blob: d120ec33b5b1fdd63a15568292d8703c39654d7f [file] [log] [blame]
/*
* Copyright (c) 2016 Linaro Limited.
* Copyright (c) 2020 Teslabs Engineering S.L.
* Copyright (c) 2023 Nobleo Technology
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_pwm
#include <errno.h>
#include <soc.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_tim.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/init.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/dt-bindings/pwm/stm32_pwm.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(pwm_stm32, CONFIG_PWM_LOG_LEVEL);
/* L0 series MCUs only have 16-bit timers and don't have below macro defined */
#ifndef IS_TIM_32B_COUNTER_INSTANCE
#define IS_TIM_32B_COUNTER_INSTANCE(INSTANCE) (0)
#endif
#ifdef CONFIG_PWM_CAPTURE
/**
* @brief Capture state when in 4-channel support mode
*/
enum capture_state {
CAPTURE_STATE_IDLE = 0,
CAPTURE_STATE_WAIT_FOR_UPDATE_EVENT = 1,
CAPTURE_STATE_WAIT_FOR_PULSE_START = 2,
CAPTURE_STATE_WAIT_FOR_PERIOD_END = 3
};
/** Return the complimentary channel number
* that is used to capture the end of the pulse.
*/
static const uint32_t complimentary_channel[] = {0, 2, 1, 4, 3};
struct pwm_stm32_capture_data {
pwm_capture_callback_handler_t callback;
void *user_data;
uint32_t period;
uint32_t pulse;
uint32_t overflows;
uint8_t skip_irq;
bool capture_period;
bool capture_pulse;
bool continuous;
uint8_t channel;
/* only used when four_channel_capture_support */
enum capture_state state;
};
/* When PWM capture is done by resetting the counter with UIF then the
* first capture is always nonsense, second is nonsense when polarity changed
* This is not the case when using four-channel-support.
*/
#define SKIPPED_PWM_CAPTURES 2u
#endif /*CONFIG_PWM_CAPTURE*/
/** PWM data. */
struct pwm_stm32_data {
/** Timer clock (Hz). */
uint32_t tim_clk;
/* Reset controller device configuration */
const struct reset_dt_spec reset;
#ifdef CONFIG_PWM_CAPTURE
struct pwm_stm32_capture_data capture;
#endif /* CONFIG_PWM_CAPTURE */
};
/** PWM configuration. */
struct pwm_stm32_config {
TIM_TypeDef *timer;
uint32_t prescaler;
uint32_t countermode;
struct stm32_pclken pclken;
const struct pinctrl_dev_config *pcfg;
#ifdef CONFIG_PWM_CAPTURE
void (*irq_config_func)(const struct device *dev);
const bool four_channel_capture_support;
#endif /* CONFIG_PWM_CAPTURE */
};
/** Maximum number of timer channels : some stm32 soc have 6 else only 4 */
#if defined(LL_TIM_CHANNEL_CH6)
#define TIMER_HAS_6CH 1
#define TIMER_MAX_CH 6u
#else
#define TIMER_HAS_6CH 0
#define TIMER_MAX_CH 4u
#endif
/** Channel to LL mapping. */
static const uint32_t ch2ll[TIMER_MAX_CH] = {
LL_TIM_CHANNEL_CH1, LL_TIM_CHANNEL_CH2,
LL_TIM_CHANNEL_CH3, LL_TIM_CHANNEL_CH4,
#if TIMER_HAS_6CH
LL_TIM_CHANNEL_CH5, LL_TIM_CHANNEL_CH6
#endif
};
/** Some stm32 mcus have complementary channels : 3 or 4 */
static const uint32_t ch2ll_n[] = {
#if defined(LL_TIM_CHANNEL_CH1N)
LL_TIM_CHANNEL_CH1N,
LL_TIM_CHANNEL_CH2N,
LL_TIM_CHANNEL_CH3N,
#if defined(LL_TIM_CHANNEL_CH4N)
/** stm32g4x and stm32u5x have 4 complementary channels */
LL_TIM_CHANNEL_CH4N,
#endif /* LL_TIM_CHANNEL_CH4N */
#endif /* LL_TIM_CHANNEL_CH1N */
};
/** Maximum number of complemented timer channels is ARRAY_SIZE(ch2ll_n)*/
/** Channel to compare set function mapping. */
static void (*const set_timer_compare[TIMER_MAX_CH])(TIM_TypeDef *,
uint32_t) = {
LL_TIM_OC_SetCompareCH1, LL_TIM_OC_SetCompareCH2,
LL_TIM_OC_SetCompareCH3, LL_TIM_OC_SetCompareCH4,
#if TIMER_HAS_6CH
LL_TIM_OC_SetCompareCH5, LL_TIM_OC_SetCompareCH6
#endif
};
/** Channel to capture get function mapping. */
#if !defined(CONFIG_SOC_SERIES_STM32MP1X)
static uint32_t __maybe_unused (*const get_channel_capture[])(const TIM_TypeDef *) = {
#else
static uint32_t __maybe_unused (*const get_channel_capture[])(TIM_TypeDef *) = {
#endif
LL_TIM_IC_GetCaptureCH1, LL_TIM_IC_GetCaptureCH2,
LL_TIM_IC_GetCaptureCH3, LL_TIM_IC_GetCaptureCH4
};
/** Channel to enable capture interrupt mapping. */
static void __maybe_unused (*const enable_capture_interrupt[])(TIM_TypeDef *) = {
LL_TIM_EnableIT_CC1, LL_TIM_EnableIT_CC2,
LL_TIM_EnableIT_CC3, LL_TIM_EnableIT_CC4
};
/** Channel to disable capture interrupt mapping. */
static void __maybe_unused (*const disable_capture_interrupt[])(TIM_TypeDef *) = {
LL_TIM_DisableIT_CC1, LL_TIM_DisableIT_CC2,
LL_TIM_DisableIT_CC3, LL_TIM_DisableIT_CC4
};
/** Channel to is capture active flag mapping. */
#if !defined(CONFIG_SOC_SERIES_STM32MP1X)
static uint32_t __maybe_unused (*const is_capture_active[])(const TIM_TypeDef *) = {
#else
static uint32_t __maybe_unused (*const is_capture_active[])(TIM_TypeDef *) = {
#endif
LL_TIM_IsActiveFlag_CC1, LL_TIM_IsActiveFlag_CC2,
LL_TIM_IsActiveFlag_CC3, LL_TIM_IsActiveFlag_CC4
};
/** Channel to clearing capture flag mapping. */
static void __maybe_unused (*const clear_capture_interrupt[])(TIM_TypeDef *) = {
LL_TIM_ClearFlag_CC1, LL_TIM_ClearFlag_CC2,
LL_TIM_ClearFlag_CC3, LL_TIM_ClearFlag_CC4
};
/**
* Obtain LL polarity from PWM flags.
*
* @param flags PWM flags.
*
* @return LL polarity.
*/
static uint32_t get_polarity(pwm_flags_t flags)
{
if ((flags & PWM_POLARITY_MASK) == PWM_POLARITY_NORMAL) {
return LL_TIM_OCPOLARITY_HIGH;
}
return LL_TIM_OCPOLARITY_LOW;
}
/**
* @brief Check if LL counter mode is center-aligned.
*
* @param ll_countermode LL counter mode.
*
* @return `true` when center-aligned, otherwise `false`.
*/
static inline bool is_center_aligned(const uint32_t ll_countermode)
{
return ((ll_countermode == LL_TIM_COUNTERMODE_CENTER_DOWN) ||
(ll_countermode == LL_TIM_COUNTERMODE_CENTER_UP) ||
(ll_countermode == LL_TIM_COUNTERMODE_CENTER_UP_DOWN));
}
/**
* Obtain timer clock speed.
*
* @param pclken Timer clock control subsystem.
* @param tim_clk Where computed timer clock will be stored.
*
* @return 0 on success, error code otherwise.
*/
static int get_tim_clk(const struct stm32_pclken *pclken, uint32_t *tim_clk)
{
int r;
const struct device *clk;
uint32_t bus_clk, apb_psc;
clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
r = clock_control_get_rate(clk, (clock_control_subsys_t)pclken,
&bus_clk);
if (r < 0) {
return r;
}
#if defined(CONFIG_SOC_SERIES_STM32H7X)
if (pclken->bus == STM32_CLOCK_BUS_APB1) {
apb_psc = STM32_D2PPRE1;
} else {
apb_psc = STM32_D2PPRE2;
}
#else
if (pclken->bus == STM32_CLOCK_BUS_APB1) {
#if defined(CONFIG_SOC_SERIES_STM32MP1X)
apb_psc = (uint32_t)(READ_BIT(RCC->APB1DIVR, RCC_APB1DIVR_APB1DIV));
#else
apb_psc = STM32_APB1_PRESCALER;
#endif
}
#if !defined(CONFIG_SOC_SERIES_STM32C0X) && !defined(CONFIG_SOC_SERIES_STM32F0X) && \
!defined(CONFIG_SOC_SERIES_STM32G0X) && !defined(CONFIG_SOC_SERIES_STM32U0X)
else {
#if defined(CONFIG_SOC_SERIES_STM32MP1X)
apb_psc = (uint32_t)(READ_BIT(RCC->APB2DIVR, RCC_APB2DIVR_APB2DIV));
#else
apb_psc = STM32_APB2_PRESCALER;
#endif
}
#endif
#endif
#if defined(RCC_DCKCFGR_TIMPRE) || defined(RCC_DCKCFGR1_TIMPRE) || \
defined(RCC_CFGR_TIMPRE)
/*
* There are certain series (some F4, F7 and H7) that have the TIMPRE
* bit to control the clock frequency of all the timers connected to
* APB1 and APB2 domains.
*
* Up to a certain threshold value of APB{1,2} prescaler, timer clock
* equals to HCLK. This threshold value depends on TIMPRE setting
* (2 if TIMPRE=0, 4 if TIMPRE=1). Above threshold, timer clock is set
* to a multiple of the APB domain clock PCLK{1,2} (2 if TIMPRE=0, 4 if
* TIMPRE=1).
*/
if (LL_RCC_GetTIMPrescaler() == LL_RCC_TIM_PRESCALER_TWICE) {
/* TIMPRE = 0 */
if (apb_psc <= 2u) {
LL_RCC_ClocksTypeDef clocks;
LL_RCC_GetSystemClocksFreq(&clocks);
*tim_clk = clocks.HCLK_Frequency;
} else {
*tim_clk = bus_clk * 2u;
}
} else {
/* TIMPRE = 1 */
if (apb_psc <= 4u) {
LL_RCC_ClocksTypeDef clocks;
LL_RCC_GetSystemClocksFreq(&clocks);
*tim_clk = clocks.HCLK_Frequency;
} else {
*tim_clk = bus_clk * 4u;
}
}
#else
/*
* If the APB prescaler equals 1, the timer clock frequencies
* are set to the same frequency as that of the APB domain.
* Otherwise, they are set to twice (×2) the frequency of the
* APB domain.
*/
if (apb_psc == 1u) {
*tim_clk = bus_clk;
} else {
*tim_clk = bus_clk * 2u;
}
#endif
return 0;
}
static int pwm_stm32_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
const struct pwm_stm32_config *cfg = dev->config;
uint32_t ll_channel;
uint32_t current_ll_channel; /* complementary output if used */
uint32_t negative_ll_channel;
if (channel < 1u || channel > TIMER_MAX_CH) {
LOG_ERR("Invalid channel (%d)", channel);
return -EINVAL;
}
/*
* Non 32-bit timers count from 0 up to the value in the ARR register
* (16-bit). Thus period_cycles cannot be greater than UINT16_MAX + 1.
*/
if (!IS_TIM_32B_COUNTER_INSTANCE(cfg->timer) &&
(period_cycles > UINT16_MAX + 1)) {
LOG_ERR("Cannot set PWM output, value exceeds 16-bit timer limit.");
return -ENOTSUP;
}
#ifdef CONFIG_PWM_CAPTURE
if (LL_TIM_IsEnabledIT_CC1(cfg->timer) || LL_TIM_IsEnabledIT_CC2(cfg->timer) ||
LL_TIM_IsEnabledIT_CC3(cfg->timer) || LL_TIM_IsEnabledIT_CC4(cfg->timer)) {
LOG_ERR("Cannot set PWM output, capture in progress");
return -EBUSY;
}
#endif /* CONFIG_PWM_CAPTURE */
ll_channel = ch2ll[channel - 1u];
if (channel <= ARRAY_SIZE(ch2ll_n)) {
negative_ll_channel = ch2ll_n[channel - 1u];
} else {
negative_ll_channel = 0;
}
/* in LL_TIM_CC_DisableChannel and LL_TIM_CC_IsEnabledChannel,
* the channel param could be the complementary one
*/
if ((flags & STM32_PWM_COMPLEMENTARY_MASK) == STM32_PWM_COMPLEMENTARY) {
if (!negative_ll_channel) {
/* setting a flag on a channel that has not this capability */
LOG_ERR("Channel %d has NO complementary output", channel);
return -EINVAL;
}
current_ll_channel = negative_ll_channel;
} else {
current_ll_channel = ll_channel;
}
if (period_cycles == 0u) {
LL_TIM_CC_DisableChannel(cfg->timer, current_ll_channel);
return 0;
}
if (cfg->countermode == LL_TIM_COUNTERMODE_UP) {
/* remove 1 period cycle, accounts for 1 extra low cycle */
period_cycles -= 1U;
} else if (cfg->countermode == LL_TIM_COUNTERMODE_DOWN) {
/* remove 1 pulse cycle, accounts for 1 extra high cycle */
pulse_cycles -= 1U;
/* remove 1 period cycle, accounts for 1 extra low cycle */
period_cycles -= 1U;
} else if (is_center_aligned(cfg->countermode)) {
pulse_cycles /= 2U;
period_cycles /= 2U;
} else {
return -ENOTSUP;
}
if (!LL_TIM_CC_IsEnabledChannel(cfg->timer, current_ll_channel)) {
LL_TIM_OC_InitTypeDef oc_init;
LL_TIM_OC_StructInit(&oc_init);
oc_init.OCMode = LL_TIM_OCMODE_PWM1;
#if defined(LL_TIM_CHANNEL_CH1N)
/* the flags holds the STM32_PWM_COMPLEMENTARY information */
if ((flags & STM32_PWM_COMPLEMENTARY_MASK) == STM32_PWM_COMPLEMENTARY) {
oc_init.OCNState = LL_TIM_OCSTATE_ENABLE;
oc_init.OCNPolarity = get_polarity(flags);
/* inherit the polarity of the positive output */
oc_init.OCState = LL_TIM_CC_IsEnabledChannel(cfg->timer, ll_channel)
? LL_TIM_OCSTATE_ENABLE
: LL_TIM_OCSTATE_DISABLE;
oc_init.OCPolarity = LL_TIM_OC_GetPolarity(cfg->timer, ll_channel);
} else {
oc_init.OCState = LL_TIM_OCSTATE_ENABLE;
oc_init.OCPolarity = get_polarity(flags);
/* inherit the polarity of the negative output */
if (negative_ll_channel) {
oc_init.OCNState =
LL_TIM_CC_IsEnabledChannel(cfg->timer, negative_ll_channel)
? LL_TIM_OCSTATE_ENABLE
: LL_TIM_OCSTATE_DISABLE;
oc_init.OCNPolarity =
LL_TIM_OC_GetPolarity(cfg->timer, negative_ll_channel);
}
}
#else /* LL_TIM_CHANNEL_CH1N */
oc_init.OCState = LL_TIM_OCSTATE_ENABLE;
oc_init.OCPolarity = get_polarity(flags);
#endif /* LL_TIM_CHANNEL_CH1N */
oc_init.CompareValue = pulse_cycles;
#ifdef CONFIG_PWM_CAPTURE
if (IS_TIM_SLAVE_INSTANCE(cfg->timer)) {
LL_TIM_SetSlaveMode(cfg->timer,
LL_TIM_SLAVEMODE_DISABLED);
LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_ITR0);
LL_TIM_DisableMasterSlaveMode(cfg->timer);
}
#endif /* CONFIG_PWM_CAPTURE */
/* in LL_TIM_OC_Init, the channel is always the non-complementary */
if (LL_TIM_OC_Init(cfg->timer, ll_channel, &oc_init) != SUCCESS) {
LOG_ERR("Could not initialize timer channel output");
return -EIO;
}
LL_TIM_EnableARRPreload(cfg->timer);
/* in LL_TIM_OC_EnablePreload, the channel is always the non-complementary */
LL_TIM_OC_EnablePreload(cfg->timer, ll_channel);
LL_TIM_SetAutoReload(cfg->timer, period_cycles);
LL_TIM_GenerateEvent_UPDATE(cfg->timer);
} else {
/* in LL_TIM_OC_SetPolarity, the channel could be the complementary one */
LL_TIM_OC_SetPolarity(cfg->timer, current_ll_channel, get_polarity(flags));
set_timer_compare[channel - 1u](cfg->timer, pulse_cycles);
LL_TIM_SetAutoReload(cfg->timer, period_cycles);
}
return 0;
}
#ifdef CONFIG_PWM_CAPTURE
static int init_capture_channels(const struct device *dev, uint32_t channel,
pwm_flags_t flags)
{
const struct pwm_stm32_config *cfg = dev->config;
bool is_inverted = (flags & PWM_POLARITY_MASK) == PWM_POLARITY_INVERTED;
LL_TIM_IC_InitTypeDef ic;
LL_TIM_IC_StructInit(&ic);
ic.ICPrescaler = TIM_ICPSC_DIV1;
ic.ICFilter = LL_TIM_IC_FILTER_FDIV1;
/* Setup main channel */
ic.ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_FALLING : LL_TIM_IC_POLARITY_RISING;
if (LL_TIM_IC_Init(cfg->timer, ch2ll[channel - 1], &ic) != SUCCESS) {
LOG_ERR("Could not initialize main channel for PWM capture");
return -EIO;
}
/* Setup complimentary channel */
ic.ICActiveInput = LL_TIM_ACTIVEINPUT_INDIRECTTI;
ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_RISING : LL_TIM_IC_POLARITY_FALLING;
if (LL_TIM_IC_Init(cfg->timer, ch2ll[complimentary_channel[channel] - 1], &ic) != SUCCESS) {
LOG_ERR("Could not initialize complimentary channel for PWM capture");
return -EIO;
}
return 0;
}
static int pwm_stm32_configure_capture(const struct device *dev,
uint32_t channel, pwm_flags_t flags,
pwm_capture_callback_handler_t cb,
void *user_data)
{
/*
* Capture is implemented in two different ways, depending on the
* four-channel-capture-support setting in the node.
* - Two Channel Support:
* Only two channels (1 and 2) are available for capture. It uses
* the slave mode controller to reset the counter on each edge.
* - Four Channel Support:
* All four channels are available for capture. Instead of the
* slave mode controller it uses the ISR to reset the counter.
* This is slightly less accurate, but still within acceptable
* bounds.
*/
const struct pwm_stm32_config *cfg = dev->config;
struct pwm_stm32_data *data = dev->data;
struct pwm_stm32_capture_data *cpt = &data->capture;
int ret;
if (!cfg->four_channel_capture_support) {
if ((channel != 1u) && (channel != 2u)) {
LOG_ERR("PWM capture only supported on first two channels");
return -ENOTSUP;
}
} else {
if ((channel < 1u) || (channel > 4u)) {
LOG_ERR("PWM capture only exists on channels 1, 2, 3 and 4.");
return -ENOTSUP;
}
}
if (LL_TIM_IsEnabledIT_CC1(cfg->timer) || LL_TIM_IsEnabledIT_CC2(cfg->timer) ||
LL_TIM_IsEnabledIT_CC3(cfg->timer) || LL_TIM_IsEnabledIT_CC4(cfg->timer)) {
LOG_ERR("PWM capture already in progress");
return -EBUSY;
}
if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
LOG_ERR("No PWM capture type specified");
return -EINVAL;
}
if (!cfg->four_channel_capture_support && !IS_TIM_SLAVE_INSTANCE(cfg->timer)) {
/* slave mode is only used when not in four channel mode */
LOG_ERR("Timer does not support slave mode for PWM capture");
return -ENOTSUP;
}
cpt->callback = cb; /* even if the cb is reset, this is not an error */
cpt->user_data = user_data;
cpt->capture_period = (flags & PWM_CAPTURE_TYPE_PERIOD) ? true : false;
cpt->capture_pulse = (flags & PWM_CAPTURE_TYPE_PULSE) ? true : false;
cpt->continuous = (flags & PWM_CAPTURE_MODE_CONTINUOUS) ? true : false;
/* Prevents faulty behavior while making changes */
LL_TIM_SetSlaveMode(cfg->timer, LL_TIM_SLAVEMODE_DISABLED);
ret = init_capture_channels(dev, channel, flags);
if (ret < 0) {
return ret;
}
if (!cfg->four_channel_capture_support) {
if (channel == 1u) {
LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_TI1FP1);
} else {
LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_TI2FP2);
}
LL_TIM_SetSlaveMode(cfg->timer, LL_TIM_SLAVEMODE_RESET);
}
LL_TIM_EnableARRPreload(cfg->timer);
if (!IS_TIM_32B_COUNTER_INSTANCE(cfg->timer)) {
LL_TIM_SetAutoReload(cfg->timer, 0xffffu);
} else {
LL_TIM_SetAutoReload(cfg->timer, 0xffffffffu);
}
LL_TIM_EnableUpdateEvent(cfg->timer);
return 0;
}
static int pwm_stm32_enable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_stm32_config *cfg = dev->config;
struct pwm_stm32_data *data = dev->data;
struct pwm_stm32_capture_data *cpt = &data->capture;
if (!cfg->four_channel_capture_support) {
if ((channel != 1u) && (channel != 2u)) {
LOG_ERR("PWM capture only supported on first two channels");
return -ENOTSUP;
}
} else {
if ((channel < 1u) || (channel > 4u)) {
LOG_ERR("PWM capture only exists on channels 1, 2, 3 and 4.");
return -ENOTSUP;
}
}
if (LL_TIM_IsEnabledIT_CC1(cfg->timer) || LL_TIM_IsEnabledIT_CC2(cfg->timer) ||
LL_TIM_IsEnabledIT_CC3(cfg->timer) || LL_TIM_IsEnabledIT_CC4(cfg->timer)) {
LOG_ERR("PWM capture already active");
return -EBUSY;
}
if (!data->capture.callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
cpt->channel = channel;
cpt->state = CAPTURE_STATE_WAIT_FOR_PULSE_START;
data->capture.skip_irq = cfg->four_channel_capture_support ? 0 : SKIPPED_PWM_CAPTURES;
data->capture.overflows = 0u;
clear_capture_interrupt[channel - 1](cfg->timer);
LL_TIM_ClearFlag_UPDATE(cfg->timer);
LL_TIM_SetUpdateSource(cfg->timer, LL_TIM_UPDATESOURCE_COUNTER);
enable_capture_interrupt[channel - 1](cfg->timer);
LL_TIM_CC_EnableChannel(cfg->timer, ch2ll[channel - 1]);
LL_TIM_CC_EnableChannel(cfg->timer, ch2ll[complimentary_channel[channel] - 1]);
LL_TIM_EnableIT_UPDATE(cfg->timer);
LL_TIM_GenerateEvent_UPDATE(cfg->timer);
return 0;
}
static int pwm_stm32_disable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_stm32_config *cfg = dev->config;
if (!cfg->four_channel_capture_support) {
if ((channel != 1u) && (channel != 2u)) {
LOG_ERR("PWM capture only supported on first two channels");
return -ENOTSUP;
}
} else {
if ((channel < 1u) || (channel > 4u)) {
LOG_ERR("PWM capture only exists on channels 1, 2, 3 and 4.");
return -ENOTSUP;
}
}
LL_TIM_SetUpdateSource(cfg->timer, LL_TIM_UPDATESOURCE_REGULAR);
disable_capture_interrupt[channel - 1](cfg->timer);
LL_TIM_DisableIT_UPDATE(cfg->timer);
LL_TIM_CC_DisableChannel(cfg->timer, ch2ll[channel - 1]);
LL_TIM_CC_DisableChannel(cfg->timer, ch2ll[complimentary_channel[channel] - 1]);
return 0;
}
static void pwm_stm32_isr(const struct device *dev)
{
const struct pwm_stm32_config *cfg = dev->config;
struct pwm_stm32_data *data = dev->data;
struct pwm_stm32_capture_data *cpt = &data->capture;
int status = 0;
if (cpt->skip_irq != 0u) {
if (LL_TIM_IsActiveFlag_UPDATE(cfg->timer)) {
LL_TIM_ClearFlag_UPDATE(cfg->timer);
}
if (LL_TIM_IsActiveFlag_CC1(cfg->timer)
|| LL_TIM_IsActiveFlag_CC2(cfg->timer)
|| LL_TIM_IsActiveFlag_CC3(cfg->timer)
|| LL_TIM_IsActiveFlag_CC4(cfg->timer)) {
LL_TIM_ClearFlag_CC1(cfg->timer);
LL_TIM_ClearFlag_CC2(cfg->timer);
LL_TIM_ClearFlag_CC3(cfg->timer);
LL_TIM_ClearFlag_CC4(cfg->timer);
cpt->skip_irq--;
}
return;
}
if (LL_TIM_IsActiveFlag_UPDATE(cfg->timer)) {
LL_TIM_ClearFlag_UPDATE(cfg->timer);
if (cfg->four_channel_capture_support &&
cpt->state == CAPTURE_STATE_WAIT_FOR_UPDATE_EVENT) {
/* Special handling of UPDATE event in case it's triggered */
cpt->state = CAPTURE_STATE_WAIT_FOR_PERIOD_END;
} else {
cpt->overflows++;
}
}
if (!cfg->four_channel_capture_support) {
if (is_capture_active[cpt->channel - 1](cfg->timer) ||
is_capture_active[complimentary_channel[cpt->channel] - 1](cfg->timer)) {
clear_capture_interrupt[cpt->channel - 1](cfg->timer);
clear_capture_interrupt
[complimentary_channel[cpt->channel] - 1](cfg->timer);
cpt->period = get_channel_capture[cpt->channel - 1](cfg->timer);
cpt->pulse = get_channel_capture
[complimentary_channel[cpt->channel] - 1](cfg->timer);
}
} else {
if (cpt->state == CAPTURE_STATE_WAIT_FOR_PULSE_START &&
is_capture_active[cpt->channel - 1](cfg->timer)) {
/* Reset the counter manually instead of automatically by HW
* This sets the pulse-start at 0 and makes the pulse-end
* and period related to that number. Sure we loose some
* accuracy but it's within acceptable range.
*
* This is done through an UPDATE event to also reset
* the prescalar. This could look like an overflow event
* and might therefore require special handling.
*/
cpt->state = CAPTURE_STATE_WAIT_FOR_UPDATE_EVENT;
LL_TIM_GenerateEvent_UPDATE(cfg->timer);
} else if ((cpt->state == CAPTURE_STATE_WAIT_FOR_UPDATE_EVENT ||
cpt->state == CAPTURE_STATE_WAIT_FOR_PERIOD_END) &&
is_capture_active[cpt->channel - 1](cfg->timer)) {
cpt->state = CAPTURE_STATE_IDLE;
/* The end of the period. Both capture channels should now contain
* the timer value when the pulse and period ended respectively.
*/
cpt->pulse = get_channel_capture[complimentary_channel[cpt->channel] - 1]
(cfg->timer);
cpt->period = get_channel_capture[cpt->channel - 1](cfg->timer);
}
clear_capture_interrupt[cpt->channel - 1](cfg->timer);
if (cpt->state != CAPTURE_STATE_IDLE) {
/* Still waiting for a complete capture */
return;
}
}
if (cpt->overflows) {
status = -ERANGE;
}
if (!cpt->continuous) {
pwm_stm32_disable_capture(dev, cpt->channel);
} else {
cpt->overflows = 0u;
cpt->state = CAPTURE_STATE_WAIT_FOR_PULSE_START;
}
if (cpt->callback != NULL) {
cpt->callback(dev, cpt->channel, cpt->capture_period ? cpt->period : 0u,
cpt->capture_pulse ? cpt->pulse : 0u, status, cpt->user_data);
}
}
#endif /* CONFIG_PWM_CAPTURE */
static int pwm_stm32_get_cycles_per_sec(const struct device *dev,
uint32_t channel, uint64_t *cycles)
{
struct pwm_stm32_data *data = dev->data;
const struct pwm_stm32_config *cfg = dev->config;
*cycles = (uint64_t)(data->tim_clk / (cfg->prescaler + 1));
return 0;
}
static const struct pwm_driver_api pwm_stm32_driver_api = {
.set_cycles = pwm_stm32_set_cycles,
.get_cycles_per_sec = pwm_stm32_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = pwm_stm32_configure_capture,
.enable_capture = pwm_stm32_enable_capture,
.disable_capture = pwm_stm32_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};
static int pwm_stm32_init(const struct device *dev)
{
struct pwm_stm32_data *data = dev->data;
const struct pwm_stm32_config *cfg = dev->config;
int r;
const struct device *clk;
LL_TIM_InitTypeDef init;
/* enable clock and store its speed */
clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
r = clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken);
if (r < 0) {
LOG_ERR("Could not initialize clock (%d)", r);
return r;
}
r = get_tim_clk(&cfg->pclken, &data->tim_clk);
if (r < 0) {
LOG_ERR("Could not obtain timer clock (%d)", r);
return r;
}
/* Reset timer to default state using RCC */
(void)reset_line_toggle_dt(&data->reset);
/* configure pinmux */
r = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (r < 0) {
LOG_ERR("PWM pinctrl setup failed (%d)", r);
return r;
}
/* initialize timer */
LL_TIM_StructInit(&init);
init.Prescaler = cfg->prescaler;
init.CounterMode = cfg->countermode;
init.Autoreload = 0u;
init.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
if (LL_TIM_Init(cfg->timer, &init) != SUCCESS) {
LOG_ERR("Could not initialize timer");
return -EIO;
}
#if !defined(CONFIG_SOC_SERIES_STM32L0X) && !defined(CONFIG_SOC_SERIES_STM32L1X)
/* enable outputs and counter */
if (IS_TIM_BREAK_INSTANCE(cfg->timer)) {
LL_TIM_EnableAllOutputs(cfg->timer);
}
#endif
LL_TIM_EnableCounter(cfg->timer);
#ifdef CONFIG_PWM_CAPTURE
cfg->irq_config_func(dev);
#endif /* CONFIG_PWM_CAPTURE */
return 0;
}
#define PWM(index) DT_INST_PARENT(index)
#ifdef CONFIG_PWM_CAPTURE
#define IRQ_CONNECT_AND_ENABLE_BY_NAME(index, name) \
{ \
IRQ_CONNECT(DT_IRQ_BY_NAME(PWM(index), name, irq), \
DT_IRQ_BY_NAME(PWM(index), name, priority), \
pwm_stm32_isr, DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_IRQ_BY_NAME(PWM(index), name, irq)); \
}
#define IRQ_CONNECT_AND_ENABLE_DEFAULT(index) \
{ \
IRQ_CONNECT(DT_IRQN(PWM(index)), \
DT_IRQ(PWM(index), priority), \
pwm_stm32_isr, DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_IRQN(PWM(index))); \
}
#define IRQ_CONFIG_FUNC(index) \
static void pwm_stm32_irq_config_func_##index(const struct device *dev) \
{ \
COND_CODE_1(DT_IRQ_HAS_NAME(PWM(index), cc), \
(IRQ_CONNECT_AND_ENABLE_BY_NAME(index, cc)), \
(IRQ_CONNECT_AND_ENABLE_DEFAULT(index)) \
); \
}
#define CAPTURE_INIT(index) \
.irq_config_func = pwm_stm32_irq_config_func_##index, \
.four_channel_capture_support = DT_INST_PROP(index, four_channel_capture_support)
#else
#define IRQ_CONFIG_FUNC(index)
#define CAPTURE_INIT(index)
#endif /* CONFIG_PWM_CAPTURE */
#define DT_INST_CLK(index, inst) \
{ \
.bus = DT_CLOCKS_CELL(PWM(index), bus), \
.enr = DT_CLOCKS_CELL(PWM(index), bits) \
}
#define PWM_DEVICE_INIT(index) \
static struct pwm_stm32_data pwm_stm32_data_##index = { \
.reset = RESET_DT_SPEC_GET(PWM(index)), \
}; \
\
IRQ_CONFIG_FUNC(index) \
\
PINCTRL_DT_INST_DEFINE(index); \
\
static const struct pwm_stm32_config pwm_stm32_config_##index = { \
.timer = (TIM_TypeDef *)DT_REG_ADDR(PWM(index)), \
.prescaler = DT_PROP(PWM(index), st_prescaler), \
.countermode = DT_PROP(PWM(index), st_countermode), \
.pclken = DT_INST_CLK(index, timer), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
CAPTURE_INIT(index) \
}; \
\
DEVICE_DT_INST_DEFINE(index, &pwm_stm32_init, NULL, \
&pwm_stm32_data_##index, \
&pwm_stm32_config_##index, POST_KERNEL, \
CONFIG_PWM_INIT_PRIORITY, \
&pwm_stm32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PWM_DEVICE_INIT)