| /* |
| * Copyright (c) 2021 Intel Corporation |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <zephyr/device.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/sys_clock.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/drivers/interrupt_controller/loapic.h> |
| |
| #define IA32_TSC_DEADLINE_MSR 0x6e0 |
| #define IA32_TSC_ADJUST_MSR 0x03b |
| |
| #define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ |
| / (uint64_t) CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| |
| struct apic_timer_lvt { |
| uint8_t vector : 8; |
| uint8_t unused0 : 8; |
| uint8_t masked : 1; |
| enum { ONE_SHOT, PERIODIC, TSC_DEADLINE } mode: 2; |
| uint32_t unused2 : 13; |
| }; |
| |
| static struct k_spinlock lock; |
| static uint64_t last_announce; |
| static union { uint32_t val; struct apic_timer_lvt lvt; } lvt_reg; |
| |
| static ALWAYS_INLINE uint64_t rdtsc(void) |
| { |
| uint32_t hi, lo; |
| |
| __asm__ volatile("rdtsc" : "=d"(hi), "=a"(lo)); |
| return lo + (((uint64_t)hi) << 32); |
| } |
| |
| static void isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint32_t ticks = (rdtsc() - last_announce) / CYC_PER_TICK; |
| |
| last_announce += ticks * CYC_PER_TICK; |
| k_spin_unlock(&lock, key); |
| sys_clock_announce(ticks); |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| sys_clock_set_timeout(1, false); |
| } |
| } |
| |
| static inline void wrmsr(int32_t msr, uint64_t val) |
| { |
| uint32_t hi = (uint32_t) (val >> 32); |
| uint32_t lo = (uint32_t) val; |
| |
| __asm__ volatile("wrmsr" :: "d"(hi), "a"(lo), "c"(msr)); |
| } |
| |
| void sys_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| ARG_UNUSED(idle); |
| |
| uint64_t now = rdtsc(); |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t expires = now + MAX(ticks - 1, 0) * CYC_PER_TICK; |
| |
| expires = last_announce + (((expires - last_announce + CYC_PER_TICK - 1) |
| / CYC_PER_TICK) * CYC_PER_TICK); |
| |
| /* The second condition is to catch the wraparound. |
| * Interpreted strictly, the IA SDM description of the |
| * TSC_DEADLINE MSR implies that it will trigger an immediate |
| * interrupt if we try to set an expiration across the 64 bit |
| * rollover. Unfortunately there's no way to test that as on |
| * real hardware it requires more than a century of uptime, |
| * but this is cheap and safe. |
| */ |
| if (ticks == K_TICKS_FOREVER || expires < last_announce) { |
| expires = UINT64_MAX; |
| } |
| |
| wrmsr(IA32_TSC_DEADLINE_MSR, expires); |
| k_spin_unlock(&lock, key); |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint32_t ret = (rdtsc() - last_announce) / CYC_PER_TICK; |
| |
| k_spin_unlock(&lock, key); |
| return ret; |
| } |
| |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| return (uint32_t) rdtsc(); |
| } |
| |
| uint64_t sys_clock_cycle_get_64(void) |
| { |
| return rdtsc(); |
| } |
| |
| static inline uint32_t timer_irq(void) |
| { |
| /* The Zephyr APIC API is... idiosyncratic. The timer is a |
| * "local vector table" interrupt. These aren't system IRQs |
| * presented to the IO-APIC, they're indices into a register |
| * array in the local APIC. By Zephyr convention they come |
| * after all the external IO-APIC interrupts, but that number |
| * changes depending on device configuration so we have to |
| * fetch it at runtime. The timer happens to be the first |
| * entry in the table. |
| */ |
| return z_loapic_irq_base(); |
| } |
| |
| /* The TSC_ADJUST MSR implements a synchronized offset such that |
| * multiple CPUs (within a socket, anyway) can synchronize exactly, or |
| * implement managed timing spaces for guests in a recoverable way, |
| * etc... We set it to zero on all cores for simplicity, because |
| * firmware often leaves it in an inconsistent state between cores. |
| */ |
| static void clear_tsc_adjust(void) |
| { |
| /* But don't touch it on ACRN, where an hypervisor bug |
| * confuses the APIC emulation and deadline interrupts don't |
| * arrive. |
| */ |
| #ifndef CONFIG_BOARD_ACRN |
| wrmsr(IA32_TSC_ADJUST_MSR, 0); |
| #endif |
| } |
| |
| void smp_timer_init(void) |
| { |
| /* Copy the LVT configuration from CPU0, because IRQ_CONNECT() |
| * doesn't know how to manage LVT interrupts for anything |
| * other than the calling/initial CPU. Same fence needed to |
| * prevent later MSR writes from reordering before the APIC |
| * configuration write. |
| */ |
| x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); |
| __asm__ volatile("mfence" ::: "memory"); |
| clear_tsc_adjust(); |
| irq_enable(timer_irq()); |
| } |
| |
| static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) |
| { |
| __asm__ volatile("cpuid" |
| : "=b"(*ebx), "=c"(*ecx), "=d"(*edx) |
| : "a"(*eax), "c"(*ecx)); |
| } |
| |
| static int sys_clock_driver_init(const struct device *dev) |
| { |
| #ifdef CONFIG_ASSERT |
| uint32_t eax, ebx, ecx, edx; |
| |
| eax = 1; ecx = 0; |
| cpuid(&eax, &ebx, &ecx, &edx); |
| __ASSERT((ecx & BIT(24)) != 0, "No TSC Deadline support"); |
| |
| eax = 0x80000007; ecx = 0; |
| cpuid(&eax, &ebx, &ecx, &edx); |
| __ASSERT((edx & BIT(8)) != 0, "No Invariant TSC support"); |
| |
| eax = 7; ecx = 0; |
| cpuid(&eax, &ebx, &ecx, &edx); |
| __ASSERT((ebx & BIT(1)) != 0, "No TSC_ADJUST MSR support"); |
| #endif |
| |
| clear_tsc_adjust(); |
| |
| /* Timer interrupt number is runtime-fetched, so can't use |
| * static IRQ_CONNECT() |
| */ |
| irq_connect_dynamic(timer_irq(), CONFIG_APIC_TIMER_IRQ_PRIORITY, isr, 0, 0); |
| |
| lvt_reg.val = x86_read_loapic(LOAPIC_TIMER); |
| lvt_reg.lvt.mode = TSC_DEADLINE; |
| lvt_reg.lvt.masked = 0; |
| x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); |
| |
| /* Per the SDM, the TSC_DEADLINE MSR is not serializing, so |
| * this fence is needed to be sure that an upcoming MSR write |
| * (i.e. a timeout we're about to set) cannot possibly reorder |
| * around the initialization we just did. |
| */ |
| __asm__ volatile("mfence" ::: "memory"); |
| |
| last_announce = rdtsc(); |
| irq_enable(timer_irq()); |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| sys_clock_set_timeout(1, false); |
| } |
| |
| return 0; |
| } |
| |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
| CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |