blob: 8312f73dd642d363f46e2087f57f621c998471ab [file] [log] [blame]
/*
* Copyright (c) 2023 Jeroen van Dooren, Nobleo Technology
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Common part of BDMA drivers for stm32.
*/
#include "dma_stm32_bdma.h"
#include <zephyr/init.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/dma/dma_stm32.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(dma_stm32_bdma, CONFIG_DMA_LOG_LEVEL);
#define DT_DRV_COMPAT st_stm32_bdma
#define BDMA_STM32_0_CHANNEL_COUNT 8
static const uint32_t table_m_size[] = {
LL_BDMA_MDATAALIGN_BYTE,
LL_BDMA_MDATAALIGN_HALFWORD,
LL_BDMA_MDATAALIGN_WORD,
};
static const uint32_t table_p_size[] = {
LL_BDMA_PDATAALIGN_BYTE,
LL_BDMA_PDATAALIGN_HALFWORD,
LL_BDMA_PDATAALIGN_WORD,
};
uint32_t bdma_stm32_id_to_channel(uint32_t id)
{
static const uint32_t channel_nr[] = {
LL_BDMA_CHANNEL_0,
LL_BDMA_CHANNEL_1,
LL_BDMA_CHANNEL_2,
LL_BDMA_CHANNEL_3,
LL_BDMA_CHANNEL_4,
LL_BDMA_CHANNEL_5,
LL_BDMA_CHANNEL_6,
LL_BDMA_CHANNEL_7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(channel_nr));
return channel_nr[id];
}
#if !defined(CONFIG_DMAMUX_STM32)
uint32_t bdma_stm32_slot_to_channel(uint32_t slot)
{
static const uint32_t channel_nr[] = {
LL_BDMA_CHANNEL_0,
LL_BDMA_CHANNEL_1,
LL_BDMA_CHANNEL_2,
LL_BDMA_CHANNEL_3,
LL_BDMA_CHANNEL_4,
LL_BDMA_CHANNEL_5,
LL_BDMA_CHANNEL_6,
LL_BDMA_CHANNEL_7,
};
__ASSERT_NO_MSG(slot < ARRAY_SIZE(channel_nr));
return channel_nr[slot];
}
#endif
void bdma_stm32_clear_ht(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_clear_flag_func func[] = {
LL_BDMA_ClearFlag_HT0,
LL_BDMA_ClearFlag_HT1,
LL_BDMA_ClearFlag_HT2,
LL_BDMA_ClearFlag_HT3,
LL_BDMA_ClearFlag_HT4,
LL_BDMA_ClearFlag_HT5,
LL_BDMA_ClearFlag_HT6,
LL_BDMA_ClearFlag_HT7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
func[id](DMAx);
}
void bdma_stm32_clear_tc(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_clear_flag_func func[] = {
LL_BDMA_ClearFlag_TC0,
LL_BDMA_ClearFlag_TC1,
LL_BDMA_ClearFlag_TC2,
LL_BDMA_ClearFlag_TC3,
LL_BDMA_ClearFlag_TC4,
LL_BDMA_ClearFlag_TC5,
LL_BDMA_ClearFlag_TC6,
LL_BDMA_ClearFlag_TC7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
func[id](DMAx);
}
bool bdma_stm32_is_ht_active(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_check_flag_func func[] = {
LL_BDMA_IsActiveFlag_HT0,
LL_BDMA_IsActiveFlag_HT1,
LL_BDMA_IsActiveFlag_HT2,
LL_BDMA_IsActiveFlag_HT3,
LL_BDMA_IsActiveFlag_HT4,
LL_BDMA_IsActiveFlag_HT5,
LL_BDMA_IsActiveFlag_HT6,
LL_BDMA_IsActiveFlag_HT7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
return func[id](DMAx);
}
bool bdma_stm32_is_tc_active(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_check_flag_func func[] = {
LL_BDMA_IsActiveFlag_TC0,
LL_BDMA_IsActiveFlag_TC1,
LL_BDMA_IsActiveFlag_TC2,
LL_BDMA_IsActiveFlag_TC3,
LL_BDMA_IsActiveFlag_TC4,
LL_BDMA_IsActiveFlag_TC5,
LL_BDMA_IsActiveFlag_TC6,
LL_BDMA_IsActiveFlag_TC7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
return func[id](DMAx);
}
void bdma_stm32_clear_te(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_clear_flag_func func[] = {
LL_BDMA_ClearFlag_TE0,
LL_BDMA_ClearFlag_TE1,
LL_BDMA_ClearFlag_TE2,
LL_BDMA_ClearFlag_TE3,
LL_BDMA_ClearFlag_TE4,
LL_BDMA_ClearFlag_TE5,
LL_BDMA_ClearFlag_TE6,
LL_BDMA_ClearFlag_TE7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
func[id](DMAx);
}
void bdma_stm32_clear_gi(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_clear_flag_func func[] = {
LL_BDMA_ClearFlag_GI0,
LL_BDMA_ClearFlag_GI1,
LL_BDMA_ClearFlag_GI2,
LL_BDMA_ClearFlag_GI3,
LL_BDMA_ClearFlag_GI4,
LL_BDMA_ClearFlag_GI5,
LL_BDMA_ClearFlag_GI6,
LL_BDMA_ClearFlag_GI7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
func[id](DMAx);
}
bool bdma_stm32_is_te_active(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_check_flag_func func[] = {
LL_BDMA_IsActiveFlag_TE0,
LL_BDMA_IsActiveFlag_TE1,
LL_BDMA_IsActiveFlag_TE2,
LL_BDMA_IsActiveFlag_TE3,
LL_BDMA_IsActiveFlag_TE4,
LL_BDMA_IsActiveFlag_TE5,
LL_BDMA_IsActiveFlag_TE6,
LL_BDMA_IsActiveFlag_TE7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
return func[id](DMAx);
}
bool bdma_stm32_is_gi_active(BDMA_TypeDef *DMAx, uint32_t id)
{
static const bdma_stm32_check_flag_func func[] = {
LL_BDMA_IsActiveFlag_GI0,
LL_BDMA_IsActiveFlag_GI1,
LL_BDMA_IsActiveFlag_GI2,
LL_BDMA_IsActiveFlag_GI3,
LL_BDMA_IsActiveFlag_GI4,
LL_BDMA_IsActiveFlag_GI5,
LL_BDMA_IsActiveFlag_GI6,
LL_BDMA_IsActiveFlag_GI7,
};
__ASSERT_NO_MSG(id < ARRAY_SIZE(func));
return func[id](DMAx);
}
void stm32_bdma_dump_channel_irq(BDMA_TypeDef *dma, uint32_t id)
{
LOG_INF("te: %d, ht: %d, tc: %d, gi: %d",
bdma_stm32_is_te_active(dma, id),
bdma_stm32_is_ht_active(dma, id),
bdma_stm32_is_tc_active(dma, id),
bdma_stm32_is_gi_active(dma, id));
}
inline bool stm32_bdma_is_tc_irq_active(BDMA_TypeDef *dma, uint32_t id)
{
return LL_BDMA_IsEnabledIT_TC(dma, bdma_stm32_id_to_channel(id)) &&
bdma_stm32_is_tc_active(dma, id);
}
inline bool stm32_bdma_is_ht_irq_active(BDMA_TypeDef *dma, uint32_t id)
{
return LL_BDMA_IsEnabledIT_HT(dma, bdma_stm32_id_to_channel(id)) &&
bdma_stm32_is_ht_active(dma, id);
}
static inline bool stm32_bdma_is_te_irq_active(BDMA_TypeDef *dma, uint32_t id)
{
return LL_BDMA_IsEnabledIT_TE(dma, bdma_stm32_id_to_channel(id)) &&
bdma_stm32_is_te_active(dma, id);
}
bool stm32_bdma_is_irq_active(BDMA_TypeDef *dma, uint32_t id)
{
return stm32_bdma_is_tc_irq_active(dma, id) ||
stm32_bdma_is_ht_irq_active(dma, id) ||
stm32_bdma_is_te_irq_active(dma, id);
}
void stm32_bdma_clear_channel_irq(BDMA_TypeDef *dma, uint32_t id)
{
bdma_stm32_clear_gi(dma, id);
bdma_stm32_clear_tc(dma, id);
bdma_stm32_clear_ht(dma, id);
bdma_stm32_clear_te(dma, id);
}
bool stm32_bdma_is_enabled_channel(BDMA_TypeDef *dma, uint32_t id)
{
if (LL_BDMA_IsEnabledChannel(dma, bdma_stm32_id_to_channel(id)) == 1) {
return true;
}
return false;
}
int stm32_bdma_disable_channel(BDMA_TypeDef *dma, uint32_t id)
{
LL_BDMA_DisableChannel(dma, bdma_stm32_id_to_channel(id));
if (!LL_BDMA_IsEnabledChannel(dma, bdma_stm32_id_to_channel(id))) {
return 0;
}
return -EAGAIN;
}
void stm32_bdma_enable_channel(BDMA_TypeDef *dma, uint32_t id)
{
LL_BDMA_EnableChannel(dma, bdma_stm32_id_to_channel(id));
}
static void bdma_stm32_dump_channel_irq(const struct device *dev, uint32_t id)
{
const struct bdma_stm32_config *config = dev->config;
BDMA_TypeDef *dma = (BDMA_TypeDef *)(config->base);
stm32_bdma_dump_channel_irq(dma, id);
}
static void bdma_stm32_clear_channel_irq(const struct device *dev, uint32_t id)
{
const struct bdma_stm32_config *config = dev->config;
BDMA_TypeDef *dma = (BDMA_TypeDef *)(config->base);
bdma_stm32_clear_tc(dma, id);
bdma_stm32_clear_ht(dma, id);
stm32_bdma_clear_channel_irq(dma, id);
}
static void bdma_stm32_irq_handler(const struct device *dev, uint32_t id)
{
const struct bdma_stm32_config *config = dev->config;
BDMA_TypeDef *dma = (BDMA_TypeDef *)(config->base);
struct bdma_stm32_channel *channel;
uint32_t callback_arg;
__ASSERT_NO_MSG(id < config->max_channels);
channel = &config->channels[id];
/* The busy channel is pertinent if not overridden by the HAL */
if ((channel->hal_override != true) && (channel->busy == false)) {
/*
* When DMA channel is not overridden by HAL,
* ignore irq if the channel is not busy anymore
*/
bdma_stm32_clear_channel_irq(dev, id);
return;
}
#ifdef CONFIG_DMAMUX_STM32
callback_arg = channel->mux_channel;
#else
callback_arg = id;
#endif /* CONFIG_DMAMUX_STM32 */
if (!IS_ENABLED(CONFIG_DMAMUX_STM32)) {
channel->busy = false;
}
/* the dma channel id is in range from 0..<dma-requests> */
if (stm32_bdma_is_ht_irq_active(dma, id)) {
/* Let HAL DMA handle flags on its own */
if (!channel->hal_override) {
bdma_stm32_clear_ht(dma, id);
}
channel->bdma_callback(dev, channel->user_data, callback_arg, 0);
} else if (stm32_bdma_is_tc_irq_active(dma, id)) {
#ifdef CONFIG_DMAMUX_STM32
channel->busy = false;
#endif
/* Let HAL DMA handle flags on its own */
if (!channel->hal_override) {
bdma_stm32_clear_tc(dma, id);
}
channel->bdma_callback(dev, channel->user_data, callback_arg, 0);
} else {
LOG_ERR("Transfer Error.");
bdma_stm32_dump_channel_irq(dev, id);
bdma_stm32_clear_channel_irq(dev, id);
channel->bdma_callback(dev, channel->user_data,
callback_arg, -EIO);
}
}
static int bdma_stm32_get_priority(uint8_t priority, uint32_t *ll_priority)
{
switch (priority) {
case 0x0:
*ll_priority = LL_BDMA_PRIORITY_LOW;
break;
case 0x1:
*ll_priority = LL_BDMA_PRIORITY_MEDIUM;
break;
case 0x2:
*ll_priority = LL_BDMA_PRIORITY_HIGH;
break;
case 0x3:
*ll_priority = LL_BDMA_PRIORITY_VERYHIGH;
break;
default:
LOG_ERR("Priority error. %d", priority);
return -EINVAL;
}
return 0;
}
static int bdma_stm32_get_direction(enum dma_channel_direction direction,
uint32_t *ll_direction)
{
switch (direction) {
case MEMORY_TO_MEMORY:
*ll_direction = LL_BDMA_DIRECTION_MEMORY_TO_MEMORY;
break;
case MEMORY_TO_PERIPHERAL:
*ll_direction = LL_BDMA_DIRECTION_MEMORY_TO_PERIPH;
break;
case PERIPHERAL_TO_MEMORY:
*ll_direction = LL_BDMA_DIRECTION_PERIPH_TO_MEMORY;
break;
default:
LOG_ERR("Direction error. %d", direction);
return -EINVAL;
}
return 0;
}
static int bdma_stm32_get_memory_increment(enum dma_addr_adj increment,
uint32_t *ll_increment)
{
switch (increment) {
case DMA_ADDR_ADJ_INCREMENT:
*ll_increment = LL_BDMA_MEMORY_INCREMENT;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
*ll_increment = LL_BDMA_MEMORY_NOINCREMENT;
break;
case DMA_ADDR_ADJ_DECREMENT:
return -ENOTSUP;
default:
LOG_ERR("Memory increment error. %d", increment);
return -EINVAL;
}
return 0;
}
static int bdma_stm32_get_periph_increment(enum dma_addr_adj increment,
uint32_t *ll_increment)
{
switch (increment) {
case DMA_ADDR_ADJ_INCREMENT:
*ll_increment = LL_BDMA_PERIPH_INCREMENT;
break;
case DMA_ADDR_ADJ_NO_CHANGE:
*ll_increment = LL_BDMA_PERIPH_NOINCREMENT;
break;
case DMA_ADDR_ADJ_DECREMENT:
return -ENOTSUP;
default:
LOG_ERR("Periph increment error. %d", increment);
return -EINVAL;
}
return 0;
}
static int bdma_stm32_disable_channel(BDMA_TypeDef *bdma, uint32_t id)
{
int count = 0;
for (;;) {
if (stm32_bdma_disable_channel(bdma, id) == 0) {
return 0;
}
/* After trying for 5 seconds, give up */
if (count++ > (5 * 1000)) {
return -EBUSY;
}
k_sleep(K_MSEC(1));
}
return 0;
}
static bool bdma_stm32_is_valid_memory_address(const uint32_t address, const uint32_t size)
{
/* The BDMA can only access memory addresses in SRAM4 */
const uint32_t sram4_start = DT_REG_ADDR(DT_NODELABEL(sram4));
const uint32_t sram4_end = sram4_start + DT_REG_SIZE(DT_NODELABEL(sram4));
if (address < sram4_start) {
return false;
}
if (address + size > sram4_end) {
return false;
}
return true;
}
BDMA_STM32_EXPORT_API int bdma_stm32_configure(const struct device *dev,
uint32_t id,
struct dma_config *config)
{
const struct bdma_stm32_config *dev_config = dev->config;
struct bdma_stm32_channel *channel =
&dev_config->channels[id];
BDMA_TypeDef *bdma = (BDMA_TypeDef *)dev_config->base;
LL_BDMA_InitTypeDef BDMA_InitStruct;
int index;
int ret;
LL_BDMA_StructInit(&BDMA_InitStruct);
if (id >= dev_config->max_channels) {
LOG_ERR("cannot configure the bdma channel %d.", id);
return -EINVAL;
}
if (channel->busy) {
LOG_ERR("bdma channel %d is busy.", id);
return -EBUSY;
}
if (bdma_stm32_disable_channel(bdma, id) != 0) {
LOG_ERR("could not disable bdma channel %d.", id);
return -EBUSY;
}
bdma_stm32_clear_channel_irq(dev, id);
if (config->head_block->block_size > BDMA_STM32_MAX_DATA_ITEMS) {
LOG_ERR("Data size too big: %d\n",
config->head_block->block_size);
return -EINVAL;
}
if ((config->channel_direction == MEMORY_TO_MEMORY) &&
(!dev_config->support_m2m)) {
LOG_ERR("Memcopy not supported for device %s",
dev->name);
return -ENOTSUP;
}
/* support only the same data width for source and dest */
if (config->dest_data_size != config->source_data_size) {
LOG_ERR("source and dest data size differ.");
return -EINVAL;
}
if (config->source_data_size != 4U &&
config->source_data_size != 2U &&
config->source_data_size != 1U) {
LOG_ERR("source and dest unit size error, %d",
config->source_data_size);
return -EINVAL;
}
/*
* STM32's circular mode will auto reset both source address
* counter and destination address counter.
