |
| z_unpend_thread_no_timeout(thread); |
| } |
| if (z_is_thread_timeout_active(thread)) { |
| (void)z_abort_thread_timeout(thread); |
| } |
| } |
| |
| thread->base.thread_state |= _THREAD_DEAD; |
| |
| sys_trace_thread_abort(thread); |
| |
| #ifdef CONFIG_USERSPACE |
| /* Clear initialized state so that this thread object may be re-used |
| * and triggers errors if API calls are made on it from user threads |
| */ |
| z_object_uninit(thread->stack_obj); |
| z_object_uninit(thread); |
| |
| /* Revoke permissions on thread's ID so that it may be recycled */ |
| z_thread_perms_all_clear(thread); |
| #endif |
| } |
| |
| #ifdef CONFIG_MULTITHREADING |
| #ifdef CONFIG_USERSPACE |
| extern char __object_access_start[]; |
| extern char __object_access_end[]; |
| |
| static void grant_static_access(void) |
| { |
| struct _k_object_assignment *pos; |
| |
| for (pos = (struct _k_object_assignment *)__object_access_start; |
| pos < (struct _k_object_assignment *)__object_access_end; |
| pos++) { |
| for (int i = 0; pos->objects[i] != NULL; i++) { |
| k_object_access_grant(pos->objects[i], |
| pos->thread); |
| } |
| } |
| } |
| #endif /* CONFIG_USERSPACE */ |
| |
| void z_init_static_threads(void) |
| { |
| _FOREACH_STATIC_THREAD(thread_data) { |
| z_setup_new_thread( |
| thread_data->init_thread, |
| thread_data->init_stack, |
| thread_data->init_stack_size, |
| thread_data->init_entry, |
| thread_data->init_p1, |
| thread_data->init_p2, |
| thread_data->init_p3, |
| thread_data->init_prio, |
| thread_data->init_options, |
| thread_data->init_name); |
| |
| thread_data->init_thread->init_data = thread_data; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| grant_static_access(); |
| #endif |
| |
| /* |
| * Non-legacy static threads may be started immediately or |
| * after a previously specified delay. Even though the |
| * scheduler is locked, ticks can still be delivered and |
| * processed. Take a sched lock to prevent them from running |
| * until they are all started. |
| * |
| * Note that static threads defined using the legacy API have a |
| * delay of K_FOREVER. |
| */ |
| k_sched_lock(); |
| _FOREACH_STATIC_THREAD(thread_data) { |
| if (thread_data->init_delay != K_FOREVER) { |
| schedule_new_thread(thread_data->init_thread, |
| thread_data->init_delay); |
| } |
| } |
| k_sched_unlock(); |
| } |
| #endif |
| |
| void z_init_thread_base(struct _thread_base *thread_base, int priority, |
| u32_t initial_state, unsigned int options) |
| { |
| /* k_q_node is initialized upon first insertion in a list */ |
| |
| thread_base->user_options = (u8_t)options; |
| thread_base->thread_state = (u8_t)initial_state; |
| |
| thread_base->prio = priority; |
| |
| thread_base->sched_locked = 0U; |
| |
| /* swap_data does not need to be initialized */ |
| |
| z_init_thread_timeout(thread_base); |
| } |
| |
| FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, |
| void *p1, void *p2, void *p3) |
| { |
| _current->base.user_options |= K_USER; |
| z_thread_essential_clear(); |
| #ifdef CONFIG_THREAD_MONITOR |
| _current->entry.pEntry = entry; |
| _current->entry.parameter1 = p1; |
| _current->entry.parameter2 = p2; |
| _current->entry.parameter3 = p3; |
| #endif |
| #ifdef CONFIG_USERSPACE |
| z_arch_user_mode_enter(entry, p1, p2, p3); |
| #else |
| /* XXX In this case we do not reset the stack */ |
| z_thread_entry(entry, p1, p2, p3); |
| #endif |
| } |
| |
| /* These spinlock assertion predicates are defined here because having |
| * them in spinlock.h is a giant header ordering headache. |
| */ |
| #ifdef SPIN_VALIDATE |
| bool z_spin_lock_valid(struct k_spinlock *l) |
| { |
| if (l->thread_cpu) { |
| if ((l->thread_cpu & 3) == _current_cpu->id) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool z_spin_unlock_valid(struct k_spinlock *l) |
| { |
| if (l->thread_cpu != (_current_cpu->id | (u32_t)_current)) { |
| return false; |
| } |
| l->thread_cpu = 0; |
| return true; |
| } |
| |
| void z_spin_lock_set_owner(struct k_spinlock *l) |
| { |
| l->thread_cpu = _current_cpu->id | (u32_t)_current; |
| } |
| |
| #endif |