blob: 5cf5800da9efe35fd3f24d4af71ae1c2754445dc [file] [log] [blame]
/*
* Copyright (c) 2017, 2022-2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_usart
/** @file
* @brief UART driver for MCUX Flexcomm USART.
*/
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/irq.h>
#include <fsl_usart.h>
#include <soc.h>
#include <fsl_device_registers.h>
#include <zephyr/drivers/pinctrl.h>
#ifdef CONFIG_UART_ASYNC_API
#include <zephyr/drivers/dma.h>
#include <fsl_inputmux.h>
#endif
#ifdef CONFIG_UART_ASYNC_API
struct mcux_flexcomm_uart_dma_config {
const struct device *dev;
DMA_Type *base;
uint8_t channel;
struct dma_config cfg;
};
#endif
struct mcux_flexcomm_config {
USART_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
uint32_t baud_rate;
uint8_t parity;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void (*irq_config_func)(const struct device *dev);
#endif
const struct pinctrl_dev_config *pincfg;
#ifdef CONFIG_UART_ASYNC_API
struct mcux_flexcomm_uart_dma_config tx_dma;
struct mcux_flexcomm_uart_dma_config rx_dma;
void (*rx_timeout_func)(struct k_work *work);
void (*tx_timeout_func)(struct k_work *work);
#endif
};
#if CONFIG_UART_ASYNC_API
struct mcux_flexcomm_uart_tx_data {
const uint8_t *xfer_buf;
size_t xfer_len;
struct dma_block_config active_block;
struct k_work_delayable timeout_work;
};
struct mcux_flexcomm_uart_rx_data {
uint8_t *xfer_buf;
size_t xfer_len;
struct dma_block_config active_block;
uint8_t *next_xfer_buf;
size_t next_xfer_len;
struct k_work_delayable timeout_work;
int32_t timeout;
size_t count;
size_t offset;
};
#endif
struct mcux_flexcomm_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t irq_callback;
void *irq_cb_data;
#endif
#ifdef CONFIG_UART_ASYNC_API
uart_callback_t async_callback;
void *async_cb_data;
struct mcux_flexcomm_uart_tx_data tx_data;
struct mcux_flexcomm_uart_rx_data rx_data;
#endif
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
struct uart_config uart_config;
#endif
};
static int mcux_flexcomm_poll_in(const struct device *dev, unsigned char *c)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t flags = USART_GetStatusFlags(config->base);
int ret = -1;
if (flags & kUSART_RxFifoNotEmptyFlag) {
*c = USART_ReadByte(config->base);
ret = 0;
}
return ret;
}
static void mcux_flexcomm_poll_out(const struct device *dev,
unsigned char c)
{
const struct mcux_flexcomm_config *config = dev->config;
/* Wait until space is available in TX FIFO */
while (!(USART_GetStatusFlags(config->base) & kUSART_TxFifoEmptyFlag)) {
}
USART_WriteByte(config->base, c);
}
static int mcux_flexcomm_err_check(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t flags = USART_GetStatusFlags(config->base);
int err = 0;
if (flags & kStatus_USART_RxRingBufferOverrun) {
err |= UART_ERROR_OVERRUN;
}
if (flags & kStatus_USART_ParityError) {
err |= UART_ERROR_PARITY;
}
if (flags & kStatus_USART_FramingError) {
err |= UART_ERROR_FRAMING;
}
USART_ClearStatusFlags(config->base,
kStatus_USART_RxRingBufferOverrun |
kStatus_USART_ParityError |
kStatus_USART_FramingError);
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int mcux_flexcomm_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int len)
{
const struct mcux_flexcomm_config *config = dev->config;
uint8_t num_tx = 0U;
while ((len - num_tx > 0) &&
(USART_GetStatusFlags(config->base)
& kUSART_TxFifoNotFullFlag)) {
USART_WriteByte(config->base, tx_data[num_tx++]);
}
return num_tx;
}
static int mcux_flexcomm_fifo_read(const struct device *dev, uint8_t *rx_data,
const int len)
{
const struct mcux_flexcomm_config *config = dev->config;
uint8_t num_rx = 0U;
while ((len - num_rx > 0) &&
(USART_GetStatusFlags(config->base)
& kUSART_RxFifoNotEmptyFlag)) {
rx_data[num_rx++] = USART_ReadByte(config->base);
}
return num_rx;
}