*/
if (config->head_block->source_reload_en !=
config->head_block->dest_reload_en) {
LOG_ERR("source_reload_en and dest_reload_en must "
"be the same.");
return -EINVAL;
}
channel->busy = true;
channel->bdma_callback = config->dma_callback;
channel->direction = config->channel_direction;
channel->user_data = config->user_data;
channel->src_size = config->source_data_size;
channel->dst_size = config->dest_data_size;
/* check dest or source memory address, warn if 0 */
if (config->head_block->source_address == 0) {
LOG_WRN("source_buffer address is null.");
}
if (config->head_block->dest_address == 0) {
LOG_WRN("dest_buffer address is null.");
}
/* ensure all memory addresses are in SRAM4 */
if (channel->direction == MEMORY_TO_PERIPHERAL || channel->direction == MEMORY_TO_MEMORY) {
if (!bdma_stm32_is_valid_memory_address(config->head_block->source_address,
config->head_block->block_size)) {
LOG_ERR("invalid source address");
return -EINVAL;
}
}
if (channel->direction == PERIPHERAL_TO_MEMORY || channel->direction == MEMORY_TO_MEMORY) {
if (!bdma_stm32_is_valid_memory_address(config->head_block->dest_address,
config->head_block->block_size)) {
LOG_ERR("invalid destination address");
return -EINVAL;
}
}
if (channel->direction == MEMORY_TO_PERIPHERAL) {
BDMA_InitStruct.MemoryOrM2MDstAddress =
config->head_block->source_address;
BDMA_InitStruct.PeriphOrM2MSrcAddress =
config->head_block->dest_address;
} else {
BDMA_InitStruct.PeriphOrM2MSrcAddress =
config->head_block->source_address;
BDMA_InitStruct.MemoryOrM2MDstAddress =
config->head_block->dest_address;
}
uint16_t memory_addr_adj = 0, periph_addr_adj = 0;
ret = bdma_stm32_get_priority(config->channel_priority,
&BDMA_InitStruct.Priority);
if (ret < 0) {
return ret;
}
ret = bdma_stm32_get_direction(config->channel_direction,
&BDMA_InitStruct.Direction);
if (ret < 0) {
return ret;
}
switch (config->channel_direction) {
case MEMORY_TO_MEMORY:
case PERIPHERAL_TO_MEMORY:
memory_addr_adj = config->head_block->dest_addr_adj;
periph_addr_adj = config->head_block->source_addr_adj;
break;
case MEMORY_TO_PERIPHERAL:
memory_addr_adj = config->head_block->source_addr_adj;
periph_addr_adj = config->head_block->dest_addr_adj;
break;
/* Direction has been asserted in bdma_stm32_get_direction. */
default:
LOG_ERR("Channel direction error (%d).",
config->channel_direction);
return -EINVAL;
}
ret = bdma_stm32_get_memory_increment(memory_addr_adj,
&BDMA_InitStruct.MemoryOrM2MDstIncMode);
if (ret < 0) {
return ret;
}
ret = bdma_stm32_get_periph_increment(periph_addr_adj,
&BDMA_InitStruct.PeriphOrM2MSrcIncMode);
if (ret < 0) {
return ret;
}
if (config->head_block->source_reload_en) {
BDMA_InitStruct.Mode = LL_BDMA_MODE_CIRCULAR;
} else {
BDMA_InitStruct.Mode = LL_BDMA_MODE_NORMAL;
}
channel->source_periph = (channel->direction == PERIPHERAL_TO_MEMORY);
/* set the data width, when source_data_size equals dest_data_size */
index = find_lsb_set(config->source_data_size) - 1;
BDMA_InitStruct.PeriphOrM2MSrcDataSize = table_p_size[index];
index = find_lsb_set(config->dest_data_size) - 1;
BDMA_InitStruct.MemoryOrM2MDstDataSize = table_m_size[index];
if (channel->source_periph) {
BDMA_InitStruct.NbData = config->head_block->block_size /
config->source_data_size;
} else {
BDMA_InitStruct.NbData = config->head_block->block_size /
config->dest_data_size;
}
#if defined(CONFIG_DMAMUX_STM32)
/*
* with bdma mux,
* the request ID is stored in the dma_slot
*/
BDMA_InitStruct.PeriphRequest = config->dma_slot;
#endif
LL_BDMA_Init(bdma, bdma_stm32_id_to_channel(id), &BDMA_InitStruct);
LL_BDMA_EnableIT_TC(bdma, bdma_stm32_id_to_channel(id));
/* Enable Half-Transfer irq if circular mode is enabled */
if (config->head_block->source_reload_en) {
LL_BDMA_EnableIT_HT(bdma, bdma_stm32_id_to_channel(id));
}
return ret;
}
BDMA_STM32_EXPORT_API int bdma_stm32_reload(const struct device *dev, uint32_t id,
uint32_t src, uint32_t dst,
size_t size)
{
const struct bdma_stm32_config *config = dev->config;
BDMA_TypeDef *bdma = (BDMA_TypeDef *)(config->base);
struct bdma_stm32_channel *channel;
if (id >= config->max_channels) {
return -EINVAL;
}
channel = &config->channels[id];
if (bdma_stm32_disable_channel(bdma, id) != 0) {
return -EBUSY;
}
switch (channel->direction) {
case MEMORY_TO_PERIPHERAL:
LL_BDMA_SetMemoryAddress(bdma, bdma_stm32_id_to_channel(id), src);
LL_BDMA_SetPeriphAddress(bdma, bdma_stm32_id_to_channel(id), dst);
break;
case MEMORY_TO_MEMORY:
case PERIPHERAL_TO_MEMORY:
LL_BDMA_SetPeriphAddress(bdma, bdma_stm32_id_to_channel(id), src);
LL_BDMA_SetMemoryAddress(bdma, bdma_stm32_id_to_channel(id), dst);
break;
default:
return -EINVAL;
}
if (channel->source_periph) {
LL_BDMA_SetDataLength(bdma, bdma_stm32_id_to_channel(id),
size / channel->src_size);
} else {
LL_BDMA_SetDataLength(bdma, bdma_stm32_id_to_channel(id),
size / channel->dst_size);
}
/* When reloading the dma, the channel is busy again before enabling */
channel->busy = true;
stm32_bdma_enable_channel(bdma, id);
return 0;
}
BDMA_STM32_EXPORT_API int bdma_stm32_start(const struct device *dev, uint32_t id)
{
const struct bdma_stm32_config *config = dev->config;
BDMA_TypeDef *bdma = (BDMA_TypeDef *)(config->base);
struct bdma_stm32_channel *channel;
/* Only M2P or M2M mode can be started manually. */
if (id >= config->max_channels) {
return -EINVAL;
}
/* Repeated start : return now if channel is already started */
if (stm32_bdma_is_enabled_channel(bdma, id)) {
return 0;
}
/* When starting the dma, the channel is busy before enabling */
channel = &config->channels[id];
channel->busy = true;
bdma_stm32_clear_channel_irq(dev, id);
stm32_bdma_enable_channel(bdma, id);
return 0;
}
BDMA_STM32_EXPORT_API int bdma_stm32_stop(const struct device *dev, uint32_t id)
{
const struct bdma_stm32_config *config = dev->config;
struct bdma_stm32_channel *channel = &config->channels[id];
BDMA_TypeDef *bdma = (BDMA_TypeDef *)(config->base);
if (id >= config->max_channels) {
return -EINVAL;
}
/* Repeated stop : return now if channel is already stopped */
if (!stm32_bdma_is_enabled_channel(bdma, id)) {
return 0;
}
/* in bdma_stm32_configure, enabling is done regardless of defines */
LL_BDMA_DisableIT_TC(bdma, bdma_stm32_id_to_channel(id));
LL_BDMA_DisableIT_HT(bdma, bdma_stm32_id_to_channel(id));
bdma_stm32_disable_channel(bdma, id);
bdma_stm32_clear_channel_irq(dev, id);
/* Finally, flag channel as free */
channel->busy = false;
return 0;
}
static int bdma_stm32_init(const struct device *dev)
{
const struct bdma_stm32_config *config = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
if (clock_control_on(clk,
(clock_control_subsys_t) &config->pclken) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
config->config_irq(dev);
for (uint32_t i = 0; i < config->max_channels; i++) {
config->channels[i].busy = false;
#ifdef CONFIG_DMAMUX_STM32
/* each further channel->mux_channel is fixed here */
config->channels[i].mux_channel = i + config->offset;
#endif /* CONFIG_DMAMUX_STM32 */
}
((struct bdma_stm32_data *)dev->data)->dma_ctx.magic = 0;
((struct bdma_stm32_data *)dev->data)->dma_ctx.dma_channels = 0;
((struct bdma_stm32_data *)dev->data)->dma_ctx.atomic = 0;
/* The BDMA can only access SRAM4 and assumes it's nocachable
* This check verifies that the non-cachable flag is set in the DTS.
