blob: 5bfcbdd89b117efce73d67b347b7f8c171de2619 [file] [log] [blame]
/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/logging/log_backend.h>
#include <zephyr/logging/log_core.h>
#include <zephyr/logging/log_output.h>
#include <zephyr/logging/log_output_dict.h>
#include <zephyr/logging/log_backend_std.h>
#include <zephyr/logging/log.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/util_macro.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
LOG_MODULE_REGISTER(log_uart);
/* Fixed size to avoid auto-added trailing '\0'.
* Used if CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX.
*/
static const char LOG_HEX_SEP[10] = "##ZLOGV1##";
static const struct device *const uart_dev =
DEVICE_DT_GET(DT_CHOSEN(zephyr_console));
static struct k_sem sem;
static volatile bool in_panic;
static bool use_async;
static uint32_t log_format_current = CONFIG_LOG_BACKEND_UART_OUTPUT_DEFAULT;
static void uart_callback(const struct device *dev,
struct uart_event *evt,
void *user_data)
{
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&sem);
break;
default:
break;
}
}
static void dict_char_out_hex(uint8_t *data, size_t length)
{
for (size_t i = 0; i < length; i++) {
char c;
uint8_t x;
/* upper 8-bit */
x = data[i] >> 4;
(void)hex2char(x, &c);
uart_poll_out(uart_dev, c);
/* lower 8-bit */
x = data[i] & 0x0FU;
(void)hex2char(x, &c);
uart_poll_out(uart_dev, c);
}
}
static int char_out(uint8_t *data, size_t length, void *ctx)
{
ARG_UNUSED(ctx);
int err;
if (pm_device_runtime_is_enabled(uart_dev) && !k_is_in_isr()) {
if (pm_device_runtime_get(uart_dev) < 0) {
/* Enabling the UART instance has failed but this
* function MUST return the number of bytes consumed.
*/
return length;
}
}
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX)) {
dict_char_out_hex(data, length);
goto cleanup;
}
if (!IS_ENABLED(CONFIG_LOG_BACKEND_UART_ASYNC) || in_panic || !use_async) {
for (size_t i = 0; i < length; i++) {
uart_poll_out(uart_dev, data[i]);
}
goto cleanup;
}
err = uart_tx(uart_dev, data, length, SYS_FOREVER_US);
__ASSERT_NO_MSG(err == 0);
err = k_sem_take(&sem, K_FOREVER);
__ASSERT_NO_MSG(err == 0);
(void)err;
cleanup:
if (pm_device_runtime_is_enabled(uart_dev) && !k_is_in_isr()) {
/* As errors cannot be returned, ignore the return value */
(void)pm_device_runtime_put(uart_dev);
}
return length;
}
static uint8_t uart_output_buf[CONFIG_LOG_BACKEND_UART_BUFFER_SIZE];
LOG_OUTPUT_DEFINE(log_output_uart, char_out, uart_output_buf, sizeof(uart_output_buf));
static void process(const struct log_backend *const backend,
union log_msg_generic *msg)
{
uint32_t flags = log_backend_std_get_flags();
log_format_func_t log_output_func = log_format_func_t_get(log_format_current);
log_output_func(&log_output_uart, &msg->log, flags);
}
static int format_set(const struct log_backend *const backend, uint32_t log_type)
{
log_format_current = log_type;
return 0;
}
static void log_backend_uart_init(struct log_backend const *const backend)
{
__ASSERT_NO_MSG(device_is_ready(uart_dev));
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX)) {
/* Print a separator so the output can be fed into
* log parser directly. This is useful when capturing
* from UART directly where there might be other output
* (e.g. bootloader).
*/
for (int i = 0; i < sizeof(LOG_HEX_SEP); i++) {
uart_poll_out(uart_dev, LOG_HEX_SEP[i]);
}
return;
}
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_ASYNC)) {
int err = uart_callback_set(uart_dev, uart_callback, NULL);
if (err == 0) {
use_async = true;
k_sem_init(&sem, 0, 1);
} else {
LOG_WRN("Failed to initialize asynchronous mode (err:%d). "
"Fallback to polling.", err);
}
}
}
static void panic(struct log_backend const *const backend)
{
/* Ensure that the UART device is in active mode */
#if defined(CONFIG_PM_DEVICE_RUNTIME)
if (pm_device_runtime_is_enabled(uart_dev)) {
if (k_is_in_isr()) {
/* pm_device_runtime_get cannot be used from ISRs */
pm_device_action_run(uart_dev, PM_DEVICE_ACTION_RESUME);
} else {
pm_device_runtime_get(uart_dev);
}
}
#elif defined(CONFIG_PM_DEVICE)
enum pm_device_state pm_state;
int rc;
rc = pm_device_state_get(uart_dev, &pm_state);
if ((rc == 0) && (pm_state == PM_DEVICE_STATE_SUSPENDED)) {
pm_device_action_run(uart_dev, PM_DEVICE_ACTION_RESUME);
}
#endif /* CONFIG_PM_DEVICE */
in_panic = true;
log_backend_std_panic(&log_output_uart);
}
static void dropped(const struct log_backend *const backend, uint32_t cnt)
{
ARG_UNUSED(backend);
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY)) {
log_dict_output_dropped_process(&log_output_uart, cnt);
} else {
log_backend_std_dropped(&log_output_uart, cnt);
}
}
const struct log_backend_api log_backend_uart_api = {
.process = process,
.panic = panic,
.init = log_backend_uart_init,
.dropped = IS_ENABLED(CONFIG_LOG_MODE_IMMEDIATE) ? NULL : dropped,
.format_set = format_set,
};
LOG_BACKEND_DEFINE(log_backend_uart, log_backend_uart_api,
IS_ENABLED(CONFIG_LOG_BACKEND_UART_AUTOSTART));