blob: 7992d3de86760a7900110fd043e8adf49a570abc [file] [log] [blame]
/*
* Copyright (c) 2018 Alexander Wachter
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <clock_control/stm32_clock_control.h>
#include <clock_control.h>
#include <misc/util.h>
#include <string.h>
#include <kernel.h>
#include <soc.h>
#include <errno.h>
#include <stdbool.h>
#include <can.h>
#include "stm32_can.h"
#define LOG_LEVEL CONFIG_CAN_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(stm32_can);
/*
* Translation tables
* filter_in_bank[enum can_filter_type] = number of filters in bank for this type
* reg_demand[enum can_filter_type] = how many registers are used for this type
*/
static const u8_t filter_in_bank[] = {2, 4, 1, 2};
static const u8_t reg_demand[] = {2, 1, 4, 2};
static void can_stm32_signal_tx_complete(struct can_mailbox *mb)
{
if (mb->tx_callback) {
mb->tx_callback(mb->error_flags);
} else {
k_sem_give(&mb->tx_int_sem);
}
}
static void can_stm32_get_msg_fifo(CAN_FIFOMailBox_TypeDef *mbox,
struct zcan_frame *msg)
{
if (mbox->RIR & CAN_RI0R_IDE) {
msg->ext_id = mbox->RIR >> CAN_RI0R_EXID_Pos;
msg->id_type = CAN_EXTENDED_IDENTIFIER;
} else {
msg->std_id = mbox->RIR >> CAN_RI0R_STID_Pos;
msg->id_type = CAN_STANDARD_IDENTIFIER;
}
msg->rtr = mbox->RIR & CAN_RI0R_RTR ? CAN_REMOTEREQUEST : CAN_DATAFRAME;
msg->dlc = mbox->RDTR & (CAN_RDT0R_DLC >> CAN_RDT0R_DLC_Pos);
msg->data_32[0] = mbox->RDLR;
msg->data_32[1] = mbox->RDHR;
}
static inline
void can_stm32_rx_isr_handler(CAN_TypeDef *can, struct can_stm32_data *data)
{
CAN_FIFOMailBox_TypeDef *mbox;
int filter_match_index;
struct zcan_frame msg;
while (can->RF0R & CAN_RF0R_FMP0) {
mbox = &can->sFIFOMailBox[0];
filter_match_index = ((mbox->RDTR & CAN_RDT0R_FMI)
>> CAN_RDT0R_FMI_Pos);
if (filter_match_index >= CONFIG_CAN_MAX_FILTER) {
break;
}
LOG_DBG("Message on filter index %d", filter_match_index);
can_stm32_get_msg_fifo(mbox, &msg);
if (data->rx_response[filter_match_index]) {
if (data->response_type & (1ULL << filter_match_index)) {
struct k_msgq *msg_q =
data->rx_response[filter_match_index];
k_msgq_put(msg_q, &msg, K_NO_WAIT);
} else {
can_rx_callback_t callback =
data->rx_response[filter_match_index];
callback(&msg);
}
}
/* Release message */
can->RF0R |= CAN_RF0R_RFOM0;
}
}
static inline
void can_stm32_tx_isr_handler(CAN_TypeDef *can, struct can_stm32_data *data)
{
u32_t bus_off;
bus_off = can->ESR & CAN_ESR_BOFF;
if ((can->TSR & CAN_TSR_RQCP0) | bus_off) {
data->mb0.error_flags =
can->TSR & CAN_TSR_TXOK0 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR0 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST0 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP0;
can_stm32_signal_tx_complete(&data->mb0);
}
if ((can->TSR & CAN_TSR_RQCP1) | bus_off) {
data->mb1.error_flags =
can->TSR & CAN_TSR_TXOK1 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR1 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST1 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP1;
can_stm32_signal_tx_complete(&data->mb1);
}
if ((can->TSR & CAN_TSR_RQCP2) | bus_off) {