* For example:
* &sram4 {
* zephyr,memory-region-mpu = "RAM_NOCACHE";
* };
*/
#if DT_NODE_HAS_PROP(DT_NODELABEL(sram4), zephyr_memory_region_mpu)
if (strcmp(DT_PROP(DT_NODELABEL(sram4), zephyr_memory_region_mpu), "RAM_NOCACHE") != 0) {
LOG_ERR("SRAM4 is not set as non-cachable.");
return -EIO;
}
#else
#error "BDMA driver expects SRAM4 to be set as RAM_NOCACHE in DTS"
#endif
return 0;
}
BDMA_STM32_EXPORT_API int bdma_stm32_get_status(const struct device *dev,
uint32_t id, struct dma_status *stat)
{
const struct bdma_stm32_config *config = dev->config;
BDMA_TypeDef *bdma = (BDMA_TypeDef *)(config->base);
struct bdma_stm32_channel *channel;
if (id >= config->max_channels) {
return -EINVAL;
}
channel = &config->channels[id];
stat->pending_length = LL_BDMA_GetDataLength(bdma, bdma_stm32_id_to_channel(id));
stat->dir = channel->direction;
stat->busy = channel->busy;
return 0;
}
static const struct dma_driver_api dma_funcs = {
.reload = bdma_stm32_reload,
.config = bdma_stm32_configure,
.start = bdma_stm32_start,
.stop = bdma_stm32_stop,
.get_status = bdma_stm32_get_status,
};
#ifdef CONFIG_DMAMUX_STM32
#define BDMA_STM32_OFFSET_INIT(index) \
.offset = DT_INST_PROP(index, dma_offset),
#else
#define BDMA_STM32_OFFSET_INIT(index)
#endif /* CONFIG_DMAMUX_STM32 */
#define BDMA_STM32_INIT_DEV(index) \
static struct bdma_stm32_channel \
bdma_stm32_channels_##index[BDMA_STM32_##index##_CHANNEL_COUNT];\
\
const struct bdma_stm32_config bdma_stm32_config_##index = { \
.pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \
.enr = DT_INST_CLOCKS_CELL(index, bits) }, \
.config_irq = bdma_stm32_config_irq_##index, \
.base = DT_INST_REG_ADDR(index), \
.support_m2m = DT_INST_PROP(index, st_mem2mem), \
.max_channels = BDMA_STM32_##index##_CHANNEL_COUNT, \
.channels = bdma_stm32_channels_##index, \
BDMA_STM32_OFFSET_INIT(index) \
}; \
\
static struct bdma_stm32_data bdma_stm32_data_##index = { \
}; \
\
DEVICE_DT_INST_DEFINE(index, \
&bdma_stm32_init, \
NULL, \
&bdma_stm32_data_##index, &bdma_stm32_config_##index, \
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, \
&dma_funcs)
#define BDMA_STM32_DEFINE_IRQ_HANDLER(bdma, chan) \
static void bdma_stm32_irq_##bdma##_##chan(const struct device *dev) \
{ \
bdma_stm32_irq_handler(dev, chan); \
}
#define BDMA_STM32_IRQ_CONNECT(bdma, chan) \
do { \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(bdma, chan, irq), \
DT_INST_IRQ_BY_IDX(bdma, chan, priority), \
bdma_stm32_irq_##bdma##_##chan, \
DEVICE_DT_INST_GET(bdma), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(bdma, chan, irq)); \
} while (false)
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
#define BDMA_STM32_DEFINE_IRQ_HANDLER_GEN(i, _) \
BDMA_STM32_DEFINE_IRQ_HANDLER(0, i)
LISTIFY(DT_NUM_IRQS(DT_DRV_INST(0)), BDMA_STM32_DEFINE_IRQ_HANDLER_GEN, (;));
static void bdma_stm32_config_irq_0(const struct device *dev)
{
ARG_UNUSED(dev);
#define BDMA_STM32_IRQ_CONNECT_GEN(i, _) \
BDMA_STM32_IRQ_CONNECT(0, i);
LISTIFY(DT_NUM_IRQS(DT_DRV_INST(0)), BDMA_STM32_IRQ_CONNECT_GEN, (;));
}
BDMA_STM32_INIT_DEV(0);
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */