blob: 1b1a3fb8d92079d91147465ff1bc56cc931daab3 [file] [log] [blame]
/*
* Copyright 2023 EPAM Systems
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/arch/arm64/arm-smccc.h>
#include <zephyr/drivers/tee.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/bitarray.h>
#include <zephyr/sys/dlist.h>
#include "optee_msg.h"
#include "optee_rpc_cmd.h"
#include "optee_smc.h"
LOG_MODULE_REGISTER(optee);
#define DT_DRV_COMPAT linaro_optee_tz
/* amount of physical addresses that can be stored in one page */
#define OPTEE_NUMBER_OF_ADDR_PER_PAGE (OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(uint64_t))
/*
* TEE Implementation ID
*/
#define TEE_IMPL_ID_OPTEE 1
/*
* OP-TEE specific capabilities
*/
#define TEE_OPTEE_CAP_TZ BIT(0)
struct optee_rpc_param {
uint32_t a0;
uint32_t a1;
uint32_t a2;
uint32_t a3;
uint32_t a4;
uint32_t a5;
uint32_t a6;
uint32_t a7;
};
typedef void (*smc_call_t)(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3,
unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7,
struct arm_smccc_res *res);
struct optee_driver_config {
const char *method;
};
struct optee_notify {
sys_dnode_t node;
uint32_t key;
struct k_sem wait;
};
struct optee_supp_req {
sys_dnode_t link;
bool in_queue;
uint32_t func;
uint32_t ret;
size_t num_params;
struct tee_param *param;
struct k_sem complete;
};
struct optee_supp {
/* Serializes access to this struct */
struct k_mutex mutex;
int req_id;
sys_dlist_t reqs;
struct optee_supp_req *current;
struct k_sem reqs_c;
};
struct optee_driver_data {
smc_call_t smc_call;
sys_bitarray_t *notif_bitmap;
sys_dlist_t notif;
struct k_spinlock notif_lock;
struct optee_supp supp;
unsigned long sec_caps;
struct k_sem call_sem;
};
/* Wrapping functions so function pointer can be used */
static void optee_smccc_smc(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3,
unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7,
struct arm_smccc_res *res)
{
arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
}
static void optee_smccc_hvc(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3,
unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7,
struct arm_smccc_res *res)
{
arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
}
static int param_to_msg_param(const struct tee_param *param, unsigned int num_param,
struct optee_msg_param *msg_param)
{
int i;
const struct tee_param *tp = param;
struct optee_msg_param *mtp = msg_param;
if (!param || !msg_param) {
return -EINVAL;
}
for (i = 0; i < num_param; i++, tp++, mtp++) {
if (!tp || !mtp) {
LOG_ERR("Wrong param on %d iteration", i);
return -EINVAL;
}
switch (tp->attr) {
case TEE_PARAM_ATTR_TYPE_NONE:
mtp->attr = OPTEE_MSG_ATTR_TYPE_NONE;
memset(&mtp->u, 0, sizeof(mtp->u));
break;
case TEE_PARAM_ATTR_TYPE_VALUE_INPUT:
case TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT:
case TEE_PARAM_ATTR_TYPE_VALUE_INOUT:
mtp->attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT + tp->attr -
TEE_PARAM_ATTR_TYPE_VALUE_INPUT;
mtp->u.value.a = tp->a;
mtp->u.value.b = tp->b;
mtp->u.value.c = tp->c;
break;
case TEE_PARAM_ATTR_TYPE_MEMREF_INPUT:
case TEE_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
case TEE_PARAM_ATTR_TYPE_MEMREF_INOUT:
mtp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + tp->attr -
TEE_PARAM_ATTR_TYPE_MEMREF_INPUT;
mtp->u.rmem.shm_ref = tp->c;
mtp->u.rmem.size = tp->b;
mtp->u.rmem.offs = tp->a;
break;
default:
return -EINVAL;
}
}
return 0;
}
static void msg_param_to_tmp_mem(struct tee_param *p, uint32_t attr,
const struct optee_msg_param *mp)
{
struct tee_shm *shm = (struct tee_shm *)mp->u.tmem.shm_ref;
p->attr = TEE_PARAM_ATTR_TYPE_MEMREF_INPUT + attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
p->b = mp->u.tmem.size;
if (!shm) {
p->a = 0;
p->c = 0;
return;
}
p->a = mp->u.tmem.buf_ptr - k_mem_phys_addr(shm->addr);
p->c = mp->u.tmem.shm_ref;
}
static int msg_param_to_param(struct tee_param *param, unsigned int num_param,
const struct optee_msg_param *msg_param)
{
int i;
struct tee_param *tp = param;
const struct optee_msg_param *mtp = msg_param;
if (!param || !msg_param) {
return -EINVAL;
}
for (i = 0; i < num_param; i++, tp++, mtp++) {
uint32_t attr = mtp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
if (!tp || !mtp) {
LOG_ERR("Wrong param on %d iteration", i);
return -EINVAL;
}
switch (attr) {
case OPTEE_MSG_ATTR_TYPE_NONE:
memset(tp, 0, sizeof(*tp));
tp->attr = TEE_PARAM_ATTR_TYPE_NONE;
break;
case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
tp->attr = TEE_PARAM_ATTR_TYPE_VALUE_INPUT + attr -
OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
tp->a = mtp->u.value.a;
tp->b = mtp->u.value.b;
tp->c = mtp->u.value.c;
break;
case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
tp->attr = TEE_PARAM_ATTR_TYPE_MEMREF_INPUT + attr -
OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
tp->b = mtp->u.rmem.size;
if (!mtp->u.rmem.shm_ref) {
tp->a = 0;
tp->c = 0;
} else {
tp->a = mtp->u.rmem.offs;
tp->c = mtp->u.rmem.shm_ref;
}
break;
case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
msg_param_to_tmp_mem(tp, attr, mtp);
break;
default:
return -EINVAL;
}
}
return 0;
}
static uint64_t regs_to_u64(uint32_t reg0, uint32_t reg1)
{
return (uint64_t)(((uint64_t)reg0 << 32) | reg1);
}
static void u64_to_regs(uint64_t val, uint32_t *reg0, uint32_t *reg1)
{
*reg0 = val >> 32;
*reg1 = val;
}
static inline bool check_param_input(struct optee_msg_arg *arg)
{
return arg->num_params == 1 &&
arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
}
static void *optee_construct_page_list(void *buf, uint32_t len, uint64_t *phys_buf);
static uint32_t optee_call_supp(const struct device *dev, uint32_t func, size_t num_params,
struct tee_param *param)
{
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
struct optee_supp *supp = &data->supp;
struct optee_supp_req *req;
uint32_t ret;
req = k_malloc(sizeof(*req));
if (!req) {
return TEEC_ERROR_OUT_OF_MEMORY;
}
k_sem_init(&req->complete, 0, 1);
req->func = func;
req->num_params = num_params;
req->param = param;
/* Insert the request in the request list */
k_mutex_lock(&supp->mutex, K_FOREVER);
sys_dlist_append(&supp->reqs, &req->link);
k_mutex_unlock(&supp->mutex);
/* Tell an event listener there's a new request */
k_sem_give(&supp->reqs_c);
/*
* Wait for supplicant to process and return result, once we've
* returned from k_sem_take(&req->c) successfully we have
* exclusive access again.