data->mb2.error_flags =
can->TSR & CAN_TSR_TXOK2 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR2 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST2 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP2;
can_stm32_signal_tx_complete(&data->mb2);
}
if (can->TSR & CAN_TSR_TME) {
k_sem_give(&data->tx_int_sem);
}
}
#ifdef CONFIG_SOC_SERIES_STM32F0X
static void can_stm32_isr(void *arg)
{
struct device *dev;
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
dev = (struct device *)arg;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
can_stm32_tx_isr_handler(can, data);
can_stm32_rx_isr_handler(can, data);
}
#else
static void can_stm32_rx_isr(void *arg)
{
struct device *dev;
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
dev = (struct device *)arg;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
can_stm32_rx_isr_handler(can, data);
}
static void can_stm32_tx_isr(void *arg)
{
struct device *dev;
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
dev = (struct device *)arg;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
can_stm32_tx_isr_handler(can, data);
}
#endif
void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan)
{
ARG_UNUSED(hcan);
}
int can_stm32_runtime_configure(struct device *dev, enum can_mode mode,
u32_t bitrate)
{
CAN_HandleTypeDef hcan;
const struct can_stm32_config *cfg = DEV_CFG(dev);
CAN_TypeDef *can = cfg->can;
struct device *clock;
u32_t clock_rate;
u32_t prescaler;
u32_t hal_mode;
int hal_ret;
u32_t bs1;
u32_t bs2;
u32_t sjw;
int ret;
clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clock);
hcan.Instance = can;
ret = clock_control_get_rate(clock, (clock_control_subsys_t *) &cfg->pclken,
&clock_rate);
if (ret != 0) {
LOG_ERR("Failed call clock_control_get_rate: return [%d]", ret);
return -EIO;
}
if (!bitrate) {
bitrate = cfg->bus_speed;
}
prescaler = clock_rate / (BIT_SEG_LENGTH(cfg) * bitrate);
if (prescaler == 0 || prescaler > 1024) {
LOG_ERR("HAL_CAN_Init failed: prescaler > max (%d > 1024)",
prescaler);
return -EINVAL;
}
if (clock_rate % (BIT_SEG_LENGTH(cfg) * bitrate)) {
LOG_ERR("Prescaler is not a natural number! "
"prescaler = clock_rate / ((PROP_SEG1 + SEG2 + 1)"
" * bus_speed); "
"prescaler = %d / ((%d + %d + 1) * %d)",
clock_rate,
cfg->prop_bs1,
cfg->bs2,
bitrate);
}
__ASSERT(cfg->sjw <= 0x03, "SJW maximum is 3");
__ASSERT(cfg->prop_bs1 <= 0x0F, "PROP_BS1 maximum is 15");
__ASSERT(cfg->bs2 <= 0x07, "BS2 maximum is 7");
bs1 = ((cfg->prop_bs1 & 0x0F) - 1) << CAN_BTR_TS1_Pos;
bs2 = ((cfg->bs2 & 0x07) - 1) << CAN_BTR_TS2_Pos;
sjw = ((cfg->sjw & 0x07) - 1) << CAN_BTR_SJW_Pos;
hal_mode = mode == CAN_NORMAL_MODE ? CAN_MODE_NORMAL :
mode == CAN_LOOPBACK_MODE ? CAN_MODE_LOOPBACK :
mode == CAN_SILENT_MODE ? CAN_MODE_SILENT :
CAN_MODE_SILENT_LOOPBACK;
hcan.Init.TTCM = DISABLE;
hcan.Init.ABOM = DISABLE;
hcan.Init.AWUM = DISABLE;
hcan.Init.NART = DISABLE;
hcan.Init.RFLM = DISABLE;
hcan.Init.TXFP = DISABLE;
hcan.Init.Mode = hal_mode;
hcan.Init.SJW = sjw;
hcan.Init.BS1 = bs1;
hcan.Init.BS2 = bs2;
hcan.Init.Prescaler = prescaler;
hcan.State = HAL_CAN_STATE_RESET;
hal_ret = HAL_CAN_Init(&hcan);
if (hal_ret != HAL_OK) {
LOG_ERR("HAL_CAN_Init failed: %d", hal_ret);
return -EIO;
}
LOG_DBG("Runtime configure of %s done", dev->config->name);
return 0;
}
static int can_stm32_init(struct device *dev)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
struct device *clock;
int ret;
k_mutex_init(&data->tx_mutex);
k_mutex_init(&data->set_filter_mutex);
k_sem_init(&data->tx_int_sem, 0, 1);
k_sem_init(&data->mb0.tx_int_sem, 0, 1);
k_sem_init(&data->mb1.tx_int_sem, 0, 1);
k_sem_init(&data->mb2.tx_int_sem, 0, 1);
data->mb0.tx_callback = NULL;
data->mb1.tx_callback = NULL;
data->mb2.tx_callback = NULL;
data->filter_usage = (1ULL << CAN_MAX_NUMBER_OF_FILTERS) - 1ULL;
(void)memset(data->rx_response, 0,
sizeof(void *) * CONFIG_CAN_MAX_FILTER);
data->response_type = 0U;
clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clock);
ret = clock_control_on(clock, (clock_control_subsys_t *) &cfg->pclken);
if (ret != 0) {
LOG_ERR("HAL_CAN_Init clock control on failed: %d", ret);
return -EIO;
}
ret = can_stm32_runtime_configure(dev, CAN_NORMAL_MODE, 0);
if (ret) {
return ret;
}
cfg->config_irq(can);
can->IER |= CAN_IT_TME;
LOG_INF("Init of %s done", dev->config->name);
return 0;
}
int can_stm32_send(struct device *dev, const struct zcan_frame *msg,
s32_t timeout, can_tx_callback_t callback)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
u32_t transmit_status_register = can->TSR;
CAN_TxMailBox_TypeDef *mailbox = NULL;
struct k_mutex *tx_mutex = &data->tx_mutex;
struct can_mailbox *mb = NULL;
LOG_DBG("Sending %d bytes on %s. "
"Id: 0x%x, "
"ID type: %s, "
"Remote Frame: %s"
, msg->dlc, dev->config->name
, msg->id_type == CAN_STANDARD_IDENTIFIER ?
msg->std_id : msg->ext_id
, msg->id_type == CAN_STANDARD_IDENTIFIER ?
"standard" : "extended"
, msg->rtr == CAN_DATAFRAME ? "no" : "yes");
__ASSERT(msg->dlc == 0 || msg->data != NULL, "Dataptr is null");
__ASSERT(msg->dlc <= CAN_MAX_DLC, "DLC > 8");
if (can->ESR & CAN_ESR_BOFF) {
return CAN_TX_BUS_OFF;
}
k_mutex_lock(tx_mutex, K_FOREVER);
while (!(transmit_status_register & CAN_TSR_TME)) {
k_mutex_unlock(tx_mutex);
LOG_DBG("Transmit buffer full. Wait with timeout (%dms)",
timeout);
if (k_sem_take(&data->tx_int_sem, timeout)) {
return CAN_TIMEOUT;
}
k_mutex_lock(tx_mutex, K_FOREVER);
transmit_status_register = can->TSR;
}
if (transmit_status_register & CAN_TSR_TME0) {
LOG_DBG("Using mailbox 0");
mailbox = &can->sTxMailBox[CAN_TXMAILBOX_0];
mb = &(data->mb0);
} else if (transmit_status_register & CAN_TSR_TME1) {
LOG_DBG("Using mailbox 1");
mailbox = &can->sTxMailBox[CAN_TXMAILBOX_1];
mb = &data->mb1;
} else if (transmit_status_register & CAN_TSR_TME2) {
LOG_DBG("Using mailbox 2");
mailbox = &can->sTxMailBox[CAN_TXMAILBOX_2];
mb = &data->mb2;
}
mb->tx_callback = callback;
k_sem_reset(&mb->tx_int_sem);
/* mailbix identifier register setup */
mailbox->TIR &= CAN_TI0R_TXRQ;
if (msg->id_type == CAN_STANDARD_IDENTIFIER) {
mailbox->TIR |= (msg->std_id << CAN_TI0R_STID_Pos);
} else {
mailbox->TIR |= (msg->ext_id << CAN_TI0R_EXID_Pos)
| CAN_TI0R_IDE;
}
if (msg->rtr == CAN_REMOTEREQUEST) {
mailbox->TIR |= CAN_TI1R_RTR;
}
mailbox->TDTR = (mailbox->TDTR & ~CAN_TDT1R_DLC) |
((msg->dlc & 0xF) << CAN_TDT1R_DLC_Pos);
mailbox->TDLR = msg->data_32[0];
mailbox->TDHR = msg->data_32[1];
mailbox->TIR |= CAN_TI0R_TXRQ;
k_mutex_unlock(tx_mutex);
if (callback == NULL) {
k_sem_take(&mb->tx_int_sem, K_FOREVER);
return mb->error_flags;
}
return 0;
}
static inline int can_stm32_check_free(void **arr, int start, int end)
{
int i;
for (i = start; i <= end; i++) {
if (arr[i] != NULL) {
return 0;
}
}
return 1;
}
static int can_stm32_shift_arr(void **arr, int start, int count)
{
void **start_ptr = arr + start;
size_t cnt;
if (start > CONFIG_CAN_MAX_FILTER) {
return CAN_NO_FREE_FILTER;
}
if (count > 0) {
void *move_dest;
/* Check if nothing used will be overwritten */
if (!can_stm32_check_free(arr, CONFIG_CAN_MAX_FILTER - count,
CONFIG_CAN_MAX_FILTER - 1)) {
return CAN_NO_FREE_FILTER;
}
/* No need to shift. Destination is already outside the arr*/
if ((start + count) >= CONFIG_CAN_MAX_FILTER) {
return 0;
}
cnt = (CONFIG_CAN_MAX_FILTER - start - count) * sizeof(void *);
move_dest = start_ptr + count;
memmove(move_dest, start_ptr, cnt);
(void)memset(start_ptr, 0, count * sizeof(void *));
} else if (count < 0) {
count = -count;
if (start - count < 0) {
return CAN_NO_FREE_FILTER;
}
cnt = (CONFIG_CAN_MAX_FILTER - start) * sizeof(void *);
memmove(start_ptr - count, start_ptr, cnt);
(void)memset(arr + CONFIG_CAN_MAX_FILTER - count, 0,
count * sizeof(void *));
}
return 0;
}
static inline void can_stm32_shift_bits(u64_t *bits, int start, int count)
{
u64_t mask_right;
u64_t mask_left;
if (count > 0) {
mask_right = ~(UINT64_MAX << start);
*bits = (*bits & mask_right) | ((*bits & ~mask_right) << count);
} else if (count < 0) {
count = -count;
mask_left = UINT64_MAX << start;
mask_right = ~(UINT64_MAX << (start - count));
*bits = (*bits & mask_right) | ((*bits & mask_left) >> count);
}
}
enum can_filter_type can_stm32_get_filter_type(int bank_nr, u32_t mode_reg,
u32_t scale_reg)
{
u32_t mode_masked = (mode_reg >> bank_nr) & 0x01;
u32_t scale_masked = (scale_reg >> bank_nr) & 0x01;
enum can_filter_type type = (scale_masked << 1) | mode_masked;
return type;
}
static int can_calc_filter_index(int filter_nr, u32_t mode_reg, u32_t scale_reg)
{
int filter_bank = filter_nr / 4;
int cnt = 0;
u32_t mode_masked, scale_masked;
enum can_filter_type filter_type;
/*count filters in the banks before */
for (int i = 0; i < filter_bank; i++) {
filter_type = can_stm32_get_filter_type(i, mode_reg, scale_reg);
cnt += filter_in_bank[filter_type];
}
/* plus the filters in the same bank */
mode_masked = mode_reg & (1U << filter_bank);
scale_masked = scale_reg & (1U << filter_bank);
cnt += (!scale_masked && mode_masked) ? filter_nr & 0x03 :
(filter_nr & 0x03) >> 1;
return cnt;
}
static void can_stm32_set_filter_bank(int filter_nr,
CAN_FilterRegister_TypeDef *filter_reg,
enum can_filter_type filter_type,
u32_t id, u32_t mask)
{
switch (filter_type) {
case CAN_FILTER_STANDARD:
switch (filter_nr & 0x03) {
case 0:
filter_reg->FR1 = (filter_reg->FR1 & 0xFFFF0000) | id;
break;
case 1:
filter_reg->FR1 = (filter_reg->FR1 & 0x0000FFFF)
| (id << 16);
break;
case 2:
filter_reg->FR2 = (filter_reg->FR2 & 0xFFFF0000) | id;
break;
case 3:
filter_reg->FR2 = (filter_reg->FR2 & 0x0000FFFF)
| (id << 16);
break;
}
break;
case CAN_FILTER_STANDARD_MASKED:
switch (filter_nr & 0x02) {
case 0:
filter_reg->FR1 = id | (mask << 16);
break;
case 2:
filter_reg->FR2 = id | (mask << 16);
break;
}
break;
case CAN_FILTER_EXTENDED:
switch (filter_nr & 0x02) {
case 0:
filter_reg->FR1 = id;
break;
case 2:
filter_reg->FR2 = id;
break;
}
break;
case CAN_FILTER_EXTENDED_MASKED:
filter_reg->FR1 = id;
filter_reg->FR2 = mask;
break;
}
}
static inline void can_stm32_set_mode_scale(enum can_filter_type filter_type,
u32_t *mode_reg, u32_t *scale_reg,
int filter_nr)
{
u32_t mode_reg_bit = (filter_type & 0x01) << filter_nr;
u32_t scale_reg_bit = (filter_type >> 1) << filter_nr;
*mode_reg &= ~(1 << filter_nr);
*mode_reg |= mode_reg_bit;
*scale_reg &= ~(1 << filter_nr);
*scale_reg |= scale_reg_bit;
}
static inline u32_t can_generate_std_mask(const struct zcan_filter *filter)
{
return (filter->std_id_mask << CAN_FIRX_STD_ID_POS) |
(filter->rtr_mask << CAN_FIRX_STD_RTR_POS) |
(1U << CAN_FIRX_STD_IDE_POS);
}
static inline u32_t can_generate_ext_mask(const struct zcan_filter *filter)
{
return (filter->ext_id_mask << CAN_FIRX_EXT_EXT_ID_POS) |
(filter->rtr_mask << CAN_FIRX_EXT_RTR_POS) |
(1U << CAN_FIRX_EXT_IDE_POS);
}
static inline u32_t can_generate_std_id(const struct zcan_filter *filter)
{
return (filter->std_id << CAN_FIRX_STD_ID_POS) |
(filter->rtr << CAN_FIRX_STD_RTR_POS);
}
static inline u32_t can_generate_ext_id(const struct zcan_filter *filter)
{
return (filter->ext_id << CAN_FIRX_EXT_EXT_ID_POS) |
(filter->rtr << CAN_FIRX_EXT_RTR_POS) |
(1U << CAN_FIRX_EXT_IDE_POS);
}
static inline int can_stm32_set_filter(const struct zcan_filter *filter,
struct can_stm32_data *device_data,
CAN_TypeDef *can,
int *filter_index)
{
u32_t mask = 0U;
u32_t id = 0U;
int filter_nr = 0;
int filter_index_new = CAN_NO_FREE_FILTER;
int bank_nr;
u32_t bank_bit;
int register_demand;
enum can_filter_type filter_type;
enum can_filter_type bank_mode;
if (filter->id_type == CAN_STANDARD_IDENTIFIER) {
id = can_generate_std_id(filter);
filter_type = CAN_FILTER_STANDARD;
if (filter->std_id_mask != CAN_STD_ID_MASK) {
mask = can_generate_std_mask(filter);
filter_type = CAN_FILTER_STANDARD_MASKED;
}
} else {
id = can_generate_ext_id(filter);
filter_type = CAN_FILTER_EXTENDED;
if (filter->ext_id_mask != CAN_EXT_ID_MASK) {
mask = can_generate_ext_mask(filter);
filter_type = CAN_FILTER_EXTENDED_MASKED;
}
}
register_demand = reg_demand[filter_type];
LOG_DBG("Setting filter ID: 0x%x, mask: 0x%x", filter->ext_id,
filter->ext_id_mask);
LOG_DBG("Filter type: %s ID %s mask (%d)",
(filter_type == CAN_FILTER_STANDARD ||
filter_type == CAN_FILTER_STANDARD_MASKED) ?
"standard" : "extended",
(filter_type == CAN_FILTER_STANDARD_MASKED ||
filter_type == CAN_FILTER_EXTENDED_MASKED) ?
"with" : "without",
filter_type);
do {
u64_t usage_shifted = (device_data->filter_usage >> filter_nr);
u64_t usage_demand_mask = (1ULL << register_demand) - 1;
bool bank_is_empty;
bank_nr = filter_nr / 4;
bank_bit = (1U << bank_nr);
bank_mode = can_stm32_get_filter_type(bank_nr, can->FM1R,
can->FS1R);
bank_is_empty = CAN_BANK_IS_EMPTY(device_data->filter_usage,
bank_nr);
if (!bank_is_empty && bank_mode != filter_type) {
filter_nr = (bank_nr + 1) * 4;
} else if (usage_shifted & usage_demand_mask) {
device_data->filter_usage &=
~(usage_demand_mask << filter_nr);
break;
} else {
filter_nr += register_demand;
}
if (!usage_shifted) {
LOG_INF("No free filter bank found");
return CAN_NO_FREE_FILTER;
}
} while (filter_nr < CAN_MAX_NUMBER_OF_FILTERS);
/* set the filter init mode */
can->FMR |= CAN_FMR_FINIT;
can->FA1R &= ~bank_bit;
/* TODO fifo balancing */
if (filter_type != bank_mode) {
int shift_width, start_index;
int res;
u32_t mode_reg = can->FM1R;
u32_t scale_reg = can->FS1R;
can_stm32_set_mode_scale(filter_type, &mode_reg, &scale_reg,
filter_nr);
shift_width = filter_in_bank[filter_type] - filter_in_bank[bank_mode];
filter_index_new = can_calc_filter_index(filter_nr, mode_reg,
scale_reg);
start_index = filter_index_new + filter_in_bank[bank_mode];
if (shift_width && start_index <= CAN_MAX_NUMBER_OF_FILTERS) {
res = can_stm32_shift_arr(device_data->rx_response,
start_index,
shift_width);
if (filter_index_new >= CONFIG_CAN_MAX_FILTER || res) {
LOG_INF("No space for a new filter!");
filter_nr = CAN_NO_FREE_FILTER;
goto done;
}
can_stm32_shift_bits(&device_data->response_type,
start_index,
shift_width);
}
can->FM1R = mode_reg;
can->FS1R = scale_reg;
} else {
filter_index_new = can_calc_filter_index(filter_nr, can->FM1R,
can->FS1R);
if (filter_index_new >= CAN_MAX_NUMBER_OF_FILTERS) {
filter_nr = CAN_NO_FREE_FILTER;
goto done;
}
}
can_stm32_set_filter_bank(filter_nr, &can->sFilterRegister[bank_nr],
filter_type, id, mask);
done:
can->FA1R |= bank_bit;
can->FMR &= ~(CAN_FMR_FINIT);
LOG_DBG("Filter set! Filter number: %d (index %d)",
filter_nr, filter_index_new);
*filter_index = filter_index_new;
return filter_nr;
}
static inline int can_stm32_attach(struct device *dev, void *response_ptr,
const struct zcan_filter *filter,
int *filter_index)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
int filter_index_tmp = 0;
int filter_nr;
filter_nr = can_stm32_set_filter(filter, data, can, &filter_index_tmp);
if (filter_nr != CAN_NO_FREE_FILTER) {
data->rx_response[filter_index_tmp] = response_ptr;
}
*filter_index = filter_index_tmp;
return filter_nr;
}
int can_stm32_attach_msgq(struct device *dev, struct k_msgq *msgq,
const struct zcan_filter *filter)
{
int filter_nr;
int filter_index;
struct can_stm32_data *data = DEV_DATA(dev);
k_mutex_lock(&data->set_filter_mutex, K_FOREVER);
filter_nr = can_stm32_attach(dev, msgq, filter, &filter_index);
data->response_type |= (1ULL << filter_index);
k_mutex_unlock(&data->set_filter_mutex);
return filter_nr;
}
int can_stm32_attach_isr(struct device *dev, can_rx_callback_t isr,
const struct zcan_filter *filter)
{
struct can_stm32_data *data = DEV_DATA(dev);
int filter_nr;
int filter_index;
k_mutex_lock(&data->set_filter_mutex, K_FOREVER);
filter_nr = can_stm32_attach(dev, isr, filter, &filter_index);
data->response_type &= ~(1ULL << filter_index);
k_mutex_unlock(&data->set_filter_mutex);
return filter_nr;
}
void can_stm32_detach(struct device *dev, int filter_nr)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
int bank_nr;
int filter_index;
