blob: 1d92ce1171129c347e2d33bcc6a00a9446f18e14 [file] [log] [blame]
/*
* Copyright (c) 2023 ITE Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ite_it82xx2_usb
#include <zephyr/kernel.h>
#include <zephyr/usb/usb_device.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
#include <soc_dt.h>
#include <string.h>
#include <zephyr/irq.h>
#include <zephyr/pm/policy.h>
#include <zephyr/drivers/interrupt_controller/wuc_ite_it8xxx2.h>
#include <zephyr/dt-bindings/interrupt-controller/it8xxx2-wuc.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(usb_dc_it82xx2, CONFIG_USB_DRIVER_LOG_LEVEL);
/* USB Device Controller Registers Bits & Constants */
#define IT8XXX2_USB_IRQ DT_INST_IRQ_BY_IDX(0, 0, irq)
#define IT8XXX2_WU90_IRQ DT_INST_IRQ_BY_IDX(0, 1, irq)
#define MAX_NUM_ENDPOINTS 16
#define FIFO_NUM 3
#define SETUP_DATA_CNT 8
#define DC_ADDR_NULL 0x00
#define DC_ADDR_MASK 0x7F
/* The related definitions of the register EP STATUS:
* 0x41/0x45/0x49/0x4D
*/
#define EP_STATUS_ERROR 0x0F
/* The related definitions of the register dc_line_status: 0x51 */
#define RX_LINE_STATE_MASK (RX_LINE_FULL_SPD | RX_LINE_LOW_SPD)
#define RX_LINE_LOW_SPD 0x02
#define RX_LINE_FULL_SPD 0x01
#define RX_LINE_RESET 0x00
/* EPN Extend Control 2 Register Mask Definition */
#define READY_BITS 0x0F
#define COMPLETED_TRANS 0xF0
/* EP Definitions */
#define EP_VALID_MASK 0x0F
#define EP_INVALID_MASK ~(USB_EP_DIR_MASK | EP_VALID_MASK)
/* Bit [1:0] represents the TRANSACTION_TYPE as follows: */
enum it82xx2_transaction_types {
DC_SETUP_TRANS,
DC_IN_TRANS,
DC_OUTDATA_TRANS,
DC_ALL_TRANS
};
/* The bit definitions of the register EP RX/TX FIFO Control:
* EP_RX_FIFO_CONTROL: 0X64/0x84/0xA4/0xC4
* EP_TX_FIFO_CONTROL: 0X74/0x94/0xB4/0xD4
*/
#define FIFO_FORCE_EMPTY BIT(0)
/* The bit definitions of the register Host/Device Control: 0XE0 */
#define RESET_CORE BIT(1)
/* Bit definitions of the register Port0/Port1 MISC Control: 0XE4/0xE8 */
#define PULL_DOWN_EN BIT(4)
/* Bit definitions of the register EPN0N1_EXTEND_CONTROL_REG: 0X98 ~ 0X9D */
#define EPN1_OUTDATA_SEQ BIT(4)
#define EPN0_ISO_ENABLE BIT(2)
#define EPN0_SEND_STALL BIT(1)
#define EPN0_OUTDATA_SEQ BIT(0)
/* ENDPOINT[3..0]_STATUS_REG */
#define DC_STALL_SENT BIT(5)
/* DC_INTERRUPT_STATUS_REG */
#define DC_TRANS_DONE BIT(0)
#define DC_RESUME_INT BIT(1)
#define DC_RESET_EVENT BIT(2)
#define DC_SOF_RECEIVED BIT(3)
#define DC_NAK_SENT_INT BIT(4)
/* DC_CONTROL_REG */
#define DC_GLOBAL_ENABLE BIT(0)
#define DC_TX_LINE_STATE_DM BIT(1)
#define DC_DIRECT_CONTROL BIT(3)
#define DC_FULL_SPEED_LINE_POLARITY BIT(4)
#define DC_FULL_SPEED_LINE_RATE BIT(5)
#define DC_CONNECT_TO_HOST BIT(6) /* internal pull-up */
/* ENDPOINT[3..0]_CONTROL_REG */
#define ENDPOINT_EN BIT(0)
#define ENDPOINT_RDY BIT(1)
#define EP_OUTDATA_SEQ BIT(2)
#define EP_SEND_STALL BIT(3)
#define EP_ISO_ENABLE BIT(4)
#define EP_DIRECTION BIT(5)
enum it82xx2_ep_status {
EP_INIT,
EP_CHECK,
EP_CONFIG,
EP_CONFIG_IN,
EP_CONFIG_OUT,
};
enum it82xx2_trans_type {
SETUP_TOKEN,
IN_TOKEN,
OUT_TOKEN,
};
enum it82xx2_setup_stage {
INIT_ST,
SETUP_ST,
DIN_ST,
DOUT_ST,
STATUS_ST,
STALL_SEND,
};
enum it82xx2_extend_ep_ctrl {
/* EPN0N1_EXTEND_CONTROL_REG */
EXT_EP_ISO_DISABLE,
EXT_EP_ISO_ENABLE,
EXT_EP_SEND_STALL,
EXT_EP_CLEAR_STALL,
EXT_EP_CHECK_STALL,
EXT_EP_DATA_SEQ_1,
EXT_EP_DATA_SEQ_0,
EXT_EP_DATA_SEQ_INV,
/* EPN_EXTEND_CONTROL1_REG */
EXT_EP_DIR_IN,
EXT_EP_DIR_OUT,
EXT_EP_ENABLE,
EXT_EP_DISABLE,
/* EPN_EXTEND_CONTROL2_REG */
EXT_EP_READY,
};
struct usb_it8xxx2_wuc {
/* WUC control device structure */
const struct device *wucs;
/* WUC pin mask */
uint8_t mask;
};
struct usb_it82xx2_config {
struct usb_it82xx2_regs *const base;
const struct pinctrl_dev_config *pcfg;
const struct usb_it8xxx2_wuc *wuc_list;
};
static const struct usb_it8xxx2_wuc usb_wuc0[IT8XXX2_DT_INST_WUCCTRL_LEN(0)] =
IT8XXX2_DT_WUC_ITEMS_LIST(0);
PINCTRL_DT_INST_DEFINE(0);
static const struct usb_it82xx2_config ucfg0 = {
.base = (struct usb_it82xx2_regs *)DT_INST_REG_ADDR(0),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.wuc_list = usb_wuc0
};
struct it82xx2_endpoint_data {
usb_dc_ep_callback cb_in;
usb_dc_ep_callback cb_out;
enum it82xx2_ep_status ep_status;
enum usb_dc_ep_transfer_type ep_type;
uint16_t remaining; /* remaining bytes */
uint16_t mps;
};
struct usb_it82xx2_data {
struct it82xx2_endpoint_data ep_data[MAX_NUM_ENDPOINTS];
enum it82xx2_setup_stage st_state; /* Setup State */
/* EP0 status */
enum it82xx2_trans_type last_token;
/* EP0 status */
enum it82xx2_trans_type now_token;
uint8_t attached;
uint8_t addr;
bool no_data_ctrl;
bool suspended;
usb_dc_status_callback usb_status_cb;
/* Check the EP interrupt status for (ep > 0) */
bool ep_ready[3];
struct k_sem ep_sem[3];
};
/* Mapped to the bit definitions in the EPN_EXTEND_CONTROL1 Register
* (D6h to DDh) for configuring the FIFO direction and for enabling/disabling
* the endpoints.
*/
static uint8_t ext_ep_bit_shift[12] = {0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3};
/* The ep_fifo_res[ep_idx % FIFO_NUM] where the FIFO_NUM is 3 represents the
* EP mapping because when (ep_idx % FIFO_NUM) is 3, it actually means the EP0.
*/
static const uint8_t ep_fifo_res[3] = {3, 1, 2};
/* Mapping the enum it82xx2_extend_ep_ctrl code to their corresponding bit in
* the EP45/67/89/1011/1213/1415 Extended Control Registers.
*/
static const uint8_t ext_ctrl_tbl[7] = {
EPN0_ISO_ENABLE,
EPN0_ISO_ENABLE,
EPN0_SEND_STALL,
EPN0_SEND_STALL,
EPN0_SEND_STALL,
EPN0_OUTDATA_SEQ,
EPN0_OUTDATA_SEQ,
};
/* Indexing of the following control codes:
* EXT_EP_DIR_IN, EXT_EP_DIR_OUT, EXT_EP_ENABLE, EXT_EP_DISABLE
*/
static const uint8_t epn_ext_ctrl_tbl[4] = {1, 0, 1, 0};
static struct usb_it82xx2_data udata0;
static struct usb_it82xx2_regs *it82xx2_get_usb_regs(void)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(usb0));
const struct usb_it82xx2_config *cfg = dev->config;
struct usb_it82xx2_regs *const usb_regs = cfg->base;
return usb_regs;
}
/* WU90 (USB D+) Enable/Disable */
static void it82xx2_enable_wu90_irq(const struct device *dev, bool enable)
{
const struct usb_it82xx2_config *cfg = dev->config;
if (enable) {
irq_enable(IT8XXX2_WU90_IRQ);
} else {
irq_disable(IT8XXX2_WU90_IRQ);
/* Clear pending interrupt */
it8xxx2_wuc_clear_status(cfg->wuc_list[0].wucs,
cfg->wuc_list[0].mask);
}
}
static void it82xx2_wu90_isr(const struct device *dev)
{
it82xx2_enable_wu90_irq(dev, false);
LOG_DBG("USB D+ (WU90) Triggered");
}
/* WU90 (USB D+) Initializations */
static void it8xxx2_usb_dc_wuc_init(const struct device *dev)
{
const struct usb_it82xx2_config *cfg = dev->config;
/* Initializing the WUI */
it8xxx2_wuc_set_polarity(cfg->wuc_list[0].wucs,
cfg->wuc_list[0].mask,
WUC_TYPE_EDGE_FALLING);
it8xxx2_wuc_clear_status(cfg->wuc_list[0].wucs,
cfg->wuc_list[0].mask);
/* Enabling the WUI */
it8xxx2_wuc_enable(cfg->wuc_list[0].wucs, cfg->wuc_list[0].mask);
/* Connect WU90 (USB D+) interrupt but make it disabled initally */
IRQ_CONNECT(IT8XXX2_WU90_IRQ, 0, it82xx2_wu90_isr, 0, 0);
irq_disable(IT8XXX2_WU90_IRQ);
}
/* Function it82xx2_get_ep_fifo_ctrl_reg_idx(uint8_t ep_idx):
*
* Calculate the register offset index which determines the corresponding
* EP FIFO Ctrl Registers which is defined as ep_fifo_ctrl[reg_idx] here
*
* The ep_fifo_res[ep_idx % FIFO_NUM] represents the EP mapping because when
* (ep_idx % FIFO_NUM) is 3, it actually means the EP0.
*/
static uint8_t it82xx2_get_ep_fifo_ctrl_reg_idx(uint8_t ep_idx)
{
uint8_t reg_idx = (ep_idx < EP8) ?
((ep_fifo_res[ep_idx % FIFO_NUM] - 1) * 2) :
((ep_fifo_res[ep_idx % FIFO_NUM] - 1) * 2 + 1);
return reg_idx;
}
/* Function it82xx2_get_ep_fifo_ctrl_reg_val(uint8_t ep_idx):
*
* Calculate the register value written to the ep_fifo_ctrl which is defined as
* ep_fifo_ctrl[reg_idx] here for selecting the corresponding control bit.
*/
static uint8_t it82xx2_get_ep_fifo_ctrl_reg_val(uint8_t ep_idx)
{
uint8_t reg_val = (ep_idx < EP8) ?
(1 << ep_idx) : (1 << (ep_idx - EP8));
return reg_val;
}
/*
* Functions it82xx2_epn0n1_ext_ctrl_cfg() and epn0n1_ext_ctrl_cfg_seq_inv()
* provide the entrance of configuring the EPN0N1 Extended Ctrl Registers.
*
* The variable set_clr determines if we set/clear the corresponding bit.
*/
static void it82xx2_epn0n1_ext_ctrl_cfg(uint8_t reg_idx, uint8_t bit_mask,
bool set_clr)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
volatile uint8_t *epn0n1_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_9X].ext_4_15.epn0n1_ext_ctrl;
(set_clr) ? (epn0n1_ext_ctrl[reg_idx] |= bit_mask) :
(epn0n1_ext_ctrl[reg_idx] &= ~(bit_mask));
}
static void it82xx2_epn0n1_ext_ctrl_cfg_seq_inv(uint8_t reg_idx,
uint8_t bit_mask, bool set_clr)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
volatile uint8_t *epn0n1_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_9X].ext_4_15.epn0n1_ext_ctrl;
bool check = (set_clr) ?
(epn0n1_ext_ctrl[reg_idx] & EPN0_OUTDATA_SEQ) :
(epn0n1_ext_ctrl[reg_idx] & EPN1_OUTDATA_SEQ);
(check) ? (epn0n1_ext_ctrl[reg_idx] &= ~(bit_mask)) :
(epn0n1_ext_ctrl[reg_idx] |= bit_mask);
}
/* Return the status of STALL bit in the EPN0N1 Extend Control Registers */
static bool it82xx2_epn01n1_check_stall(uint8_t reg_idx, uint8_t bit_mask)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
volatile uint8_t *epn0n1_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_9X].ext_4_15.epn0n1_ext_ctrl;
return !!(epn0n1_ext_ctrl[reg_idx] & bit_mask);
}
/* Configuring the EPN Extended Ctrl Registers. */
static void it82xx2_epn_ext_ctrl_cfg1(uint8_t reg_idx, uint8_t bit_mask,
bool set_clr)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct epn_ext_ctrl_regs *epn_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
(set_clr) ? (epn_ext_ctrl[reg_idx].epn_ext_ctrl1 |= bit_mask) :
(epn_ext_ctrl[reg_idx].epn_ext_ctrl1 &= ~(bit_mask));
}
static void it82xx2_epn_ext_ctrl_cfg2(uint8_t reg_idx, uint8_t bit_mask,
bool set_clr)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct epn_ext_ctrl_regs *epn_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
(set_clr) ? (epn_ext_ctrl[reg_idx].epn_ext_ctrl2 |= bit_mask) :
(epn_ext_ctrl[reg_idx].epn_ext_ctrl2 &= ~(bit_mask));
}
/* From 98h to 9Dh, the EP45/67/89/1011/1213/1415 Extended Control Registers
* are defined, and their bits definitions are as follows:
*
* Bit Description
* 7 Reserved
* 6 EPPOINT5_ISO_ENABLE
* 5 EPPOINT5_SEND_STALL
* 4 EPPOINT5_OUT_DATA_SEQUENCE
* 3 Reserved
* 2 EPPOINT4_ISO_ENABLE
* 1 EPPOINT4_SEND_STALL
* 0 EPPOINT4_OUT_DATA_SEQUENCE
*
* Apparently, we can tell that the EP4 and EP5 share the same register, and
* the EP6 and EP7 share the same one, and the other EPs are defined in the
* same way.
*
* In the function it82xx2_usb_extend_ep_ctrl() we will obtain the mask/flag
* according to the bits definitions mentioned above. As for the control code,
* please refer to the definition of enum it82xx2_extend_ep_ctrl.
*/
static int it82xx2_usb_extend_ep_ctrl(uint8_t ep_idx,
enum it82xx2_extend_ep_ctrl ctrl)
{
uint8_t reg_idx, mask;
bool flag;
if (ep_idx < EP4) {
return -EINVAL;
}
if ((ctrl >= EXT_EP_DIR_IN) && (ctrl < EXT_EP_READY)) {
/* From EXT_EP_DIR_IN to EXT_EP_DISABLE */
reg_idx = ep_fifo_res[ep_idx % FIFO_NUM];
mask = 1 << (ext_ep_bit_shift[ep_idx - 4] * 2 + 1);
flag = epn_ext_ctrl_tbl[ctrl - EXT_EP_DIR_IN];
it82xx2_epn_ext_ctrl_cfg1(reg_idx, mask, flag);
} else if ((ctrl >= EXT_EP_ISO_DISABLE) && (ctrl < EXT_EP_DIR_IN)) {
/* From EXT_EP_ISO_DISABLE to EXT_EP_DATA_SEQ_0 */
reg_idx = (ep_idx - 4) >> 1;
flag = !!(ep_idx & 1);
mask = flag ? (ext_ctrl_tbl[ctrl] << 4) : (ext_ctrl_tbl[ctrl]);
if (ctrl == EXT_EP_CHECK_STALL) {
return it82xx2_epn01n1_check_stall(reg_idx, mask);
} else if (ctrl == EXT_EP_DATA_SEQ_INV) {
it82xx2_epn0n1_ext_ctrl_cfg_seq_inv(
reg_idx, mask, flag);
} else {
it82xx2_epn0n1_ext_ctrl_cfg(reg_idx, mask, flag);
}
} else if (ctrl == EXT_EP_READY) {
reg_idx = (ep_idx - 4) >> 1;
mask = 1 << (ext_ep_bit_shift[ep_idx - 4]);
it82xx2_epn_ext_ctrl_cfg2(reg_idx, mask, true);
} else {
LOG_ERR("Invalid Control Code of Endpoint");
return -EINVAL;
}
return 0;
}
static int it82xx2_usb_dc_ip_init(uint8_t p_action)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
if (p_action == 0) {
/* Reset Device Controller */
usb_regs->host_device_control = RESET_CORE;
k_msleep(1);
usb_regs->port0_misc_control &= ~(PULL_DOWN_EN);
usb_regs->port1_misc_control &= ~(PULL_DOWN_EN);
/* clear reset bit */
usb_regs->host_device_control = 0;
}
usb_regs->dc_control =
DC_GLOBAL_ENABLE | DC_FULL_SPEED_LINE_POLARITY |
DC_FULL_SPEED_LINE_RATE | DC_CONNECT_TO_HOST;
usb_regs->dc_interrupt_status =
DC_TRANS_DONE | DC_RESET_EVENT | DC_SOF_RECEIVED;
usb_regs->dc_interrupt_mask = 0x00;
usb_regs->dc_interrupt_mask =
DC_TRANS_DONE | DC_RESET_EVENT;
usb_regs->dc_address = DC_ADDR_NULL;
return 0;
}
static int it82xx2_usb_dc_attach_init(void)
{
struct gctrl_it8xxx2_regs *const gctrl_regs = GCTRL_IT8XXX2_REGS_BASE;
/*
* Disable USB debug path , prevent CPU enter
* JTAG mode and then reset by USB command.