*/
k_sem_take(&req->complete, K_FOREVER);
ret = req->ret;
k_free(req);
return ret;
}
static int cmd_alloc_suppl(const struct device *dev, size_t sz, struct tee_shm **shm)
{
uint32_t ret;
struct tee_param param;
param.attr = TEE_PARAM_ATTR_TYPE_VALUE_INOUT;
param.a = OPTEE_RPC_SHM_TYPE_APPL;
param.b = sz;
param.c = 0;
ret = optee_call_supp(dev, OPTEE_RPC_CMD_SHM_ALLOC, 1, &param);
if (ret) {
return ret;
}
ret = tee_add_shm(dev, (void *)param.c, 0, param.b, 0, shm);
return ret;
}
static void cmd_free_suppl(const struct device *dev, struct tee_shm *shm)
{
struct tee_param param;
param.attr = TEE_PARAM_ATTR_TYPE_VALUE_INOUT;
param.a = OPTEE_RPC_SHM_TYPE_APPL;
param.b = (uint64_t)shm;
param.c = 0;
optee_call_supp(dev, OPTEE_RPC_CMD_SHM_FREE, 1, &param);
tee_rm_shm(dev, shm);
}
static void handle_cmd_alloc(const struct device *dev, struct optee_msg_arg *arg,
void **pages)
{
int rc;
struct tee_shm *shm = NULL;
void *pl;
uint64_t pl_phys_and_offset;
arg->ret_origin = TEEC_ORIGIN_COMMS;
if (!check_param_input(arg)) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
switch (arg->params[0].u.value.a) {
case OPTEE_RPC_SHM_TYPE_KERNEL:
/* TODO handle situation when shm was allocated statically so buffer can be reused*/
rc = tee_add_shm(dev, NULL, 0, arg->params[0].u.value.b, TEE_SHM_ALLOC, &shm);
break;
case OPTEE_RPC_SHM_TYPE_APPL:
rc = cmd_alloc_suppl(dev, arg->params[0].u.value.b, &shm);
break;
default:
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
if (rc) {
if (rc == -ENOMEM) {
arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
} else {
arg->ret = TEEC_ERROR_GENERIC;
}
return;
}
pl = optee_construct_page_list(shm->addr, shm->size, &pl_phys_and_offset);
if (!pl) {
arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
goto out;
}
*pages = pl;
arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | OPTEE_MSG_ATTR_NONCONTIG;
arg->params[0].u.tmem.buf_ptr = pl_phys_and_offset;
arg->params[0].u.tmem.size = shm->size;
arg->params[0].u.tmem.shm_ref = (uint64_t)shm;
arg->ret = TEEC_SUCCESS;
return;
out:
tee_shm_free(dev, shm);
}
static void handle_cmd_free(const struct device *dev, struct optee_msg_arg *arg)
{
int rc = 0;
if (!check_param_input(arg)) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
switch (arg->params[0].u.value.a) {
case OPTEE_RPC_SHM_TYPE_KERNEL:
rc = tee_rm_shm(dev, (struct tee_shm *)arg->params[0].u.value.b);
break;
case OPTEE_RPC_SHM_TYPE_APPL:
cmd_free_suppl(dev, (struct tee_shm *)arg->params[0].u.value.b);
break;
default:
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
if (rc) {
arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
return;
}
arg->ret = TEEC_SUCCESS;
}
static void handle_cmd_get_time(const struct device *dev, struct optee_msg_arg *arg)
{
int64_t ticks;
int64_t up_secs;
int64_t up_nsecs;
if (arg->num_params != 1 ||
(arg->params[0].attr & OPTEE_MSG_ATTR_TYPE_MASK)
!= OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
ticks = k_uptime_ticks();
up_secs = ticks / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
up_nsecs = k_ticks_to_ns_floor64(ticks - up_secs * CONFIG_SYS_CLOCK_TICKS_PER_SEC);
arg->params[0].u.value.a = up_secs;
arg->params[0].u.value.b = up_nsecs;
arg->ret = TEEC_SUCCESS;
}
/* This should be called under notif_lock */
static inline bool key_is_pending(struct optee_driver_data *data, uint32_t key)
{
struct optee_notify *iter;
SYS_DLIST_FOR_EACH_CONTAINER(&data->notif, iter, node) {
if (iter->key == key) {
k_sem_give(&iter->wait);
return true;
}
}
return false;
}
static int optee_notif_send(const struct device *dev, uint32_t key)
{
struct optee_driver_data *data = dev->data;
k_spinlock_key_t sp_key;
if (key > CONFIG_OPTEE_MAX_NOTIF) {
return -EINVAL;
}
sp_key = k_spin_lock(&data->notif_lock);
if (!key_is_pending(data, key)) {
/* If nobody is waiting for key - set bit in the bitmap */
sys_bitarray_set_bit(data->notif_bitmap, key);
}
k_spin_unlock(&data->notif_lock, sp_key);
return 0;
}
static int optee_notif_wait(const struct device *dev, uint32_t key)
{
int rc = 0;
struct optee_driver_data *data = dev->data;
struct optee_notify *entry;
k_spinlock_key_t sp_key;
int prev_val;
if (key > CONFIG_OPTEE_MAX_NOTIF) {
return -EINVAL;
}
entry = k_malloc(sizeof(*entry));
if (!entry) {
return -ENOMEM;
}
k_sem_init(&entry->wait, 0, 1);
entry->key = key;
sp_key = k_spin_lock(&data->notif_lock);
/*
* If notif bit was set then SEND command was already received.
* Skipping wait.
*/
rc = sys_bitarray_test_and_clear_bit(data->notif_bitmap, key, &prev_val);
if (rc || prev_val) {
goto out;
}
/*
* If key is already registred, then skip.
*/
if (key_is_pending(data, key)) {
rc = -EBUSY;
goto out;
}
sys_dlist_append(&data->notif, &entry->node);
k_spin_unlock(&data->notif_lock, sp_key);
k_sem_take(&entry->wait, K_FOREVER);
sp_key = k_spin_lock(&data->notif_lock);
sys_dlist_remove(&entry->node);
out:
k_spin_unlock(&data->notif_lock, sp_key);
k_free(entry);
return rc;
}
static void handle_cmd_notify(const struct device *dev, struct optee_msg_arg *arg)
{
if (!check_param_input(arg)) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
switch (arg->params[0].u.value.a) {
case OPTEE_RPC_NOTIFICATION_SEND:
if (optee_notif_send(dev, arg->params[0].u.value.b)) {
goto err;
}
break;
case OPTEE_RPC_NOTIFICATION_WAIT:
if (optee_notif_wait(dev, arg->params[0].u.value.b)) {
goto err;
}
break;
default:
goto err;
}
arg->ret = TEEC_SUCCESS;
return;
err:
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
}
static void handle_cmd_wait(const struct device *dev, struct optee_msg_arg *arg)
{
if (!check_param_input(arg)) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
k_sleep(K_MSEC(arg->params[0].u.value.a));
arg->ret = TEEC_SUCCESS;
}
static void free_shm_pages(void **pages)
{
/*
* Clean allocated pages if needed. Some function calls requires pages
* allocation which should be freed after processing new request.
* It is safe to free this list when another SHM op (e,g. another alloc
* or free) was received.
*/
if (*pages) {
k_free(*pages);
*pages = NULL;
}
}
static void handle_rpc_supp_cmd(const struct device *dev, struct optee_msg_arg *arg)
{
struct tee_param *params;
int ret;
arg->ret_origin = TEEC_ORIGIN_COMMS;
params = k_malloc(sizeof(*params) * arg->num_params);
if (!params) {
arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
return;
}
ret = msg_param_to_param(params, arg->num_params, arg->params);
if (ret) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
arg->ret_origin = TEEC_ORIGIN_COMMS;
goto out;
}
arg->ret = optee_call_supp(dev, arg->cmd, arg->num_params, params);
ret = param_to_msg_param(params, arg->num_params, arg->params);
if (ret) {
arg->ret = TEEC_ERROR_GENERIC;
arg->ret_origin = TEEC_ORIGIN_COMMS;
}
out:
k_free(params);
}
static uint32_t handle_func_rpc_call(const struct device *dev, struct tee_shm *shm,
void **pages)
{
struct optee_msg_arg *arg = shm->addr;
switch (arg->cmd) {
case OPTEE_RPC_CMD_SHM_ALLOC:
free_shm_pages(pages);
handle_cmd_alloc(dev, arg, pages);
break;
case OPTEE_RPC_CMD_SHM_FREE:
handle_cmd_free(dev, arg);
break;
case OPTEE_RPC_CMD_GET_TIME:
handle_cmd_get_time(dev, arg);
break;
case OPTEE_RPC_CMD_NOTIFICATION:
handle_cmd_notify(dev, arg);
break;
case OPTEE_RPC_CMD_SUSPEND:
handle_cmd_wait(dev, arg);
break;
case OPTEE_RPC_CMD_I2C_TRANSFER:
/* TODO: i2c transfer case is not implemented right now */
return TEEC_ERROR_NOT_IMPLEMENTED;
default:
handle_rpc_supp_cmd(dev, arg);
break;
}
return OPTEE_SMC_CALL_RETURN_FROM_RPC;
}
static void handle_rpc_call(const struct device *dev, struct optee_rpc_param *param,
void **pages)
{
struct tee_shm *shm = NULL;
uint32_t res = OPTEE_SMC_CALL_RETURN_FROM_RPC;
switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
case OPTEE_SMC_RPC_FUNC_ALLOC:
if (!tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE,
param->a1,
TEE_SHM_ALLOC, &shm)) {
u64_to_regs((uint64_t)k_mem_phys_addr(shm->addr), &param->a1, &param->a2);
u64_to_regs((uint64_t)shm, &param->a4, &param->a5);
} else {
param->a1 = 0;
param->a2 = 0;
param->a4 = 0;
param->a5 = 0;
}
break;
case OPTEE_SMC_RPC_FUNC_FREE:
shm = (struct tee_shm *)regs_to_u64(param->a1, param->a2);
tee_rm_shm(dev, shm);
break;
case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
/* Foreign interrupt was raised */
break;
case OPTEE_SMC_RPC_FUNC_CMD:
shm = (struct tee_shm *)regs_to_u64(param->a1, param->a2);
res = handle_func_rpc_call(dev, shm, pages);
break;
default:
break;
}
param->a0 = res;
}
static int optee_call(const struct device *dev, struct optee_msg_arg *arg)
{
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
struct optee_rpc_param param = {
.a0 = OPTEE_SMC_CALL_WITH_ARG
};
void *pages = NULL;
u64_to_regs((uint64_t)k_mem_phys_addr(arg), &param.a1, &param.a2);
k_sem_take(&data->call_sem, K_FOREVER);
while (true) {
struct arm_smccc_res res;
data->smc_call(param.a0, param.a1, param.a2, param.a3,
param.a4, param.a5, param.a6, param.a7, &res);
if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
param.a0 = res.a0;
param.a1 = res.a1;
param.a2 = res.a2;
param.a3 = res.a3;
handle_rpc_call(dev, &param, &pages);
} else {
free_shm_pages(&pages);
k_sem_give(&data->call_sem);
return res.a0 == OPTEE_SMC_RETURN_OK ? TEEC_SUCCESS :
TEEC_ERROR_BAD_PARAMETERS;
}
}
}
static int optee_get_version(const struct device *dev, struct tee_version_info *info)
{
if (!info) {
return -EINVAL;
}
/*
* TODO Version and capabilities should be requested from
* OP-TEE OS.
*/
info->impl_id = TEE_IMPL_ID_OPTEE;
info->impl_caps = TEE_OPTEE_CAP_TZ;
info->gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM;
return 0;
}
static int optee_close_session(const struct device *dev, uint32_t session_id)
{
int rc;
struct tee_shm *shm;
struct optee_msg_arg *marg;
rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE,
OPTEE_MSG_GET_ARG_SIZE(0),
TEE_SHM_ALLOC, &shm);
if (rc) {
LOG_ERR("Unable to get shared memory, rc = %d", rc);
return rc;
}
marg = shm->addr;
marg->num_params = 0;
marg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
marg->session = session_id;
rc = optee_call(dev, marg);
if (tee_rm_shm(dev, shm)) {
LOG_ERR("Unable to free shared memory");
}
return rc;
}
static int optee_open_session(const struct device *dev, struct tee_open_session_arg *arg,
unsigned int num_param, struct tee_param *param,
uint32_t *session_id)
{
int rc, ret;
struct tee_shm *shm;
struct optee_msg_arg *marg;
if (!arg || !session_id) {
return -EINVAL;
}
rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE,
OPTEE_MSG_GET_ARG_SIZE(num_param + 2),
TEE_SHM_ALLOC, &shm);
if (rc) {
LOG_ERR("Unable to get shared memory, rc = %d", rc);
return rc;
}
marg = shm->addr;
memset(marg, 0, OPTEE_MSG_GET_ARG_SIZE(num_param + 2));
marg->num_params = num_param + 2;
marg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
marg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | OPTEE_MSG_ATTR_META;
marg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | OPTEE_MSG_ATTR_META;
memcpy(&marg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
memcpy(&marg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
marg->params[1].u.value.c = arg->clnt_login;
rc = param_to_msg_param(param, num_param, marg->params + 2);
if (rc) {
goto out;
}
arg->ret = optee_call(dev, marg);
if (arg->ret) {
arg->ret_origin = TEEC_ORIGIN_COMMS;
goto out;
}
rc = msg_param_to_param(param, num_param, marg->params);
if (rc) {
arg->ret = TEEC_ERROR_COMMUNICATION;
arg->ret_origin = TEEC_ORIGIN_COMMS;
/*
* Ret is needed here only to print an error. Param conversion error
* should be returned from the function.
*/
ret = optee_close_session(dev, marg->session);
if (ret) {
LOG_ERR("Unable to close session: %d", ret);
}
goto out;
}
*session_id = marg->session;
arg->ret = marg->ret;
arg->ret_origin = marg->ret_origin;
out:
ret = tee_rm_shm(dev, shm);
if (ret) {
LOG_ERR("Unable to free shared memory");
}
return (rc) ? rc : ret;
}
static int optee_cancel(const struct device *dev, uint32_t session_id, uint32_t cancel_id)
{
int rc;
struct tee_shm *shm;
struct optee_msg_arg *marg;
rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE,
OPTEE_MSG_GET_ARG_SIZE(0),
TEE_SHM_ALLOC, &shm);
if (rc) {
LOG_ERR("Unable to get shared memory, rc = %d", rc);
return rc;
}
marg = shm->addr;
marg->num_params = 0;
marg->cmd = OPTEE_MSG_CMD_CANCEL;
marg->cancel_id = cancel_id;
marg->session = session_id;
rc = optee_call(dev, marg);
if (tee_rm_shm(dev, shm)) {
LOG_ERR("Unable to free shared memory");
}
return rc;
}
static int optee_invoke_func(const struct device *dev, struct tee_invoke_func_arg *arg,
unsigned int num_param, struct tee_param *param)
{
int rc, ret;
struct tee_shm *shm;
struct optee_msg_arg *marg;
if (!arg) {
return -EINVAL;
}
rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE,
OPTEE_MSG_GET_ARG_SIZE(num_param),
TEE_SHM_ALLOC, &shm);
if (rc) {
LOG_ERR("Unable to get shared memory, rc = %d", rc);
return rc;
}
marg = shm->addr;
memset(marg, 0, OPTEE_MSG_GET_ARG_SIZE(num_param));
marg->num_params = num_param;
marg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
marg->func = arg->func;
marg->session = arg->session;
rc = param_to_msg_param(param, num_param, marg->params);
if (rc) {
goto out;
}
arg->ret = optee_call(dev, marg);
if (arg->ret) {
arg->ret_origin = TEEC_ORIGIN_COMMS;
goto out;
}
rc = msg_param_to_param(param, num_param, marg->params);
if (rc) {
arg->ret = TEEC_ERROR_COMMUNICATION;
arg->ret_origin = TEEC_ORIGIN_COMMS;
goto out;
}
arg->ret = marg->ret;
arg->ret_origin = marg->ret_origin;
out:
ret = tee_rm_shm(dev, shm);
if (ret) {
LOG_ERR("Unable to free shared memory");
}
return (rc) ? rc : ret;
}
static void *optee_construct_page_list(void *buf, uint32_t len, uint64_t *phys_buf)
{
const size_t page_size = OPTEE_MSG_NONCONTIG_PAGE_SIZE;
const size_t num_pages_in_pl = OPTEE_NUMBER_OF_ADDR_PER_PAGE - 1;
uint32_t page_offset = (uintptr_t)buf & (page_size - 1);
uint8_t *buf_page;
uint32_t num_pages;
uint32_t list_size;
/* see description of OPTEE_MSG_ATTR_NONCONTIG */
struct {
uint64_t pages[OPTEE_NUMBER_OF_ADDR_PER_PAGE - 1];
uint64_t next_page;
} *pl;
BUILD_ASSERT(sizeof(*pl) == OPTEE_MSG_NONCONTIG_PAGE_SIZE);
num_pages = ROUND_UP(page_offset + len, page_size) / page_size;
list_size = DIV_ROUND_UP(num_pages, num_pages_in_pl) * page_size;
pl = k_aligned_alloc(page_size, list_size);
if (!pl) {
return NULL;
}
memset(pl, 0, list_size);
buf_page = (uint8_t *)ROUND_DOWN((uintptr_t)buf, page_size);
for (uint32_t pl_idx = 0; pl_idx < list_size / page_size; pl_idx++) {
for (uint32_t page_idx = 0; num_pages && page_idx < num_pages_in_pl; page_idx++) {
pl[pl_idx].pages[page_idx] = k_mem_phys_addr(buf_page);
buf_page += page_size;
num_pages--;
}
if (!num_pages) {
break;
}
pl[pl_idx].next_page = k_mem_phys_addr(pl + 1);
}
/* 12 least significant bits of optee_msg_param.u.tmem.buf_ptr should hold page offset
* of user buffer
*/
*phys_buf = k_mem_phys_addr(pl) | page_offset;
return pl;
}
static int optee_shm_register(const struct device *dev, struct tee_shm *shm)
{
struct tee_shm *shm_arg;
struct optee_msg_arg *msg_arg;
void *pl;
uint64_t pl_phys_and_offset;
int rc;
rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(1),
TEE_SHM_ALLOC, &shm_arg);
if (rc) {
return rc;
}
msg_arg = shm_arg->addr;
memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
pl = optee_construct_page_list(shm->addr, shm->size, &pl_phys_and_offset);
if (!pl) {
rc = -ENOMEM;
goto out;
}
/* for this command op-tee os should support CFG_CORE_DYN_SHM */
msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
/* op-tee OS ingnore this cmd in case when TYPE_TMEM_OUTPUT and NONCONTIG aren't set */
msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | OPTEE_MSG_ATTR_NONCONTIG;
msg_arg->num_params = 1;
msg_arg->params->u.tmem.buf_ptr = pl_phys_and_offset;
msg_arg->params->u.tmem.shm_ref = (uint64_t)shm;
msg_arg->params->u.tmem.size = shm->size;
if (optee_call(dev, msg_arg)) {
rc = -EINVAL;
}
k_free(pl);
out:
tee_rm_shm(dev, shm_arg);
return rc;
}
static int optee_shm_unregister(const struct device *dev, struct tee_shm *shm)
{
struct tee_shm *shm_arg;
struct optee_msg_arg *msg_arg;
int rc;
rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(1),
TEE_SHM_ALLOC, &shm_arg);
if (rc) {
return rc;
}
msg_arg = shm_arg->addr;
memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
msg_arg->num_params = 1;
msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
msg_arg->params[0].u.rmem.shm_ref = (uint64_t)shm;
if (optee_call(dev, msg_arg)) {
rc = -EINVAL;
}
tee_rm_shm(dev, shm_arg);
return rc;
}
static int optee_suppl_recv(const struct device *dev, uint32_t *func, unsigned int *num_params,
struct tee_param *param)
{
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
struct optee_supp *supp = &data->supp;
struct optee_supp_req *req = NULL;
while (true) {
k_mutex_lock(&supp->mutex, K_FOREVER);
req = (struct optee_supp_req *)sys_dlist_peek_head(&supp->reqs);
if (req) {
if (supp->current) {
LOG_ERR("Concurrent supp_recv calls are not supported");
k_mutex_unlock(&supp->mutex);
return -EBUSY;
}
if (*num_params < req->num_params) {
LOG_ERR("Not enough space for params, need at least %lu",
req->num_params);
k_mutex_unlock(&supp->mutex);
return -EINVAL;
}
supp->current = req;
sys_dlist_remove(&req->link);
}
k_mutex_unlock(&supp->mutex);
if (req) {
break;
}
k_sem_take(&supp->reqs_c, K_FOREVER);
}
*func = req->func;
*num_params = req->num_params;
memcpy(param, req->param, sizeof(struct tee_param) * req->num_params);
return 0;
}
static int optee_suppl_send(const struct device *dev, unsigned int ret, unsigned int num_params,
struct tee_param *param)
{
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
struct optee_supp *supp = &data->supp;
struct optee_supp_req *req = NULL;
size_t n;
k_mutex_lock(&supp->mutex, K_FOREVER);
if (supp->current && num_params >= supp->current->num_params) {
req = supp->current;
supp->current = NULL;
} else {
LOG_ERR("Invalid number of parameters, expected %lu got %u", req->num_params,
num_params);
}
k_mutex_unlock(&supp->mutex);
if (!req) {
return -EINVAL;
}
/* Update out and in/out parameters */
for (n = 0; n < req->num_params; n++) {
struct tee_param *p = req->param + n;
switch (p->attr & TEE_PARAM_ATTR_TYPE_MASK) {
case TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT:
case TEE_PARAM_ATTR_TYPE_VALUE_INOUT:
p->a = param[n].a;
p->b = param[n].b;
p->c = param[n].c;
break;
case TEE_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
case TEE_PARAM_ATTR_TYPE_MEMREF_INOUT:
LOG_WRN("Memref params are not fully tested");
p->a = param[n].a;
p->b = param[n].b;
p->c = param[n].c;
break;
default:
break;
}
}
req->ret = ret;
/* Let the requesting thread continue */
k_mutex_lock(&supp->mutex, K_FOREVER);
supp->current = NULL;
k_mutex_unlock(&supp->mutex);
k_sem_give(&req->complete);
return 0;
}
static int set_optee_method(const struct device *dev)
{
const struct optee_driver_config *conf = dev->config;
struct optee_driver_data *data = dev->data;
if (!strcmp("hvc", conf->method)) {