u32_t bank_bit;
u32_t mode_reg;
u32_t scale_reg;
enum can_filter_type type;
u32_t reset_mask;
__ASSERT_NO_MSG(filter_nr >= 0 && filter_nr < CAN_MAX_NUMBER_OF_FILTERS);
k_mutex_lock(&data->set_filter_mutex, K_FOREVER);
bank_nr = filter_nr / 4;
bank_bit = (1U << bank_nr);
mode_reg = can->FM1R;
scale_reg = can->FS1R;
filter_index = can_calc_filter_index(filter_nr, mode_reg, scale_reg);
type = can_stm32_get_filter_type(bank_nr, mode_reg, scale_reg);
LOG_DBG("Detatch filter number %d (index %d), type %d", filter_nr,
filter_index,
type);
reset_mask = ((1 << (reg_demand[type])) - 1) << filter_nr;
data->filter_usage |= reset_mask;
can->FMR |= CAN_FMR_FINIT;
can->FA1R &= ~bank_bit;
can_stm32_set_filter_bank(filter_nr, &can->sFilterRegister[bank_nr],
type, 0, 0xFFFFFFFF);
if (!CAN_BANK_IS_EMPTY(data->filter_usage, bank_nr)) {
can->FA1R |= bank_bit;
} else {
LOG_DBG("Bank number %d is empty -> deakivate", bank_nr);
}
can->FMR &= ~(CAN_FMR_FINIT);
data->rx_response[filter_index] = NULL;
data->response_type &= ~(1ULL << filter_index);
k_mutex_unlock(&data->set_filter_mutex);
}
static const struct can_driver_api can_api_funcs = {
.configure = can_stm32_runtime_configure,
.send = can_stm32_send,
.attach_msgq = can_stm32_attach_msgq,
.attach_isr = can_stm32_attach_isr,
.detach = can_stm32_detach
};
#ifdef CONFIG_CAN_1
static void config_can_1_irq(CAN_TypeDef *can);
static const struct can_stm32_config can_stm32_cfg_1 = {
.can = (CAN_TypeDef *)DT_CAN_1_BASE_ADDRESS,
.bus_speed = DT_CAN_1_BUS_SPEED,
.sjw = DT_CAN_1_SJW,
.prop_bs1 = DT_CAN_1_PROP_SEG_PHASE_SEG1,
.bs2 = DT_CAN_1_PHASE_SEG2,
.pclken = {
.enr = DT_CAN_1_CLOCK_BITS,
.bus = DT_CAN_1_CLOCK_BUS,
},
.config_irq = config_can_1_irq
};
static struct can_stm32_data can_stm32_dev_data_1;
DEVICE_AND_API_INIT(can_stm32_1, DT_CAN_1_NAME, &can_stm32_init,
&can_stm32_dev_data_1, &can_stm32_cfg_1,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&can_api_funcs);
static void config_can_1_irq(CAN_TypeDef *can)
{
LOG_DBG("Enable CAN1 IRQ");
#ifdef CONFIG_SOC_SERIES_STM32F0X
IRQ_CONNECT(DT_CAN_1_IRQ, DT_CAN_1_IRQ_PRIORITY, can_stm32_isr,
DEVICE_GET(can_stm32_1), 0);
irq_enable(DT_CAN_1_IRQ);
#else
IRQ_CONNECT(DT_CAN_1_IRQ_RX0, DT_CAN_1_IRQ_PRIORITY,
can_stm32_rx_isr, DEVICE_GET(can_stm32_1), 0);
irq_enable(DT_CAN_1_IRQ_RX0);
IRQ_CONNECT(DT_CAN_1_IRQ_TX, DT_CAN_1_IRQ_PRIORITY,
can_stm32_tx_isr, DEVICE_GET(can_stm32_1), 0);
irq_enable(DT_CAN_1_IRQ_TX);
IRQ_CONNECT(DT_CAN_1_IRQ_SCE, DT_CAN_1_IRQ_PRIORITY,
can_stm32_tx_isr, DEVICE_GET(can_stm32_1), 0);
irq_enable(DT_CAN_1_IRQ_SCE);
#endif
can->IER |= CAN_IT_TME | CAN_IT_ERR | CAN_IT_FMP0 | CAN_IT_FMP1;
}
#if defined(CONFIG_NET_SOCKETS_CAN)
#include "socket_can_generic.h"
static int socket_can_init_1(struct device *dev)
{
struct device *can_dev = DEVICE_GET(can_stm32_1);
struct socket_can_context *socket_context = dev->driver_data;
LOG_DBG("Init socket CAN device %p (%s) for dev %p (%s)",
dev, dev->config->name, can_dev, can_dev->config->name);
socket_context->can_dev = can_dev;
socket_context->msgq = &socket_can_msgq;
socket_context->rx_tid =
k_thread_create(&socket_context->rx_thread_data,
rx_thread_stack,
K_THREAD_STACK_SIZEOF(rx_thread_stack),
rx_thread, socket_context, NULL, NULL,
RX_THREAD_PRIORITY, 0, K_NO_WAIT);
return 0;
}
NET_DEVICE_INIT(socket_can_stm32_1, SOCKET_CAN_NAME_1, socket_can_init_1,
&socket_can_context_1, NULL,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&socket_can_api,
CANBUS_L2, NET_L2_GET_CTX_TYPE(CANBUS_L2), CAN_MTU);
#endif /* CONFIG_NET_SOCKETS_CAN */
#endif /*CONFIG_CAN_1*/