*/
gctrl_regs->GCTRL_MCCR &= ~(IT8XXX2_GCTRL_MCCR_USB_EN);
gctrl_regs->gctrl_pmer2 |= IT8XXX2_GCTRL_PMER2_USB_PAD_EN;
/* Disabling WU90 (USB D+) of WUI */
irq_disable(IT8XXX2_WU90_IRQ);
return it82xx2_usb_dc_ip_init(0);
}
/* Check the condition that SETUP_TOKEN following OUT_TOKEN and return it */
static bool it82xx2_check_setup_following_out(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
return ((ep_regs[EP0].ep_transtype_sts & DC_ALL_TRANS) == 0 ||
(udata0.last_token == IN_TOKEN &&
ff_regs[EP0].ep_rx_fifo_dcnt_lsb == SETUP_DATA_CNT));
}
static int it82xx2_setup_done(uint8_t ep_ctrl, uint8_t idx)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
LOG_DBG("SETUP(%d)", idx);
/* wrong trans*/
if (ep_ctrl & EP_SEND_STALL) {
ep_regs[idx].ep_ctrl &= ~EP_SEND_STALL;
udata0.st_state = STALL_SEND;
ff_regs[idx].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
LOG_DBG("Clear Stall Bit & RX FIFO");
return -EINVAL;
}
/* handle status interrupt */
/* status out */
if (udata0.st_state == DIN_ST) {
LOG_DBG("Status OUT");
udata0.last_token = udata0.now_token;
udata0.now_token = OUT_TOKEN;
udata0.st_state = STATUS_ST;
udata0.ep_data[idx].cb_out(idx, USB_DC_EP_DATA_OUT);
} else if (udata0.st_state == DOUT_ST || udata0.st_state == SETUP_ST) {
/* Status IN*/
LOG_DBG("Status IN");
udata0.last_token = udata0.now_token;
udata0.now_token = IN_TOKEN;
udata0.st_state = STATUS_ST;
udata0.ep_data[idx].cb_in(idx | 0x80, USB_DC_EP_DATA_IN);
}
udata0.last_token = udata0.now_token;
udata0.now_token = SETUP_TOKEN;
udata0.st_state = SETUP_ST;
ep_regs[idx].ep_ctrl |= EP_OUTDATA_SEQ;
udata0.ep_data[idx].cb_out(USB_EP_DIR_OUT, USB_DC_EP_SETUP);
/* Set ready bit to no-data control in */
if (udata0.no_data_ctrl) {
ep_regs[EP0].ep_ctrl |= ENDPOINT_RDY;
LOG_DBG("(%d): Set Ready Bit for no-data control", __LINE__);
udata0.no_data_ctrl = false;
}
return 0;
}
static int it82xx2_in_done(uint8_t ep_ctrl, uint8_t idx)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
/* stall send check */
if (ep_ctrl & EP_SEND_STALL) {
ep_regs[EP0].ep_ctrl &= ~EP_SEND_STALL;
udata0.st_state = STALL_SEND;
LOG_DBG("Clear Stall Bit");
return -EINVAL;
}
if (udata0.st_state >= STATUS_ST) {
return -EINVAL;
}
LOG_DBG("IN(%d)(%d)", idx, !!(ep_regs[idx].ep_ctrl & EP_OUTDATA_SEQ));
udata0.last_token = udata0.now_token;
udata0.now_token = IN_TOKEN;
if (udata0.addr != DC_ADDR_NULL &&
udata0.addr != usb_regs->dc_address) {
usb_regs->dc_address = udata0.addr;
LOG_DBG("Address Is Set Successfully");
}
/* set setup stage */
if (udata0.st_state == DOUT_ST) {
udata0.st_state = STATUS_ST;
/* no data status in */
} else if (udata0.ep_data[EP0].remaining == 0 &&
udata0.st_state == SETUP_ST) {
udata0.st_state = STATUS_ST;
} else {
udata0.st_state = DIN_ST;
}
if (!!(ep_regs[idx].ep_ctrl & EP_OUTDATA_SEQ)) {
ep_regs[idx].ep_ctrl &= ~EP_OUTDATA_SEQ;
} else {
ep_regs[idx].ep_ctrl |= EP_OUTDATA_SEQ;
}
udata0.ep_data[idx].cb_in(idx | 0x80, USB_DC_EP_DATA_IN);
/* set ready bit for status out */
LOG_DBG("Remaining Bytes: %d, Stage: %d",
udata0.ep_data[EP0].remaining, udata0.st_state);
if (udata0.st_state == DIN_ST && udata0.ep_data[EP0].remaining == 0) {
ep_regs[EP0].ep_ctrl |= ENDPOINT_RDY;
LOG_DBG("Set EP%d Ready (%d)", idx, __LINE__);
}
return 0;
}
static int it82xx2_out_done(uint8_t idx)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
/* ep0 wrong enter check */
if (udata0.st_state >= STATUS_ST) {
return -EINVAL;
}
LOG_DBG("OUT(%d)", idx);
udata0.last_token = udata0.now_token;
udata0.now_token = OUT_TOKEN;
if (udata0.st_state == SETUP_ST) {
udata0.st_state = DOUT_ST;
} else {
udata0.st_state = STATUS_ST;
}
udata0.ep_data[idx].cb_out(idx, USB_DC_EP_DATA_OUT);
/* SETUP_TOKEN follow OUT_TOKEN */
if (it82xx2_check_setup_following_out()) {
LOG_WRN("[%s] OUT => SETUP", __func__);
udata0.last_token = udata0.now_token;
udata0.now_token = SETUP_TOKEN;
udata0.st_state = SETUP_ST;
ep_regs[EP0].ep_ctrl |= EP_OUTDATA_SEQ;
udata0.ep_data[EP0].cb_out(USB_EP_DIR_OUT, USB_DC_EP_SETUP);
/* NOTE: set ready bit to no-data control in */
if (udata0.no_data_ctrl) {
ep_regs[EP0].ep_ctrl |= ENDPOINT_RDY;
LOG_DBG("Set Ready Bit for no-data control");
udata0.no_data_ctrl = false;
}
}
return 0;
}
/* Functions it82xx2_ep_in_out_config():
* Dealing with the ep_ctrl configurations in this subroutine when it's
* invoked in the it82xx2_usb_dc_trans_done().
*/
static void it82xx2_ep_in_out_config(uint8_t idx)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct epn_ext_ctrl_regs *epn_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
uint8_t ep_trans = (epn_ext_ctrl[idx].epn_ext_ctrl2 >> 4) & READY_BITS;
if (udata0.ep_data[ep_trans].ep_status == EP_CONFIG_IN) {
if (ep_trans < 4) {
if (!!(ep_regs[idx].ep_ctrl & EP_OUTDATA_SEQ)) {
ep_regs[idx].ep_ctrl &= ~EP_OUTDATA_SEQ;
} else {
ep_regs[idx].ep_ctrl |= EP_OUTDATA_SEQ;
}
} else {
it82xx2_usb_extend_ep_ctrl(ep_trans,
EXT_EP_DATA_SEQ_INV);
}
if (udata0.ep_data[ep_trans].cb_in) {
udata0.ep_data[ep_trans].cb_in(ep_trans | 0x80,
USB_DC_EP_DATA_IN);
}
k_sem_give(&udata0.ep_sem[idx - 1]);
} else {
if (udata0.ep_data[ep_trans].cb_out) {
udata0.ep_data[ep_trans].cb_out(ep_trans,
USB_DC_EP_DATA_OUT);
}
}
}
static void it82xx2_usb_dc_trans_done(uint8_t ep_ctrl, uint8_t ep_trans_type)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct epn_ext_ctrl_regs *epn_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
int ret;
for (uint8_t idx = 0 ; idx < EP4 ; idx++) {
ep_ctrl = ep_regs[idx].ep_ctrl;
/* check ready bit ,will be 0 when trans done */
if ((ep_ctrl & ENDPOINT_EN) && !(ep_ctrl & ENDPOINT_RDY)) {
if (idx == EP0) {
ep_trans_type = ep_regs[idx].ep_transtype_sts &
DC_ALL_TRANS;
/* set up*/
if (ep_trans_type == DC_SETUP_TRANS) {
ret = it82xx2_setup_done(ep_ctrl, idx);
if (ret != 0) {
continue;
}
} else if (ep_trans_type == DC_IN_TRANS) {
/* in */
ret = it82xx2_in_done(ep_ctrl, idx);
if (ret != 0) {
continue;
}
} else if (ep_trans_type == DC_OUTDATA_TRANS) {
/* out */
ret = it82xx2_out_done(idx);
if (ret != 0) {
continue;
}
}
} else {
/* prevent wrong entry */
if (!udata0.ep_ready[idx - 1]) {
continue;
}
if ((epn_ext_ctrl[idx].epn_ext_ctrl2 &
COMPLETED_TRANS) == 0) {
continue;
}
udata0.ep_ready[idx - 1] = false;
it82xx2_ep_in_out_config(idx);
}
}
}
}
static void it82xx2_usb_dc_isr(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
uint8_t status = usb_regs->dc_interrupt_status &
usb_regs->dc_interrupt_mask; /* mask non enable int */
uint8_t ep_ctrl, ep_trans_type;
/* reset */
if (status & DC_RESET_EVENT) {
if ((usb_regs->dc_line_status & RX_LINE_STATE_MASK) ==
RX_LINE_RESET) {
usb_dc_reset();
usb_regs->dc_interrupt_status = DC_RESET_EVENT;
if (udata0.usb_status_cb) {
(*(udata0.usb_status_cb))(USB_DC_RESET, NULL);
}
return;
} else {
usb_regs->dc_interrupt_status = DC_RESET_EVENT;
}
}
/* resume,not test */
if (status & DC_RESUME_INT) {
udata0.suspended = false;
usb_regs->dc_interrupt_mask &= ~DC_RESUME_INT;
usb_regs->dc_interrupt_status = DC_RESUME_INT;
if (udata0.usb_status_cb) {
(*(udata0.usb_status_cb))(USB_DC_RESUME, NULL);
}
return;
}
/* transaction done */
if (status & DC_TRANS_DONE) {
/* clear interrupt before new transaction */
usb_regs->dc_interrupt_status = DC_TRANS_DONE;
it82xx2_usb_dc_trans_done(ep_ctrl, ep_trans_type);
return;
}
}
/*
* USB Device Controller API
*/
int usb_dc_attach(void)
{
int ret;
pm_policy_state_lock_get(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
if (udata0.attached) {
LOG_DBG("Already Attached");
return 0;
}
LOG_DBG("Attached");
ret = it82xx2_usb_dc_attach_init();
if (ret) {
return ret;
}
for (int idx = 0 ; idx < MAX_NUM_ENDPOINTS ; idx++) {
udata0.ep_data[idx].ep_status = EP_INIT;
}
udata0.attached = 1U;
/* init ep ready status */
udata0.ep_ready[0] = false;
udata0.ep_ready[1] = false;
udata0.ep_ready[2] = false;
k_sem_init(&udata0.ep_sem[0], 1, 1);
k_sem_init(&udata0.ep_sem[1], 1, 1);
k_sem_init(&udata0.ep_sem[2], 1, 1);
/* Connect and enable USB interrupt */
IRQ_CONNECT(IT8XXX2_USB_IRQ, 0, it82xx2_usb_dc_isr, 0, 0);
irq_enable(IT8XXX2_USB_IRQ);
return 0;
}
int usb_dc_detach(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
pm_policy_state_lock_put(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
if (!udata0.attached) {
LOG_DBG("Already Detached");
return 0;
}
LOG_DBG("Detached");
irq_disable(IT8XXX2_USB_IRQ);
/* stop pull-up D+ D-*/
usb_regs->dc_control &= ~DC_CONNECT_TO_HOST;
udata0.attached = 0U;
/* Enabling WU90 (USB D+) of WUI */
irq_enable(IT8XXX2_WU90_IRQ);
return 0;
}
int usb_dc_reset(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
int idx;
LOG_DBG("USB Device Reset");
ff_regs[EP0].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
ff_regs[EP0].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
for (idx = 1 ; idx < EP4 ; idx++) {
if (udata0.ep_data[idx].ep_status > EP_CHECK) {
ff_regs[idx].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
ff_regs[idx].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
}
}
ep_regs[EP0].ep_ctrl = ENDPOINT_EN;
usb_regs->dc_address = DC_ADDR_NULL;
udata0.addr = DC_ADDR_NULL;
usb_regs->dc_interrupt_status = DC_NAK_SENT_INT | DC_SOF_RECEIVED;
if (udata0.usb_status_cb) {
(*(udata0.usb_status_cb))(USB_DC_RESET, NULL);
}
return 0;
}
int usb_dc_set_address(const uint8_t addr)
{
LOG_DBG("Set Address(0x%02x) to Data", addr);
udata0.addr = addr & DC_ADDR_MASK;
return 0;
}
void usb_dc_set_status_callback(const usb_dc_status_callback cb)
{
udata0.usb_status_cb = cb;
}
int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data * const cfg)
{
uint8_t ep_idx = cfg->ep_addr & EP_VALID_MASK;
bool in = !!((cfg->ep_addr) & USB_EP_DIR_MASK);
if ((cfg->ep_addr & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if ((cfg->ep_type == USB_DC_EP_CONTROL) && ep_idx > EP0) {
LOG_ERR("Invalid Endpoint Configuration");
return -EINVAL;
}
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_WRN("Invalid Endpoint Number 0x%02x", cfg->ep_addr);
return -EINVAL;
}
if ((ep_idx != 0) && (!in && ep_idx % FIFO_NUM != 2)) {
LOG_WRN("Invalid Endpoint Number 0x%02x", cfg->ep_addr);
return -EINVAL;
}
if ((ep_idx != 0) && (in && ep_idx % FIFO_NUM == 2)) {
LOG_WRN("Invalid Endpoint Number 0x%02x", cfg->ep_addr);
return -EINVAL;
}
if (udata0.ep_data[ep_idx].ep_status > 0) {
LOG_WRN("EP%d have been used", ep_idx);
return -EINVAL;
}
if (ep_idx > EP0) {
udata0.ep_data[ep_idx].mps = cfg->ep_mps;
}
udata0.ep_data[ep_idx].ep_status = EP_CHECK;
LOG_DBG("Check cap(%02x)", cfg->ep_addr);
return 0;
}
int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const cfg)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
volatile uint8_t *ep_fifo_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_BX].fifo_ctrl.ep_fifo_ctrl;
uint8_t ep_idx = (cfg->ep_addr) & EP_VALID_MASK;
uint8_t reg_idx = it82xx2_get_ep_fifo_ctrl_reg_idx(ep_idx);
uint8_t reg_val = it82xx2_get_ep_fifo_ctrl_reg_val(ep_idx);
bool in = !!((cfg->ep_addr) & USB_EP_DIR_MASK);
if ((cfg->ep_addr & EP_INVALID_MASK) != 0) {
LOG_DBG("Invalid Address");
return -EINVAL;
}
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_DBG("Not attached / Invalid Endpoint: 0x%X", cfg->ep_addr);
return -EINVAL;
}
if (!cfg->ep_mps) {
LOG_DBG("Wrong EP or Descriptor");
return -EINVAL;
}
udata0.ep_data[ep_idx].ep_status = EP_CONFIG;
udata0.ep_data[ep_idx].mps = cfg->ep_mps;
LOG_DBG("ep_status: %d, mps: %d",
udata0.ep_data[ep_idx].ep_status, udata0.ep_data[ep_idx].mps);
if (!(ep_idx > EP0)) {
return 0;
}
if (ep_idx < EP4) {
(in) ? (ep_regs[ep_idx].ep_ctrl |= EP_DIRECTION) :
(ep_regs[ep_idx].ep_ctrl &= ~EP_DIRECTION);
} else {
(in) ? (it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_DIR_IN)) :
(it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_DIR_OUT));
if (in) {
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_DATA_SEQ_0);
}
LOG_DBG("ep_status %d", udata0.ep_data[ep_idx].ep_status);
}
(in) ? (udata0.ep_data[ep_idx].ep_status = EP_CONFIG_IN) :
(udata0.ep_data[ep_idx].ep_status = EP_CONFIG_OUT);
ep_fifo_ctrl[reg_idx] |= reg_val;
switch (cfg->ep_type) {
case USB_DC_EP_CONTROL:
return -EINVAL;
case USB_DC_EP_ISOCHRONOUS:
if (ep_idx < EP4) {
ep_regs[ep_idx].ep_ctrl |= EP_ISO_ENABLE;
} else {
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_ISO_ENABLE);
}
break;
case USB_DC_EP_BULK:
case USB_DC_EP_INTERRUPT:
default:
if (ep_idx < EP4) {
ep_regs[ep_idx].ep_ctrl &= ~EP_ISO_ENABLE;
} else {
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_ISO_DISABLE);
}
break;
}
udata0.ep_data[ep_idx].ep_type = cfg->ep_type;
LOG_DBG("EP%d Configured: 0x%2X(%d)", ep_idx, !!(in), cfg->ep_type);
return 0;
}
int usb_dc_ep_set_callback(const uint8_t ep, const usb_dc_ep_callback cb)
{
uint8_t ep_idx = ep & EP_VALID_MASK;
if ((ep & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d)Not attached / Invalid endpoint: EP 0x%x",
__LINE__, ep);
return -EINVAL;
}
if (cb == NULL) {
LOG_ERR("(%d): NO callback function", __LINE__);
return -EINVAL;
}
LOG_DBG("EP%d set callback: %d", ep_idx, !!(ep & USB_EP_DIR_IN));
(ep & USB_EP_DIR_IN) ?
(udata0.ep_data[ep_idx].cb_in = cb) :
(udata0.ep_data[ep_idx].cb_out = cb);
return 0;
}
int usb_dc_ep_enable(const uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
if ((ep & EP_INVALID_MASK) != 0) {
LOG_DBG("Bit[6:4] has something invalid");
return -EINVAL;
}
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("Not attached / Invalid endpoint: EP 0x%x", ep_idx);
return -EINVAL;
}
if (ep_idx < EP4) {
LOG_DBG("ep_idx < 4");
ep_regs[ep_idx].ep_ctrl |= ENDPOINT_EN;
LOG_DBG("EP%d Enbabled %02x", ep_idx, ep_regs[ep_idx].ep_ctrl);
} else {
LOG_DBG("ep_idx >= 4");
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_ENABLE);
}
return 0;
}
int usb_dc_ep_disable(uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
if ((ep & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("Not attached / Invalid endpoint: EP 0x%x", ep_idx);
return -EINVAL;
}
if (ep_idx < EP4) {
ep_regs[ep_idx].ep_ctrl &= ~ENDPOINT_EN;
} else {
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_DISABLE);
}
return 0;
}
int usb_dc_ep_set_stall(const uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
struct gctrl_it8xxx2_regs *const gctrl_regs = GCTRL_IT8XXX2_REGS_BASE;
if (((ep & EP_INVALID_MASK) != 0) || (ep_idx >= MAX_NUM_ENDPOINTS)) {
return -EINVAL;
}
if (ep_idx < EP4) {
ep_regs[ep_idx].ep_ctrl |= EP_SEND_STALL;
} else {
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_SEND_STALL);
}
if (ep_idx == EP0) {
ep_regs[EP0].ep_ctrl |= ENDPOINT_RDY;
uint32_t idx = 0;
/* polling if stall send for 3ms */
while (idx < 198 &&
!(ep_regs[EP0].ep_status & DC_STALL_SENT)) {
/* wait 15.15us */
gctrl_regs->GCTRL_WNCKR = 0;
idx++;
}
if (idx < 198) {
ep_regs[EP0].ep_ctrl &= ~EP_SEND_STALL;
}
udata0.no_data_ctrl = false;
udata0.st_state = STALL_SEND;
}
LOG_DBG("EP(%d) ctrl: 0x%02x", ep_idx, ep_regs[ep_idx].ep_ctrl);
LOG_DBG("EP(%d) Set Stall", ep_idx);
return 0;
}
int usb_dc_ep_clear_stall(const uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
if ((ep & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if (ep_idx >= MAX_NUM_ENDPOINTS) {
return -EINVAL;
}
ep_regs[ep_idx].ep_ctrl &= ~EP_SEND_STALL;
LOG_DBG("EP(%d) clear stall", ep_idx);
return 0;
}
int usb_dc_ep_is_stalled(const uint8_t ep, uint8_t *stalled)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
if ((!stalled) || ((ep & EP_INVALID_MASK) != 0) ||
(ep_idx >= MAX_NUM_ENDPOINTS)) {
return -EINVAL;
}
if (ep_idx < EP4) {
*stalled =
(0 != (ep_regs[ep_idx].ep_ctrl & EP_SEND_STALL));
} else {
*stalled = it82xx2_usb_extend_ep_ctrl(ep_idx,
EXT_EP_CHECK_STALL);
}
return 0;
}
int usb_dc_ep_halt(uint8_t ep)
{
return usb_dc_ep_set_stall(ep);
}
int usb_dc_ep_flush(uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
bool in = !!(ep & USB_EP_DIR_MASK);
if (((ep & EP_INVALID_MASK) != 0) || (ep_idx >= MAX_NUM_ENDPOINTS)) {
return -EINVAL;
}
if (ep_idx > FIFO_NUM) {
ep_idx = ep_fifo_res[ep_idx % FIFO_NUM];
}
in ? (ff_regs[ep_idx].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY) :
(ff_regs[ep_idx].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY);
return 0;
}
int usb_dc_ep_write(uint8_t ep, const uint8_t *buf,
uint32_t data_len, uint32_t *ret_bytes)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
volatile uint8_t *ep_fifo_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_BX].fifo_ctrl.ep_fifo_ctrl;
uint8_t ep_idx = ep & EP_VALID_MASK;
uint8_t reg_idx = it82xx2_get_ep_fifo_ctrl_reg_idx(ep_idx);
uint8_t reg_val = it82xx2_get_ep_fifo_ctrl_reg_val(ep_idx);
uint8_t ep_fifo = (ep_idx > EP0) ?
(ep_fifo_res[ep_idx % FIFO_NUM]) : 0;
uint32_t idx;
if ((ep & EP_INVALID_MASK) != 0)
return -EINVAL;
/* status IN */
if ((ep_idx == EP0) && (data_len == 0) &&
(udata0.now_token == SETUP_TOKEN)) {
return 0;
}
if (ep_idx >= MAX_NUM_ENDPOINTS) {
return -EINVAL;
}
/* clear fifo before write*/
if (ep_idx == EP0) {
ff_regs[ep_idx].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
}
if ((ep_idx == EP0) && (udata0.st_state == SETUP_ST)) {
udata0.st_state = DIN_ST;
}
/* select FIFO */
if (ep_idx > EP0) {
k_sem_take(&udata0.ep_sem[ep_fifo-1], K_FOREVER);
/* select FIFO */
ep_fifo_ctrl[reg_idx] |= reg_val;
}
if (data_len > udata0.ep_data[ep_idx].mps) {
for (idx = 0 ; idx < udata0.ep_data[ep_idx].mps ; idx++) {
ff_regs[ep_fifo].ep_tx_fifo_data = buf[idx];
}
*ret_bytes = udata0.ep_data[ep_idx].mps;
udata0.ep_data[ep_idx].remaining =
data_len - udata0.ep_data[ep_idx].mps;
LOG_DBG("data_len: %d, Write Max Packets to TX FIFO(%d)",
data_len, ep_idx);
} else {
for (idx = 0 ; idx < data_len ; idx++) {
ff_regs[ep_fifo].ep_tx_fifo_data = buf[idx];
}
*ret_bytes = data_len;
udata0.ep_data[ep_idx].remaining = 0;
LOG_DBG("Write %d Packets to TX FIFO(%d)", data_len, ep_idx);
}
if (ep_idx > FIFO_NUM) {
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_READY);
}
ep_regs[ep_fifo].ep_ctrl |= ENDPOINT_RDY;
if (ep_fifo > EP0) {
udata0.ep_ready[ep_fifo - 1] = true;
}
LOG_DBG("Set EP%d Ready(%d)", ep_idx, __LINE__);
return 0;
}
/* Read data from an OUT endpoint */
int usb_dc_ep_read(uint8_t ep, uint8_t *buf, uint32_t max_data_len,
uint32_t *read_bytes)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
uint8_t ep_fifo = 0;
uint16_t rx_fifo_len;
if ((ep & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if (ep_regs[ep_idx].ep_status & EP_STATUS_ERROR) {
LOG_WRN("EP Error Flag: 0x%02x", ep_regs[ep_idx].ep_status);
}
if (max_data_len == 0) {
*read_bytes = 0;
if (ep_idx > EP0) {
ep_regs[ep_idx].ep_ctrl |= ENDPOINT_RDY;
LOG_DBG("Set EP%d Ready(%d)", ep_idx, __LINE__);
}
return 0;
}
if (ep_idx > EP0) {
ep_fifo = ep_fifo_res[ep_idx % FIFO_NUM];
}
rx_fifo_len = (uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_lsb +
(((uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_msb) << 8);
if (ep_idx == 0) {
/* if ep0 check trans_type in OUT_TOKEN to
* prevent wrong read_bytes cause memory error
*/
if (udata0.st_state == STATUS_ST &&
(ep_regs[EP0].ep_transtype_sts & DC_ALL_TRANS) == 0) {
*read_bytes = 0;
return 0;
} else if (udata0.st_state == STATUS_ST) {
/* status out but rx_fifo_len not zero */
if (rx_fifo_len != 0) {
LOG_ERR("Status OUT length not 0 (%d)",
rx_fifo_len);
}
/* rx_fifo_len = 0; */
*read_bytes = 0;
return 0;
} else if (rx_fifo_len == 0 &&
udata0.now_token == SETUP_TOKEN) {
/* RX fifo error workaround */
/* wrong length(like 7),
* may read wrong packet so clear fifo then return -1
*/
LOG_ERR("Setup length 0, reset to 8");
rx_fifo_len = 8;
} else if (rx_fifo_len != 8 &&
udata0.now_token == SETUP_TOKEN) {
LOG_ERR("Setup length: %d", rx_fifo_len);
/* clear rx fifo */
ff_regs[EP0].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
return -EIO;
}
}
if (rx_fifo_len > max_data_len) {
*read_bytes = max_data_len;
for (int idx = 0 ; idx < max_data_len ; idx++) {
buf[idx] = ff_regs[ep_fifo].ep_rx_fifo_data;
}
LOG_DBG("Read Max (%d) Packets", max_data_len);
} else {
*read_bytes = rx_fifo_len;
for (int idx = 0 ; idx < rx_fifo_len ; idx++) {
buf[idx] = ff_regs[ep_fifo].ep_rx_fifo_data;
}
if (ep_fifo == 0 &&
udata0.now_token == SETUP_TOKEN) {
LOG_DBG("RX buf: (%x)(%x)(%x)(%x)(%x)(%x)(%x)(%x)",
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7]);
}
if (ep_fifo > EP0) {
ep_regs[ep_fifo].ep_ctrl |= ENDPOINT_RDY;
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_READY);
LOG_DBG("(%d): Set EP%d Ready", __LINE__, ep_idx);
udata0.ep_ready[ep_fifo - 1] = true;
} else if (udata0.now_token == SETUP_TOKEN) {
if (!(buf[0] & USB_EP_DIR_MASK)) {
/* Host to device transfer check */
if (buf[6] != 0 || buf[7] != 0) {
/* clear tx fifo */
ff_regs[EP0].ep_tx_fifo_ctrl =
FIFO_FORCE_EMPTY;
/* set status IN after data OUT */
ep_regs[EP0].ep_ctrl |=
ENDPOINT_RDY | EP_OUTDATA_SEQ;
LOG_DBG("Set EP%d Ready(%d)",
ep_idx, __LINE__);
} else {
/* no_data_ctrl status */
/* clear tx fifo */
ff_regs[EP0].ep_tx_fifo_ctrl =
FIFO_FORCE_EMPTY;
udata0.no_data_ctrl = true;
}
}
}
}
return 0;
}
int usb_dc_ep_read_wait(uint8_t ep, uint8_t *buf, uint32_t max_data_len,
uint32_t *read_bytes)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
uint8_t ep_fifo = 0;
uint16_t rx_fifo_len;
if ((ep & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d): Wrong Endpoint Index/Address", __LINE__);
return -EINVAL;
}
/* Check if OUT ep */
if (!!(ep & USB_EP_DIR_MASK)) {
LOG_ERR("Wrong Endpoint Direction");
return -EINVAL;
}
if (ep_idx > EP0) {
ep_fifo = ep_fifo_res[ep_idx % FIFO_NUM];
}
if (ep_regs[ep_fifo].ep_status & EP_STATUS_ERROR) {
LOG_WRN("EP error flag(%02x)", ep_regs[ep_fifo].ep_status);
}
rx_fifo_len = (uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_lsb +
(((uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_msb) << 8);
LOG_DBG("ep_read_wait (EP: %d), len: %d", ep_idx, rx_fifo_len);
*read_bytes = (rx_fifo_len > max_data_len) ?
max_data_len : rx_fifo_len;
for (int idx = 0 ; idx < *read_bytes ; idx++) {
buf[idx] = ff_regs[ep_fifo].ep_rx_fifo_data;
}
LOG_DBG("Read %d packets", *read_bytes);
if (ep_idx > EP0) {
LOG_DBG("RX buf[0]: 0x%02X", buf[0]);
}
return 0;
}
int usb_dc_ep_read_continue(uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = ep & EP_VALID_MASK;
uint8_t ep_fifo = 2;
if ((ep & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d): Wrong Endpoint Index/Address", __LINE__);
return -EINVAL;
}
/* Check if OUT ep */
if (!!(ep & USB_EP_DIR_MASK)) {
LOG_ERR("Wrong Endpoint Direction");
return -EINVAL;
}
if (ep_idx > EP0) {
ep_fifo = ep_fifo_res[ep_idx % FIFO_NUM];
}
it82xx2_usb_extend_ep_ctrl(ep_idx, EXT_EP_READY);
ep_regs[ep_fifo].ep_ctrl |= ENDPOINT_RDY;
udata0.ep_ready[ep_fifo - 1] = true;
LOG_DBG("EP(%d) Read Continue", ep_idx);
return 0;
}
int usb_dc_ep_mps(const uint8_t ep)
{
uint8_t ep_idx = ep & EP_VALID_MASK;
if ((ep & EP_INVALID_MASK) != 0) {
return -EINVAL;
}
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d): Wrong Endpoint Index/Address", __LINE__);
return -EINVAL;
}
/* Not configured, return length 0 */
if (udata0.ep_data[ep_idx].ep_status < EP_CONFIG) {
LOG_WRN("(%d)EP not set", __LINE__);
return 0;
}
return udata0.ep_data[ep_idx].mps;
}
static bool it82xx2_check_suspend(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
if (usb_regs->dc_interrupt_status & DC_SOF_RECEIVED) {
usb_regs->dc_interrupt_status =
usb_regs->dc_interrupt_status;
}
/* Check suspend, no SOF in last 3ms */
k_msleep(4);
if (usb_regs->dc_interrupt_status & DC_SOF_RECEIVED) {
return false;
}
usb_regs->dc_interrupt_status = DC_SOF_RECEIVED | DC_RESUME_INT;
usb_regs->dc_interrupt_mask |= DC_RESUME_INT;
udata0.suspended = true;
if (udata0.usb_status_cb) {
(*(udata0.usb_status_cb))(USB_DC_SUSPEND, NULL);
}
return true;
}
int usb_dc_wakeup_request(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
if (udata0.suspended || it82xx2_check_suspend()) {
usb_regs->dc_control =
DC_GLOBAL_ENABLE | DC_FULL_SPEED_LINE_POLARITY |
DC_FULL_SPEED_LINE_RATE | DC_DIRECT_CONTROL |
DC_TX_LINE_STATE_DM | DC_CONNECT_TO_HOST;
/* The remote wakeup device must hold the resume signal for */
/* at least 1 ms but for no more than 15 ms */
k_msleep(2);
usb_regs->dc_control =
DC_GLOBAL_ENABLE | DC_FULL_SPEED_LINE_POLARITY |
DC_FULL_SPEED_LINE_RATE | DC_CONNECT_TO_HOST;
if (udata0.suspended) {
udata0.suspended = false;
irq_disable(IT8XXX2_WU90_IRQ);
}
}
return 0;
}
static int it82xx2_usb_dc_init(const struct device *dev)
{
const struct usb_it82xx2_config *cfg = dev->config;
int status = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (status < 0) {
LOG_ERR("Failed to configure USB pins");
return status;
}
/* Initializing WU90 (USB D+) */
it8xxx2_usb_dc_wuc_init(dev);
return 0;
}
DEVICE_DT_INST_DEFINE(0,
&it82xx2_usb_dc_init,
NULL,
&udata0,
&ucfg0,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
NULL);