blob: e4cba411f188664acde445ff226553ec72eb0c2e [file] [log] [blame]
/*
* Copyright (c) 2022 BrainCo Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT gd_gd32_adc
#include <errno.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/devicetree.h>
#include <gd32_adc.h>
#include <gd32_rcu.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_gd32, CONFIG_ADC_LOG_LEVEL);
/**
* @brief gd32 adc irq have some special cases as below:
* 1. adc number no larger than 3.
* 2. adc0 and adc1 share the same irq number.
* 3. For gd32f4xx, adc2 share the same irq number with adc0 and adc1.
*
* To cover this cases, gd32_adc driver use node-label 'adc0', 'adc1' and
* 'adc2' to handle gd32 adc irq config directly.'
*
* @note Sorry for the restriction, But new added gd32 adc node-label must be 'adc0',
* 'adc1' and 'adc2'.
*/
#define ADC0_NODE DT_NODELABEL(adc0)
#define ADC1_NODE DT_NODELABEL(adc1)
#define ADC2_NODE DT_NODELABEL(adc2)
#define ADC0_ENABLE DT_NODE_HAS_STATUS(ADC0_NODE, okay)
#define ADC1_ENABLE DT_NODE_HAS_STATUS(ADC1_NODE, okay)
#define ADC2_ENABLE DT_NODE_HAS_STATUS(ADC2_NODE, okay)
#ifndef ADC0
/**
* @brief The name of gd32 ADC HAL are different between single and multi ADC SoCs.
* This adjust the single ADC SoC HAL, so we can call gd32 ADC HAL in a common way.
*/
#undef ADC_STAT
#undef ADC_CTL0
#undef ADC_CTL1
#undef ADC_SAMPT0
#undef ADC_SAMPT1
#undef ADC_RSQ2
#undef ADC_RDATA
#define ADC_STAT(adc0) REG32((adc0) + 0x00000000U)
#define ADC_CTL0(adc0) REG32((adc0) + 0x00000004U)
#define ADC_CTL1(adc0) REG32((adc0) + 0x00000008U)
#define ADC_SAMPT0(adc0) REG32((adc0) + 0x0000000CU)
#define ADC_SAMPT1(adc0) REG32((adc0) + 0x00000010U)
#define ADC_RSQ2(adc0) REG32((adc0) + 0x00000034U)
#define ADC_RDATA(adc0) REG32((adc0) + 0x0000004CU)
#endif
#define SPT_WIDTH 3U
#define SAMPT1_SIZE 10U
#if defined(CONFIG_SOC_SERIES_GD32F4XX)
#define SMP_TIME(x) ADC_SAMPLETIME_##x
static const uint16_t acq_time_tbl[8] = {3, 15, 28, 56, 84, 112, 144, 480};
static const uint32_t table_samp_time[] = {
SMP_TIME(3),
SMP_TIME(15),
SMP_TIME(28),
SMP_TIME(56),
SMP_TIME(84),
SMP_TIME(112),
SMP_TIME(144),
SMP_TIME(480)
};
#else
#define SMP_TIME(x) ADC_SAMPLETIME_##x##POINT5
static const uint16_t acq_time_tbl[8] = {2, 8, 14, 29, 42, 56, 72, 240};
static const uint32_t table_samp_time[] = {
SMP_TIME(1),
SMP_TIME(7),
SMP_TIME(13),
SMP_TIME(28),
SMP_TIME(41),
SMP_TIME(55),
SMP_TIME(71),
SMP_TIME(239)
};
#endif
struct adc_gd32_config {
uint32_t reg;
uint32_t rcu_periph_clock;
#ifdef CONFIG_SOC_SERIES_GD32F3X0
uint32_t rcu_clock_source;
#endif
uint8_t channels;
const struct pinctrl_dev_config *pcfg;
uint8_t irq_num;
void (*irq_config_func)(void);
};
struct adc_gd32_data {
struct adc_context ctx;
const struct device *dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
};
static void adc_gd32_isr(const struct device *dev)
{
struct adc_gd32_data *data = dev->data;
const struct adc_gd32_config *cfg = dev->config;
if (ADC_STAT(cfg->reg) & ADC_STAT_EOC) {
*data->buffer++ = ADC_RDATA(cfg->reg);
/* Disable EOC interrupt. */
ADC_CTL0(cfg->reg) &= ~ADC_CTL0_EOCIE;
/* Clear EOC bit. */
ADC_STAT(cfg->reg) &= ~ADC_STAT_EOC;
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_gd32_data *data = CONTAINER_OF(ctx, struct adc_gd32_data, ctx);
const struct device *dev = data->dev;
const struct adc_gd32_config *cfg = dev->config;
data->repeat_buffer = data->buffer;
/* Enable EOC interrupt */
ADC_CTL0(cfg->reg) |= ADC_CTL0_EOCIE;
/* Set ADC software conversion trigger. */
ADC_CTL1(cfg->reg) |= ADC_CTL1_SWRCST;
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_gd32_data *data = CONTAINER_OF(ctx, struct adc_gd32_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static inline void adc_gd32_calibration(const struct adc_gd32_config *cfg)
{
ADC_CTL1(cfg->reg) |= ADC_CTL1_RSTCLB;
/* Wait for calibration registers initialized. */
while (ADC_CTL1(cfg->reg) & ADC_CTL1_RSTCLB) {
}
ADC_CTL1(cfg->reg) |= ADC_CTL1_CLB;
/* Wait for calibration complete. */
while (ADC_CTL1(cfg->reg) & ADC_CTL1_CLB) {
}
}
static int adc_gd32_configure_sampt(const struct adc_gd32_config *cfg,
uint8_t channel, uint16_t acq_time)
{
uint8_t index = 0, offset;
if (acq_time != ADC_ACQ_TIME_DEFAULT) {
/* Acquisition time unit is adc clock cycle. */
if (ADC_ACQ_TIME_UNIT(acq_time) != ADC_ACQ_TIME_TICKS) {
return -EINVAL;
}
for ( ; index < ARRAY_SIZE(acq_time_tbl); index++) {
if (ADC_ACQ_TIME_VALUE(acq_time) <= acq_time_tbl[index]) {
break;
}
}
if (ADC_ACQ_TIME_VALUE(acq_time) != acq_time_tbl[index]) {
return -ENOTSUP;
}
}
if (channel < SAMPT1_SIZE) {
offset = SPT_WIDTH * channel;
ADC_SAMPT1(cfg->reg) &= ~(ADC_SAMPTX_SPTN << offset);
ADC_SAMPT1(cfg->reg) |= table_samp_time[index] << offset;
} else {
offset = SPT_WIDTH * (channel - SAMPT1_SIZE);
ADC_SAMPT0(cfg->reg) &= ~(ADC_SAMPTX_SPTN << offset);
ADC_SAMPT0(cfg->reg) |= table_samp_time[index] << offset;
}
return 0;
}
static int adc_gd32_channel_setup(const struct device *dev,
const struct adc_channel_cfg *chan_cfg)
{
const struct adc_gd32_config *cfg = dev->config;
if (chan_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Gain is not valid");
return -ENOTSUP;
}
if (chan_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Reference is not valid");
return -ENOTSUP;
}
if (chan_cfg->differential) {
LOG_ERR("Differential sampling not supported");
return -ENOTSUP;
}
if (chan_cfg->channel_id >= cfg->channels) {
LOG_ERR("Invalid channel (%u)", chan_cfg->channel_id);
return -EINVAL;
}
return adc_gd32_configure_sampt(cfg, chan_cfg->channel_id,
chan_cfg->acquisition_time);
}
static int adc_gd32_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_gd32_data *data = dev->data;
const struct adc_gd32_config *cfg = dev->config;
uint8_t resolution_id;
uint32_t index;
index = find_lsb_set(sequence->channels) - 1;
if (sequence->channels > BIT(index)) {
LOG_ERR("Only single channel supported");
return -ENOTSUP;
}
switch (sequence->resolution) {
case 12U:
resolution_id = 0U;
break;
case 10U:
resolution_id = 1U;
break;
case 8U:
resolution_id = 2U;
break;
case 6U:
resolution_id = 3U;
break;
default:
return -EINVAL;
}
#if defined(CONFIG_SOC_SERIES_GD32F4XX) || \
defined(CONFIG_SOC_SERIES_GD32F3X0)
ADC_CTL0(cfg->reg) &= ~ADC_CTL0_DRES;
ADC_CTL0(cfg->reg) |= CTL0_DRES(resolution_id);
#elif defined(CONFIG_SOC_SERIES_GD32F403)
ADC_OVSAMPCTL(cfg->reg) &= ~ADC_OVSAMPCTL_DRES;
ADC_OVSAMPCTL(cfg->reg) |= OVSAMPCTL_DRES(resolution_id);
#elif defined(CONFIG_SOC_SERIES_GD32VF103)
ADC_OVSCR(cfg->reg) &= ~ADC_OVSCR_DRES;
ADC_OVSCR(cfg->reg) |= OVSCR_DRES(resolution_id);
#endif
if (sequence->calibrate) {
adc_gd32_calibration(cfg);
}
/* Signle conversion mode with regular group. */
ADC_RSQ2(cfg->reg) &= ~ADC_RSQX_RSQN;
ADC_RSQ2(cfg->reg) = index;
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_gd32_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_gd32_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = adc_gd32_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_gd32_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_gd32_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = adc_gd32_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif /* CONFIG_ADC_ASYNC */
static struct adc_driver_api adc_gd32_driver_api = {
.channel_setup = adc_gd32_channel_setup,
.read = adc_gd32_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_gd32_read_async,
#endif /* CONFIG_ADC_ASYNC */
};
static int adc_gd32_init(const struct device *dev)
{
struct adc_gd32_data *data = dev->data;
const struct adc_gd32_config *cfg = dev->config;
int ret;
data->dev = dev;
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
#ifdef CONFIG_SOC_SERIES_GD32F3X0
/* Select adc clock source and its prescaler. */
rcu_adc_clock_config(cfg->rcu_clock_source);
#endif
rcu_periph_clock_enable(cfg->rcu_periph_clock);
#if defined(CONFIG_SOC_SERIES_GD32F403) || \
defined(CONFIG_SOC_SERIES_GD32VF103) || \
defined(CONFIG_SOC_SERIES_GD32F3X0)
/* Set SWRCST as the regular channel external trigger. */
ADC_CTL1(cfg->reg) &= ~ADC_CTL1_ETSRC;
ADC_CTL1(cfg->reg) |= CTL1_ETSRC(7);
/* Enable external trigger for regular channel. */
ADC_CTL1(cfg->reg) |= ADC_CTL1_ETERC;
#endif
/* Enable ADC */
ADC_CTL1(cfg->reg) |= ADC_CTL1_ADCON;
adc_gd32_calibration(cfg);
cfg->irq_config_func();
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
#define HANDLE_SHARED_IRQ(n, active_irq) \
static const struct device *dev_##n = DEVICE_DT_INST_GET(n); \
const struct adc_gd32_config *cfg_##n = dev_##n->config; \
\
if ((cfg_##n->irq_num == active_irq) && \
(ADC_CTL0(cfg_##n->reg) & ADC_CTL0_EOCIE)) { \
adc_gd32_isr(dev_##n); \
}
static void adc_gd32_global_irq_handler(const struct device *dev)
{
const struct adc_gd32_config *cfg = dev->config;
LOG_DBG("global irq handler: %u", cfg->irq_num);
DT_INST_FOREACH_STATUS_OKAY_VARGS(HANDLE_SHARED_IRQ, (cfg->irq_num));
}
static void adc_gd32_global_irq_cfg(void)
{
static bool global_irq_init = true;
if (!global_irq_init) {
return;
}
global_irq_init = false;
#if ADC0_ENABLE
/* Shared irq config default to adc0. */
IRQ_CONNECT(DT_IRQN(ADC0_NODE),
DT_IRQ(ADC0_NODE, priority),
adc_gd32_global_irq_handler,
DEVICE_DT_GET(ADC0_NODE),
0);
irq_enable(DT_IRQN(ADC0_NODE));
#elif ADC1_ENABLE
IRQ_CONNECT(DT_IRQN(ADC1_NODE),
DT_IRQ(ADC1_NODE, priority),
adc_gd32_global_irq_handler,
DEVICE_DT_GET(ADC1_NODE),
0);
irq_enable(DT_IRQN(ADC1_NODE));
#endif
#if (ADC0_ENABLE || ADC1_ENABLE) && \
defined(CONFIG_SOC_SERIES_GD32F4XX)
/* gd32f4xx adc2 share the same irq number with adc0 and adc1. */
#elif ADC2_ENABLE
IRQ_CONNECT(DT_IRQN(ADC2_NODE),
DT_IRQ(ADC2_NODE, priority),
adc_gd32_global_irq_handler,
DEVICE_DT_GET(ADC2_NODE),
0);
irq_enable(DT_IRQN(ADC2_NODE));
#endif
}
#ifdef CONFIG_SOC_SERIES_GD32F3X0
#define ADC_CLOCK_SOURCE(n) \
.rcu_clock_source = DT_INST_PROP(n, rcu_periph_clock)
#else
#define ADC_CLOCK_SOURCE(n)
#endif
#define ADC_GD32_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static struct adc_gd32_data adc_gd32_data_##n = { \
ADC_CONTEXT_INIT_TIMER(adc_gd32_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_gd32_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_gd32_data_##n, ctx), \
}; \
const static struct adc_gd32_config adc_gd32_config_##n = { \
.reg = DT_INST_REG_ADDR(n), \
.rcu_periph_clock = DT_INST_PROP(n, rcu_periph_clock), \
.channels = DT_INST_PROP(n, channels), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.irq_num = DT_INST_IRQN(n), \
.irq_config_func = adc_gd32_global_irq_cfg, \
ADC_CLOCK_SOURCE(n) \
}; \
DEVICE_DT_INST_DEFINE(n, \
&adc_gd32_init, NULL, \
&adc_gd32_data_##n, &adc_gd32_config_##n, \
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&adc_gd32_driver_api); \
DT_INST_FOREACH_STATUS_OKAY(ADC_GD32_INIT)