static void mcux_flexcomm_irq_tx_enable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_TxLevelInterruptEnable;
USART_EnableInterrupts(config->base, mask);
}
static void mcux_flexcomm_irq_tx_disable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_TxLevelInterruptEnable;
USART_DisableInterrupts(config->base, mask);
}
static int mcux_flexcomm_irq_tx_complete(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
return (config->base->STAT & USART_STAT_TXIDLE_MASK) != 0;
}
static int mcux_flexcomm_irq_tx_ready(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_TxLevelInterruptEnable;
uint32_t flags = USART_GetStatusFlags(config->base);
return (USART_GetEnabledInterrupts(config->base) & mask)
&& (flags & kUSART_TxFifoEmptyFlag);
}
static void mcux_flexcomm_irq_rx_enable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_RxLevelInterruptEnable;
USART_EnableInterrupts(config->base, mask);
}
static void mcux_flexcomm_irq_rx_disable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_RxLevelInterruptEnable;
USART_DisableInterrupts(config->base, mask);
}
static int mcux_flexcomm_irq_rx_full(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t flags = USART_GetStatusFlags(config->base);
return (flags & kUSART_RxFifoNotEmptyFlag) != 0U;
}
static int mcux_flexcomm_irq_rx_pending(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kUSART_RxLevelInterruptEnable;
return (USART_GetEnabledInterrupts(config->base) & mask)
&& mcux_flexcomm_irq_rx_full(dev);
}
static void mcux_flexcomm_irq_err_enable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kStatus_USART_NoiseError |
kStatus_USART_FramingError |
kStatus_USART_ParityError;
USART_EnableInterrupts(config->base, mask);
}
static void mcux_flexcomm_irq_err_disable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
uint32_t mask = kStatus_USART_NoiseError |
kStatus_USART_FramingError |
kStatus_USART_ParityError;
USART_DisableInterrupts(config->base, mask);
}
static int mcux_flexcomm_irq_is_pending(const struct device *dev)
{
return (mcux_flexcomm_irq_tx_ready(dev)
|| mcux_flexcomm_irq_rx_pending(dev));
}
static int mcux_flexcomm_irq_update(const struct device *dev)
{
return 1;
}
static void mcux_flexcomm_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct mcux_flexcomm_data *data = dev->data;
data->irq_callback = cb;
data->irq_cb_data = cb_data;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int mcux_flexcomm_uart_configure(const struct device *dev, const struct uart_config *cfg)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
struct uart_config *uart_config = &data->uart_config;
usart_config_t usart_config;
usart_parity_mode_t parity_mode;
usart_stop_bit_count_t stop_bits;
usart_data_len_t data_bits = kUSART_8BitsPerChar;
bool nine_bit_mode = false;
uint32_t clock_freq;
/* Set up structure to reconfigure UART */
USART_GetDefaultConfig(&usart_config);
/* Set parity */
if (cfg->parity == UART_CFG_PARITY_ODD) {
parity_mode = kUSART_ParityOdd;
} else if (cfg->parity == UART_CFG_PARITY_EVEN) {
parity_mode = kUSART_ParityEven;
} else if (cfg->parity == UART_CFG_PARITY_NONE) {
parity_mode = kUSART_ParityDisabled;
} else {
return -ENOTSUP;
}
usart_config.parityMode = parity_mode;
/* Set baudrate */
usart_config.baudRate_Bps = cfg->baudrate;
/* Set stop bits */
if (cfg->stop_bits == UART_CFG_STOP_BITS_1) {
stop_bits = kUSART_OneStopBit;
} else if (cfg->stop_bits == UART_CFG_STOP_BITS_2) {
stop_bits = kUSART_TwoStopBit;
} else {
return -ENOTSUP;
}
usart_config.stopBitCount = stop_bits;
/* Set data bits */
if (cfg->data_bits == UART_CFG_DATA_BITS_5 ||
cfg->data_bits == UART_CFG_DATA_BITS_6) {
return -ENOTSUP;
} else if (cfg->data_bits == UART_CFG_DATA_BITS_7) {
data_bits = kUSART_7BitsPerChar;
} else if (cfg->data_bits == UART_CFG_DATA_BITS_8) {
data_bits = kUSART_8BitsPerChar;
} else if (cfg->data_bits == UART_CFG_DATA_BITS_9) {
nine_bit_mode = true;
} else {
return -EINVAL;
}
usart_config.bitCountPerChar = data_bits;
/* Set flow control */
if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_NONE) {
usart_config.enableHardwareFlowControl = false;
} else if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS) {
usart_config.enableHardwareFlowControl = true;
} else {
return -ENOTSUP;
}
/* Wait for USART to finish transmission and turn off */
USART_Deinit(config->base);
/* Get UART clock frequency */
clock_control_get_rate(config->clock_dev,
config->clock_subsys, &clock_freq);
/* Handle 9 bit mode */
USART_Enable9bitMode(config->base, nine_bit_mode);
/* Reconfigure UART */
USART_Init(config->base, &usart_config, clock_freq);
/* Update driver device data */
uart_config->parity = cfg->parity;
uart_config->baudrate = cfg->baudrate;
uart_config->stop_bits = cfg->stop_bits;
uart_config->data_bits = cfg->data_bits;
uart_config->flow_ctrl = cfg->flow_ctrl;
return 0;
}
static int mcux_flexcomm_uart_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct mcux_flexcomm_data *data = dev->data;
*cfg = data->uart_config;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_ASYNC_API
/* This function is called by this driver to notify user callback of events */
static void async_user_callback(const struct device *dev,
struct uart_event *evt)
{
const struct mcux_flexcomm_data *data = dev->data;
if (data->async_callback) {
data->async_callback(dev, evt, data->async_cb_data);
}
}
static int mcux_flexcomm_uart_callback_set(const struct device *dev,
uart_callback_t callback,
void *user_data)
{
struct mcux_flexcomm_data *data = dev->data;
data->async_callback = callback;
data->async_cb_data = user_data;
return 0;
}
static int mcux_flexcomm_uart_tx(const struct device *dev, const uint8_t *buf,
size_t len, int32_t timeout)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
int ret = 0;
if (config->tx_dma.dev == NULL) {
return -ENODEV;
}
unsigned int key = irq_lock();
/* Getting DMA status to tell if channel is busy or not set up */
struct dma_status status;
ret = dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &status);
if (ret < 0) {
return ret;
}
/* There is an ongoing transfer */
if (status.busy) {
return -EBUSY;
}
/* Disable TX DMA requests for uart while setting up */
USART_EnableTxDMA(config->base, false);
/* Set up the dma channel/transfer */
data->tx_data.xfer_buf = buf;
data->tx_data.xfer_len = len;
data->tx_data.active_block.source_address = (uint32_t)buf;
data->tx_data.active_block.dest_address = (uint32_t) &config->base->FIFOWR;
data->tx_data.active_block.block_size = len;
data->tx_data.active_block.next_block = NULL;
ret = dma_config(config->tx_dma.dev, config->tx_dma.channel,
(struct dma_config *) &config->tx_dma.cfg);
if (ret) {
return ret;
}
/* Enable interrupt for when TX fifo is empty (all data transmitted) */
config->base->FIFOINTENSET |= USART_FIFOINTENSET_TXLVL_MASK;
/* Enable TX DMA requests */
USART_EnableTxDMA(config->base, true);
/* Trigger the DMA to start transfer */
ret = dma_start(config->tx_dma.dev, config->tx_dma.channel);
if (ret) {
return ret;
}
/* Schedule a TX abort for @param timeout */
if (timeout != SYS_FOREVER_US) {
k_work_schedule(&data->tx_data.timeout_work, K_USEC(timeout));
}
irq_unlock(key);
return ret;
}
static int mcux_flexcomm_uart_tx_abort(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
int ret = 0;
/* First disable DMA requests from UART to prevent transfer
* status change during the abort routine
*/
USART_EnableTxDMA(config->base, false);
/* In case there is no transfer to abort */
if (data->tx_data.xfer_len == 0) {
return -EFAULT;
}
/* In case a user called this function, do not abort twice */
(void)k_work_cancel_delayable(&data->tx_data.timeout_work);
/* Getting dma status to use to calculate bytes sent */
struct dma_status status = {0};
ret = dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &status);
if (ret < 0) {
return ret;
}
/* Done with the DMA transfer, can stop it now */
ret = dma_stop(config->tx_dma.dev, config->tx_dma.channel);
if (ret) {
return ret;
}
/* Define TX abort event before resetting driver variables */
size_t sent_len = data->tx_data.xfer_len - status.pending_length;
const uint8_t *aborted_buf = data->tx_data.xfer_buf;
struct uart_event tx_abort_event = {
.type = UART_TX_ABORTED,
.data.tx.buf = aborted_buf,
.data.tx.len = sent_len
};
/* Driver data needs reset since there is no longer an ongoing
* transfer, this should before the user callback, not after,
* just in case the user callback calls tx again
*/
data->tx_data.xfer_len = 0;
data->tx_data.xfer_buf = NULL;
async_user_callback(dev, &tx_abort_event);
return ret;
}
static int mcux_flexcomm_uart_rx_enable(const struct device *dev, uint8_t *buf,
const size_t len, const int32_t timeout)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
int ret = 0;
if (config->rx_dma.dev == NULL) {
return -ENODEV;
}
/* Getting DMA status to tell if channel is busy or not set up */
struct dma_status status;
ret = dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &status);
if (ret < 0) {
return ret;
}
/* There is an ongoing transfer */
if (status.busy) {
return -EBUSY;
}
/* Disable RX DMA requests for uart while setting up */
USART_EnableRxDMA(config->base, false);
/* Set up the dma channel/transfer */
data->rx_data.xfer_buf = buf;
data->rx_data.xfer_len = len;
data->rx_data.active_block.dest_address = (uint32_t)data->rx_data.xfer_buf;
data->rx_data.active_block.source_address = (uint32_t) &config->base->FIFORD;
data->rx_data.active_block.block_size = data->rx_data.xfer_len;
ret = dma_config(config->rx_dma.dev, config->rx_dma.channel,
(struct dma_config *) &config->rx_dma.cfg);
if (ret) {
return ret;
}
data->rx_data.timeout = timeout;
/* Enable RX DMA requests from UART */
USART_EnableRxDMA(config->base, true);
/* Enable start bit detected interrupt, this is the only
* way for the flexcomm uart to support the Zephyr Async API.
* This is only needed if using a timeout.
*/
if (timeout != SYS_FOREVER_US) {
config->base->INTENSET |= USART_INTENSET_STARTEN_MASK;
}
/* Trigger the DMA to start transfer */
ret = dma_start(config->rx_dma.dev, config->rx_dma.channel);
if (ret) {
return ret;
}
/* Request next buffer */
struct uart_event rx_buf_request = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(dev, &rx_buf_request);
return ret;
}
static void flexcomm_uart_rx_update(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
struct dma_status status;
(void)dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &status);
/* Calculate how many bytes have been received by RX DMA */
size_t total_rx_receive_len = data->rx_data.xfer_len - status.pending_length;
/* Generate RX ready event if there has been new data received */
if (total_rx_receive_len > data->rx_data.offset) {
data->rx_data.count = total_rx_receive_len - data->rx_data.offset;
struct uart_event rx_rdy_event = {
.type = UART_RX_RDY,
.data.rx.buf = data->rx_data.xfer_buf,
.data.rx.len = data->rx_data.count,
.data.rx.offset = data->rx_data.offset,
};
async_user_callback(dev, &rx_rdy_event);
}
/* The data is no longer new, update buffer tracking variables */
data->rx_data.offset += data->rx_data.count;
data->rx_data.count = 0;
}
static int mcux_flexcomm_uart_rx_disable(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
int ret = 0;
/* This bit can be used to check if RX is already disabled
* because it is the bit changed by enabling and disabling DMA
* requests, and in this driver, RX DMA requests should only be
* disabled when the rx function is disabled other than when
* setting up in uart_rx_enable.