data->smc_call = optee_smccc_hvc;
} else if (!strcmp("smc", conf->method)) {
data->smc_call = optee_smccc_smc;
} else {
LOG_ERR("Invalid smc_call method");
return -EINVAL;
}
return 0;
}
static bool optee_check_uid(const struct device *dev)
{
struct arm_smccc_res res;
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
data->smc_call(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3) {
return true;
}
return false;
}
static void optee_get_revision(const struct device *dev)
{
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
struct arm_smccc_res res = { 0 };
data->smc_call(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a2) {
LOG_INF("OPTEE revision %lu.%lu (%08lx)", res.a0,
res.a1, res.a2);
} else {
LOG_INF("OPTEE revision %lu.%lu", res.a0, res.a1);
}
}
static bool optee_exchange_caps(const struct device *dev, unsigned long *sec_caps)
{
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
struct arm_smccc_res res = { 0 };
unsigned long a1 = 0;
if (!IS_ENABLED(CONFIG_SMP) || arch_num_cpus() == 1) {
a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
}
data->smc_call(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 != OPTEE_SMC_RETURN_OK) {
return false;
}
*sec_caps = res.a1;
return true;
}
static unsigned long optee_get_thread_count(const struct device *dev, unsigned long *thread_count)
{
struct optee_driver_data *data = (struct optee_driver_data *)dev->data;
struct arm_smccc_res res = { 0 };
unsigned long a1 = 0;
data->smc_call(OPTEE_SMC_GET_THREAD_COUNT, a1, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 != OPTEE_SMC_RETURN_OK) {
return false;
}
*thread_count = res.a1;
return true;
}
static int optee_init(const struct device *dev)
{
struct optee_driver_data *data = dev->data;
unsigned long thread_count;
if (set_optee_method(dev)) {
return -ENOTSUP;
}
sys_dlist_init(&data->notif);
k_mutex_init(&data->supp.mutex);
k_sem_init(&data->supp.reqs_c, 0, 1);
sys_dlist_init(&data->supp.reqs);
if (!optee_check_uid(dev)) {
LOG_ERR("OPTEE API UID mismatch");
return -EINVAL;
}
optee_get_revision(dev);
if (!optee_exchange_caps(dev, &data->sec_caps)) {
LOG_ERR("OPTEE capabilities exchange failed\n");
return -EINVAL;
}
if (!(data->sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)) {
LOG_ERR("OPTEE does not support dynamic shared memory");
return -ENOTSUP;
}
if (!optee_get_thread_count(dev, &thread_count)) {
LOG_ERR("OPTEE unable to get maximum thread count");
return -ENOTSUP;
}
k_sem_init(&data->call_sem, thread_count, thread_count);
return 0;
}
static const struct tee_driver_api optee_driver_api = {
.get_version = optee_get_version,
.open_session = optee_open_session,
.close_session = optee_close_session,
.cancel = optee_cancel,
.invoke_func = optee_invoke_func,
.shm_register = optee_shm_register,
.shm_unregister = optee_shm_unregister,
.suppl_recv = optee_suppl_recv,
.suppl_send = optee_suppl_send,
};
/*
* Bitmap of the ongoing notificatons, received from OP-TEE. Maximum number is
* CONFIG_OPTEE_MAX_NOTIF. This bitmap is needed to handle case when SEND command
* was received before WAIT command from OP-TEE. In this case WAIT will not create
* locks.
*/
#define OPTEE_DT_DEVICE_INIT(inst) \
SYS_BITARRAY_DEFINE_STATIC(notif_bitmap_##inst, CONFIG_OPTEE_MAX_NOTIF); \
\
static struct optee_driver_config optee_config_##inst = { \
.method = DT_INST_PROP(inst, method) \
}; \
\
static struct optee_driver_data optee_data_##inst = { \
.notif_bitmap = &notif_bitmap_##inst \
}; \
\
DEVICE_DT_INST_DEFINE(inst, optee_init, NULL, &optee_data_##inst, \
&optee_config_##inst, POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&optee_driver_api); \
DT_INST_FOREACH_STATUS_OKAY(OPTEE_DT_DEVICE_INIT)