blob: cb2e7c3ebcd85f79f3350be77f4e5c2b2253b536 [file] [log] [blame]
/*
* Copyright (c) 2019 Alexander Wachter
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/can.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(can_common, CONFIG_CAN_LOG_LEVEL);
/* Maximum acceptable deviation in sample point location (permille) */
#define SAMPLE_POINT_MARGIN 50
/* CAN sync segment is always one time quantum */
#define CAN_SYNC_SEG 1
struct can_tx_default_cb_ctx {
struct k_sem done;
int status;
};
static void can_tx_default_cb(const struct device *dev, int error, void *user_data)
{
struct can_tx_default_cb_ctx *ctx = user_data;
ctx->status = error;
k_sem_give(&ctx->done);
}
int z_impl_can_send(const struct device *dev, const struct can_frame *frame,
k_timeout_t timeout, can_tx_callback_t callback,
void *user_data)
{
const struct can_driver_api *api = (const struct can_driver_api *)dev->api;
if (callback == NULL) {
struct can_tx_default_cb_ctx ctx;
int err;
k_sem_init(&ctx.done, 0, 1);
err = api->send(dev, frame, timeout, can_tx_default_cb, &ctx);
if (err != 0) {
return err;
}
k_sem_take(&ctx.done, K_FOREVER);
return ctx.status;
}
return api->send(dev, frame, timeout, callback, user_data);
}
static void can_msgq_put(const struct device *dev, struct can_frame *frame, void *user_data)
{
struct k_msgq *msgq = (struct k_msgq *)user_data;
int ret;
ARG_UNUSED(dev);
__ASSERT_NO_MSG(msgq);
ret = k_msgq_put(msgq, frame, K_NO_WAIT);
if (ret) {
LOG_ERR("Msgq %p overflowed. Frame ID: 0x%x", msgq, frame->id);
}
}
int z_impl_can_add_rx_filter_msgq(const struct device *dev, struct k_msgq *msgq,
const struct can_filter *filter)
{
const struct can_driver_api *api = dev->api;
return api->add_rx_filter(dev, can_msgq_put, msgq, filter);
}
/**
* @brief Update the timing given a total number of time quanta and a sample point.
*
* @code{.text}
*
* +---------------------------------------------------+
* | Nominal bit time in time quanta (total_tq) |
* +--------------+----------+------------+------------+
* | sync_seg | prop_seg | phase_seg1 | phase_seg2 |
* +--------------+----------+------------+------------+
* | CAN_SYNG_SEG | tseg1 | tseg2 |
* +--------------+-----------------------+------------+
* ^
* sample_pnt
* @endcode
*
* @see @a can_timing
*
* @param total_tq Total number of time quanta.
* @param sample_pnt Sample point in permille of the entire bit time.
* @param[out] res Result is written into the @a can_timing struct provided.
* @param min Pointer to the minimum supported timing parameter values.
* @param max Pointer to the maximum supported timing parameter values.
* @retval 0 or positive sample point error on success.
* @retval -ENOTSUP if the requested sample point cannot be met.
*/
static int update_sample_pnt(uint32_t total_tq, uint32_t sample_pnt, struct can_timing *res,
const struct can_timing *min, const struct can_timing *max)
{
uint16_t tseg1_max = max->phase_seg1 + max->prop_seg;
uint16_t tseg1_min = min->phase_seg1 + min->prop_seg;
uint32_t sample_pnt_res;
uint16_t tseg1, tseg2;
/* Calculate number of time quanta in tseg2 for given sample point */
tseg2 = total_tq - (total_tq * sample_pnt) / 1000;
tseg2 = CLAMP(tseg2, min->phase_seg2, max->phase_seg2);
/* Calculate number of time quanta in tseg1 */
tseg1 = total_tq - CAN_SYNC_SEG - tseg2;
if (tseg1 > tseg1_max) {
/* Sample point location must be decreased */
tseg1 = tseg1_max;
tseg2 = total_tq - CAN_SYNC_SEG - tseg1;
if (tseg2 > max->phase_seg2) {
return -ENOTSUP;
}
} else if (tseg1 < tseg1_min) {
/* Sample point location must be increased */
tseg1 = tseg1_min;
tseg2 = total_tq - CAN_SYNC_SEG - tseg1;
if (tseg2 < min->phase_seg2) {
return -ENOTSUP;
}
}
res->phase_seg2 = tseg2;
/* Attempt to distribute tseg1 evenly between prop_seq and phase_seg1 */
res->prop_seg = CLAMP(tseg1 / 2, min->prop_seg, max->prop_seg);
res->phase_seg1 = tseg1 - res->prop_seg;
if (res->phase_seg1 > max->phase_seg1) {
/* Even tseg1 distribution not possible, decrease phase_seg1 */
res->phase_seg1 = max->phase_seg1;
res->prop_seg = tseg1 - res->phase_seg1;
} else if (res->phase_seg1 < min->phase_seg1) {
/* Even tseg1 distribution not possible, increase phase_seg1 */
res->phase_seg1 = min->phase_seg1;
res->prop_seg = tseg1 - res->phase_seg1;
}
/* Calculate the resulting sample point */
sample_pnt_res = (CAN_SYNC_SEG + tseg1) * 1000 / total_tq;
/* Return the absolute sample point error */
return sample_pnt_res > sample_pnt ?
sample_pnt_res - sample_pnt :
sample_pnt - sample_pnt_res;
}
/**
* @brief Get the sample point location for a given bitrate
*
* @param bitrate The bitrate in bits/second.
* @return The sample point in permille.
*/
static uint16_t sample_point_for_bitrate(uint32_t bitrate)
{
uint16_t sample_pnt;
if (bitrate > 800000) {
/* 75.0% */
sample_pnt = 750;
} else if (bitrate > 500000) {
/* 80.0% */
sample_pnt = 800;
} else {
/* 87.5% */
sample_pnt = 875;
}
return sample_pnt;
}
/**
* @brief Internal function for calculating CAN timing parameters.
*
* @param dev Pointer to the device structure for the driver instance.
* @param[out] res Result is written into the @a can_timing struct provided.
* @param min Pointer to the minimum supported timing parameter values.
* @param max Pointer to the maximum supported timing parameter values.
* @param bitrate Target bitrate in bits/s.
* @param sample_pnt Sample point in permille of the entire bit time.
*
* @retval 0 or positive sample point error on success.
* @retval -EINVAL if the requested bitrate or sample point is out of range.
* @retval -ENOTSUP if the requested bitrate is not supported.
* @retval -EIO if @a can_get_core_clock() is not available.
*/
static int can_calc_timing_internal(const struct device *dev, struct can_timing *res,
const struct can_timing *min, const struct can_timing *max,
uint32_t bitrate, uint16_t sample_pnt)
{
uint32_t total_tq = CAN_SYNC_SEG + max->prop_seg + max->phase_seg1 + max->phase_seg2;
struct can_timing tmp_res = { 0 };
int err_min = INT_MAX;
uint32_t core_clock;
int prescaler;
int err;
if (bitrate == 0 || sample_pnt >= 1000) {
return -EINVAL;
}
err = can_get_core_clock(dev, &core_clock);
if (err != 0) {
return -EIO;
}
if (sample_pnt == 0U) {
sample_pnt = sample_point_for_bitrate(bitrate);
}
for (prescaler = MAX(core_clock / (total_tq * bitrate), min->prescaler);
prescaler <= max->prescaler;
prescaler++) {
if (core_clock % (prescaler * bitrate)) {
/* No integer total_tq for this prescaler setting */
continue;
}
total_tq = core_clock / (prescaler * bitrate);
err = update_sample_pnt(total_tq, sample_pnt, &tmp_res, min, max);
if (err < 0) {
/* Sample point cannot be met for this prescaler setting */
continue;
}
if (err < err_min) {
/* Improved sample point match */
err_min = err;
res->prop_seg = tmp_res.prop_seg;
res->phase_seg1 = tmp_res.phase_seg1;
res->phase_seg2 = tmp_res.phase_seg2;
res->prescaler = (uint16_t)prescaler;
if (err == 0) {
/* Perfect sample point match */
break;
}
}
}
if (err_min != 0U) {
LOG_DBG("Sample point error: %d 1/1000", err_min);
}
/* Calculate default sjw as phase_seg2 / 2 and clamp the result */
res->sjw = MIN(res->phase_seg1, res->phase_seg2 / 2);
res->sjw = CLAMP(res->sjw, min->sjw, max->sjw);
return err_min == INT_MAX ? -ENOTSUP : err_min;
}
int z_impl_can_calc_timing(const struct device *dev, struct can_timing *res,
uint32_t bitrate, uint16_t sample_pnt)
{
const struct can_timing *min = can_get_timing_min(dev);
const struct can_timing *max = can_get_timing_max(dev);
if (bitrate > 1000000) {
return -EINVAL;
}
return can_calc_timing_internal(dev, res, min, max, bitrate, sample_pnt);
}
#ifdef CONFIG_CAN_FD_MODE
int z_impl_can_calc_timing_data(const struct device *dev, struct can_timing *res,
uint32_t bitrate, uint16_t sample_pnt)
{
const struct can_timing *min = can_get_timing_data_min(dev);
const struct can_timing *max = can_get_timing_data_max(dev);
if (bitrate > 8000000) {
return -EINVAL;
}
return can_calc_timing_internal(dev, res, min, max, bitrate, sample_pnt);
}
#endif /* CONFIG_CAN_FD_MODE */
int can_calc_prescaler(const struct device *dev, struct can_timing *timing,
uint32_t bitrate)
{
uint32_t ts = timing->prop_seg + timing->phase_seg1 + timing->phase_seg2 +
CAN_SYNC_SEG;
uint32_t core_clock;
int ret;
ret = can_get_core_clock(dev, &core_clock);
if (ret != 0) {
return ret;
}
timing->prescaler = core_clock / (bitrate * ts);
return core_clock % (ts * timing->prescaler);
}
static int check_timing_in_range(const struct can_timing *timing,
const struct can_timing *min,
const struct can_timing *max)
{
if (!IN_RANGE(timing->sjw, min->sjw, max->sjw) ||
!IN_RANGE(timing->prop_seg, min->prop_seg, max->prop_seg) ||
!IN_RANGE(timing->phase_seg1, min->phase_seg1, max->phase_seg1) ||
!IN_RANGE(timing->phase_seg2, min->phase_seg2, max->phase_seg2) ||
!IN_RANGE(timing->prescaler, min->prescaler, max->prescaler)) {
return -ENOTSUP;
}
if ((timing->sjw > timing->phase_seg1) || (timing->sjw > timing->phase_seg2)) {
return -ENOTSUP;
}
return 0;
}
int z_impl_can_set_timing(const struct device *dev,
const struct can_timing *timing)
{
const struct can_driver_api *api = (const struct can_driver_api *)dev->api;
const struct can_timing *min = can_get_timing_min(dev);
const struct can_timing *max = can_get_timing_max(dev);
int err;
err = check_timing_in_range(timing, min, max);
if (err != 0) {
return err;
}
return api->set_timing(dev, timing);
}
int z_impl_can_set_bitrate(const struct device *dev, uint32_t bitrate)
{
struct can_timing timing = { 0 };
uint32_t min_bitrate;
uint32_t max_bitrate;
uint16_t sample_pnt;
int ret;
(void)can_get_min_bitrate(dev, &min_bitrate);
ret = can_get_max_bitrate(dev, &max_bitrate);
if (ret == -ENOSYS) {
/* Maximum bitrate unknown */
max_bitrate = 0;
} else if (ret < 0) {
return ret;
}
if ((bitrate < min_bitrate) || (((max_bitrate > 0) && (bitrate > max_bitrate)))) {
return -ENOTSUP;
}
sample_pnt = sample_point_for_bitrate(bitrate);
ret = can_calc_timing(dev, &timing, bitrate, sample_pnt);
if (ret < 0) {
return ret;
}
if (ret > SAMPLE_POINT_MARGIN) {
return -ERANGE;
}
return can_set_timing(dev, &timing);
}
#ifdef CONFIG_CAN_FD_MODE
int z_impl_can_set_timing_data(const struct device *dev,
const struct can_timing *timing_data)
{
const struct can_driver_api *api = (const struct can_driver_api *)dev->api;
const struct can_timing *min = can_get_timing_data_min(dev);
const struct can_timing *max = can_get_timing_data_max(dev);
int err;
if (api->set_timing_data == NULL) {
return -ENOSYS;
}
err = check_timing_in_range(timing_data, min, max);
if (err != 0) {
return err;
}
return api->set_timing_data(dev, timing_data);
}
int z_impl_can_set_bitrate_data(const struct device *dev, uint32_t bitrate_data)
{
struct can_timing timing_data = { 0 };
uint32_t min_bitrate;
uint32_t max_bitrate;
uint16_t sample_pnt;
int ret;
(void)can_get_min_bitrate(dev, &min_bitrate);
ret = can_get_max_bitrate(dev, &max_bitrate);
if (ret == -ENOSYS) {
/* Maximum bitrate unknown */
max_bitrate = 0;
} else if (ret < 0) {
return ret;
}
if ((bitrate_data < min_bitrate) || ((max_bitrate > 0) && (bitrate_data > max_bitrate))) {
return -ENOTSUP;
}
sample_pnt = sample_point_for_bitrate(bitrate_data);
ret = can_calc_timing_data(dev, &timing_data, bitrate_data, sample_pnt);
if (ret < 0) {
return ret;
}
if (ret > SAMPLE_POINT_MARGIN) {
return -ERANGE;
}
return can_set_timing_data(dev, &timing_data);
}
#endif /* CONFIG_CAN_FD_MODE */