*/
if (!(config->base->FIFOCFG & USART_FIFOCFG_DMARX_MASK)) {
return -EFAULT;
}
/* In case a user called this function, don't disable twice */
(void)k_work_cancel_delayable(&data->rx_data.timeout_work);
/* Disable RX requests to pause DMA first and measure what happened,
* Can't stop yet because DMA pending length is needed to
* calculate how many bytes have been received
*/
USART_EnableRxDMA(config->base, false);
/* Check if RX data received and generate rx ready event if so */
flexcomm_uart_rx_update(dev);
/* Notify DMA driver to stop transfer only after RX data handled */
ret = dma_stop(config->rx_dma.dev, config->rx_dma.channel);
if (ret) {
return ret;
}
/* Generate buffer release event for current buffer */
struct uart_event current_buffer_release_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->rx_data.xfer_buf,
};
async_user_callback(dev, &current_buffer_release_event);
/* Generate buffer release event for next buffer */
if (data->rx_data.next_xfer_buf) {
struct uart_event next_buffer_release_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->rx_data.next_xfer_buf
};
async_user_callback(dev, &next_buffer_release_event);
}
/* Reset RX driver data */
data->rx_data.xfer_buf = NULL;
data->rx_data.xfer_len = 0;
data->rx_data.next_xfer_buf = NULL;
data->rx_data.next_xfer_len = 0;
data->rx_data.offset = 0;
data->rx_data.count = 0;
/* Final event is the RX disable event */
struct uart_event rx_disabled_event = {
.type = UART_RX_DISABLED
};
async_user_callback(dev, &rx_disabled_event);
return ret;
}
static int mcux_flexcomm_uart_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
/* There is already a next buffer scheduled */
if (data->rx_data.next_xfer_buf != NULL || data->rx_data.next_xfer_len != 0) {
return -EBUSY;
}
/* DMA requests are disabled, meaning the RX has been disabled */
if (!(config->base->FIFOCFG & USART_FIFOCFG_DMARX_MASK)) {
return -EACCES;
}
/* If everything is fine, schedule the new buffer */
data->rx_data.next_xfer_buf = buf;
data->rx_data.next_xfer_len = len;
return 0;
}
/* This callback is from the TX DMA and consumed by this driver */
static void mcux_flexcomm_uart_dma_tx_callback(const struct device *dma_device, void *cb_data,
uint32_t channel, int status)
{
/* DMA callback data was configured during driver init as UART device ptr */
struct device *dev = (struct device *)cb_data;
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
unsigned int key = irq_lock();
/* Turn off requests since we are aborting */
USART_EnableTxDMA(config->base, false);
/* Timeout did not happen */
(void)k_work_cancel_delayable(&data->tx_data.timeout_work);
irq_unlock(key);
}
/* This callback is from the RX DMA and consumed by this driver */
static void mcux_flexcomm_uart_dma_rx_callback(const struct device *dma_device, void *cb_data,
uint32_t channel, int status)
{
/* DMA callback data was configured during driver init as UART device ptr */
struct device *dev = (struct device *)cb_data;
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
/* Cancel timeout now that the transfer is complete */
(void)k_work_cancel_delayable(&data->rx_data.timeout_work);
/* Update user with received RX data if needed */
flexcomm_uart_rx_update(dev);
/* Release current buffer */
struct uart_event current_buffer_release_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->rx_data.xfer_buf,
};
async_user_callback(dev, &current_buffer_release_event);
if (data->rx_data.next_xfer_buf) {
/* Replace buffer in driver data */
data->rx_data.xfer_buf = data->rx_data.next_xfer_buf;
data->rx_data.xfer_len = data->rx_data.next_xfer_len;
data->rx_data.next_xfer_buf = NULL;
data->rx_data.next_xfer_len = 0;
/* Reload DMA channel with new buffer */
data->rx_data.active_block.block_size = data->rx_data.xfer_len;
data->rx_data.active_block.dest_address = (uint32_t) data->rx_data.xfer_buf;
dma_reload(config->rx_dma.dev, config->rx_dma.channel,
data->rx_data.active_block.source_address,
data->rx_data.active_block.dest_address,
data->rx_data.active_block.block_size);
/* Request next buffer */
struct uart_event rx_buf_request = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(dev, &rx_buf_request);
/* Start the new transfer */
dma_start(config->rx_dma.dev, config->rx_dma.channel);
} else {
/* If there is no next available buffer then disable DMA */
mcux_flexcomm_uart_rx_disable(dev);
}
/* Now that this transfer was finished, reset tracking variables */
data->rx_data.count = 0;
data->rx_data.offset = 0;
}
#if defined(CONFIG_SOC_SERIES_IMX_RT5XX) || defined(CONFIG_SOC_SERIES_IMX_RT6XX)
/*
* This functions calculates the inputmux connection value
* needed by INPUTMUX_EnableSignal to allow the UART's DMA
* request to reach the DMA.
*/
static uint32_t fc_uart_calc_inmux_connection(uint8_t channel, DMA_Type *base)
{
uint32_t chmux_avl = 0;
uint32_t chmux_sel = 0;
uint32_t chmux_val = 0;
#if defined(CONFIG_SOC_SERIES_IMX_RT5XX)
uint32_t chmux_sel_id = 0;
if (base == (DMA_Type *)DMA0_BASE) {
chmux_sel_id = DMA0_CHMUX_SEL0_ID;
} else if (base == (DMA_Type *)DMA1_BASE) {
chmux_sel_id = DMA1_CHMUX_SEL0_ID;
}
if (channel >= 16 && !(channel >= 24 && channel <= 27)) {
chmux_avl = 1 << CHMUX_AVL_SHIFT;
} else {
chmux_avl = 0;
}
/* 1 for flexcomm */
chmux_val = 1 << CHMUX_VAL_SHIFT;
if (channel <= 15 || (channel >= 24 && channel <= 27)) {
chmux_sel = 0;
} else if (channel >= 16 && channel <= 23) {
chmux_sel = (chmux_sel_id + 4 * (channel - 16))
<< CHMUX_OFF_SHIFT;
} else {
chmux_sel = (chmux_sel_id + 4 * (channel - 20))
<< CHMUX_OFF_SHIFT;
}
#endif /* RT5xx */
uint32_t req_en_id = 0;
if (base == (DMA_Type *)DMA0_BASE) {
req_en_id = DMA0_REQ_ENA0_ID;
} else if (base == (DMA_Type *)DMA1_BASE) {
req_en_id = DMA1_REQ_ENA0_ID;
}
uint32_t en_val;
if (channel <= 31) {
en_val = channel + (req_en_id << ENA_SHIFT);
} else {
en_val = (channel - 32) + ((req_en_id + 4) << ENA_SHIFT);
}
uint32_t ret = en_val + chmux_avl + chmux_val + chmux_sel;
return ret;
}
#endif /* RT 3-digit */
static int flexcomm_uart_async_init(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
if (config->rx_dma.dev == NULL ||
config->tx_dma.dev == NULL) {
return -ENODEV;
}
if (!device_is_ready(config->rx_dma.dev) ||
!device_is_ready(config->tx_dma.dev)) {
return -ENODEV;
}
/* Disable DMA requests */
USART_EnableTxDMA(config->base, false);
USART_EnableRxDMA(config->base, false);
/* Route DMA requests */
#if defined(CONFIG_SOC_SERIES_IMX_RT5XX) || defined(CONFIG_SOC_SERIES_IMX_RT6XX)
/* RT 3 digit uses input mux to route DMA requests from
* the UART peripheral to a hardware designated DMA channel
*/
INPUTMUX_Init(INPUTMUX);
INPUTMUX_EnableSignal(INPUTMUX,
fc_uart_calc_inmux_connection(config->rx_dma.channel,
config->rx_dma.base), true);
INPUTMUX_EnableSignal(INPUTMUX,
fc_uart_calc_inmux_connection(config->tx_dma.channel,
config->tx_dma.base), true);
INPUTMUX_Deinit(INPUTMUX);
#endif /* RT5xx and RT6xx */
/* Init work objects for RX and TX timeouts */
k_work_init_delayable(&data->tx_data.timeout_work,
config->tx_timeout_func);
k_work_init_delayable(&data->rx_data.timeout_work,
config->rx_timeout_func);
return 0;
}
#endif /* CONFIG_UART_ASYNC_API */
static void mcux_flexcomm_isr(const struct device *dev)
{
struct mcux_flexcomm_data *data = dev->data;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
if (data->irq_callback) {
data->irq_callback(dev, data->irq_cb_data);
}
#endif
#ifdef CONFIG_UART_ASYNC_API
const struct mcux_flexcomm_config *config = dev->config;
/* If there is an async callback then we are using async api */
if (data->async_callback) {
/* Handle RX interrupt (START bit detected)
* RX interrupt defeats the purpose of UART ASYNC API
* because core is involved for every byte but
* it is included for compatibility of applications.
* There is no other way with flexcomm UART to handle
* Zephyr's RX ASYNC API. However, if not using the RX
* timeout (timeout is forever), then the performance is
* still as might be expected.
*/
if (config->base->INTSTAT & USART_INTSTAT_START_MASK) {
/* Receiving some data so reschedule timeout,
* unless timeout is 0 in which case just handle
* rx data now. If timeout is forever, don't do anything.
*/
if (data->rx_data.timeout == 0) {
flexcomm_uart_rx_update(dev);
} else if (data->rx_data.timeout != SYS_FOREVER_US) {
k_work_reschedule(&data->rx_data.timeout_work,
K_USEC(data->rx_data.timeout));
}
/* Write 1 to clear start bit status bit */
config->base->STAT |= USART_STAT_START_MASK;
}
/* Handle TX interrupt (TXLVL = 0)
* Default TXLVL interrupt happens when TXLVL = 0, which
* has not been changed by this driver, so in this case the
* TX interrupt should happen when transfer is complete
* because DMA filling TX fifo is faster than transmitter rate
*/
if (config->base->FIFOINTSTAT & USART_FIFOINTSTAT_TXLVL_MASK) {
/* Disable interrupt */
config->base->FIFOINTENCLR = USART_FIFOINTENCLR_TXLVL_MASK;
/* Set up TX done event to notify the user of completion */
struct uart_event tx_done_event = {
.type = UART_TX_DONE,
.data.tx.buf = data->tx_data.xfer_buf,
.data.tx.len = data->tx_data.xfer_len,
};
/* Reset TX data */
data->tx_data.xfer_len = 0;
data->tx_data.xfer_buf = NULL;
async_user_callback(dev, &tx_done_event);
}
}
#endif
}
static int mcux_flexcomm_init(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
struct mcux_flexcomm_data *data = dev->data;
struct uart_config *cfg = &data->uart_config;
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
usart_config_t usart_config;
usart_parity_mode_t parity_mode;
uint32_t clock_freq;
int err;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
if (!device_is_ready(config->clock_dev)) {
return -ENODEV;
}
/* Get the clock frequency */
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
if (config->parity == UART_CFG_PARITY_ODD) {
parity_mode = kUSART_ParityOdd;
} else if (config->parity == UART_CFG_PARITY_EVEN) {
parity_mode = kUSART_ParityEven;
} else {
parity_mode = kUSART_ParityDisabled;
}
USART_GetDefaultConfig(&usart_config);
usart_config.enableTx = true;
usart_config.enableRx = true;
usart_config.parityMode = parity_mode;
usart_config.baudRate_Bps = config->baud_rate;
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
cfg->baudrate = config->baud_rate;
cfg->parity = config->parity;
/* From USART_GetDefaultConfig */
cfg->stop_bits = UART_CFG_STOP_BITS_1;
cfg->data_bits = UART_CFG_DATA_BITS_8;
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
USART_Init(config->base, &usart_config, clock_freq);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->irq_config_func(dev);
#endif
#ifdef CONFIG_UART_ASYNC_API
err = flexcomm_uart_async_init(dev);
if (err) {
return err;
}
#endif
return 0;
}
static const struct uart_driver_api mcux_flexcomm_driver_api = {
.poll_in = mcux_flexcomm_poll_in,
.poll_out = mcux_flexcomm_poll_out,
.err_check = mcux_flexcomm_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = mcux_flexcomm_uart_configure,
.config_get = mcux_flexcomm_uart_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = mcux_flexcomm_fifo_fill,
.fifo_read = mcux_flexcomm_fifo_read,
.irq_tx_enable = mcux_flexcomm_irq_tx_enable,
.irq_tx_disable = mcux_flexcomm_irq_tx_disable,
.irq_tx_complete = mcux_flexcomm_irq_tx_complete,
.irq_tx_ready = mcux_flexcomm_irq_tx_ready,
.irq_rx_enable = mcux_flexcomm_irq_rx_enable,
.irq_rx_disable = mcux_flexcomm_irq_rx_disable,
.irq_rx_ready = mcux_flexcomm_irq_rx_full,
.irq_err_enable = mcux_flexcomm_irq_err_enable,
.irq_err_disable = mcux_flexcomm_irq_err_disable,
.irq_is_pending = mcux_flexcomm_irq_is_pending,
.irq_update = mcux_flexcomm_irq_update,
.irq_callback_set = mcux_flexcomm_irq_callback_set,
#endif
#ifdef CONFIG_UART_ASYNC_API
.callback_set = mcux_flexcomm_uart_callback_set,
.tx = mcux_flexcomm_uart_tx,
.tx_abort = mcux_flexcomm_uart_tx_abort,
.rx_enable = mcux_flexcomm_uart_rx_enable,
.rx_disable = mcux_flexcomm_uart_rx_disable,
.rx_buf_rsp = mcux_flexcomm_uart_rx_buf_rsp,
#endif
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC(n) \
static void mcux_flexcomm_irq_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
mcux_flexcomm_isr, DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
#define UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC_INIT(n) \
.irq_config_func = mcux_flexcomm_irq_config_func_##n,
#else
#define UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC(n)
#define UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC_INIT(n)
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
#define UART_MCUX_FLEXCOMM_TX_TIMEOUT_FUNC(n) \
static void mcux_flexcomm_uart_##n##_tx_timeout(struct k_work *work) \
{ \
mcux_flexcomm_uart_tx_abort(DEVICE_DT_INST_GET(n)); \
}
#define UART_MCUX_FLEXCOMM_RX_TIMEOUT_FUNC(n) \
static void mcux_flexcomm_uart_##n##_rx_timeout(struct k_work *work) \
{ \
flexcomm_uart_rx_update(DEVICE_DT_INST_GET(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(UART_MCUX_FLEXCOMM_TX_TIMEOUT_FUNC);
DT_INST_FOREACH_STATUS_OKAY(UART_MCUX_FLEXCOMM_RX_TIMEOUT_FUNC);
#define UART_MCUX_FLEXCOMM_ASYNC_CFG(n) \
.tx_dma = { \
.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \
.channel = DT_INST_DMAS_CELL_BY_NAME(n, tx, channel), \
.cfg = { \
.source_burst_length = 1, \
.dest_burst_length = 1, \
.source_data_size = 1, \
.dest_data_size = 1, \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&mcux_flexcomm_##n##_data.tx_data.active_block, \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, tx, channel), \
.dma_callback = mcux_flexcomm_uart_dma_tx_callback, \
.user_data = (void *)DEVICE_DT_INST_GET(n), \
}, \
.base = (DMA_Type *) \
DT_REG_ADDR(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \
}, \
.rx_dma = { \
.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, rx)), \
.channel = DT_INST_DMAS_CELL_BY_NAME(n, rx, channel), \
.cfg = { \
.source_burst_length = 1, \
.dest_burst_length = 1, \
.source_data_size = 1, \
.dest_data_size = 1, \
.complete_callback_en = 1, \
.error_callback_en = 1, \
.block_count = 1, \
.head_block = \
&mcux_flexcomm_##n##_data.rx_data.active_block, \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, rx, channel), \
.dma_callback = mcux_flexcomm_uart_dma_rx_callback, \
.user_data = (void *)DEVICE_DT_INST_GET(n) \
}, \
.base = (DMA_Type *) \
DT_REG_ADDR(DT_INST_DMAS_CTLR_BY_NAME(n, rx)), \
}, \
.rx_timeout_func = mcux_flexcomm_uart_##n##_rx_timeout, \
.tx_timeout_func = mcux_flexcomm_uart_##n##_tx_timeout,
#else
#define UART_MCUX_FLEXCOMM_ASYNC_CFG(n)
#endif /* CONFIG_UART_ASYNC_API */
#define UART_MCUX_FLEXCOMM_INIT_CFG(n) \
static const struct mcux_flexcomm_config mcux_flexcomm_##n##_config = { \
.base = (USART_Type *)DT_INST_REG_ADDR(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
.baud_rate = DT_INST_PROP(n, current_speed), \
.parity = DT_INST_ENUM_IDX_OR(n, parity, UART_CFG_PARITY_NONE), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC_INIT(n) \
UART_MCUX_FLEXCOMM_ASYNC_CFG(n) \
};
#define UART_MCUX_FLEXCOMM_INIT(n) \
\
PINCTRL_DT_INST_DEFINE(n); \
\
static struct mcux_flexcomm_data mcux_flexcomm_##n##_data; \
\
static const struct mcux_flexcomm_config mcux_flexcomm_##n##_config; \
\
DEVICE_DT_INST_DEFINE(n, \
&mcux_flexcomm_init, \
NULL, \
&mcux_flexcomm_##n##_data, \
&mcux_flexcomm_##n##_config, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&mcux_flexcomm_driver_api); \
\
UART_MCUX_FLEXCOMM_IRQ_CFG_FUNC(n) \
\
UART_MCUX_FLEXCOMM_INIT_CFG(n)
DT_INST_FOREACH_STATUS_OKAY(UART_MCUX_FLEXCOMM_INIT)