blob: 7f9d2428ae1a3bcb55b87a67ad97a186a4c10ef4 [file] [log] [blame]
/*
* Copyright (c) 2015 Intel Corporation.
* Copyright (c) 2023 Synopsys, Inc. All rights reserved.
* Copyright (c) 2023 Meta Platforms
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT snps_designware_spi
/* spi_dw.c - Designware SPI driver implementation */
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_dw);
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/pm/device.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/sys/util.h>
#ifdef CONFIG_IOAPIC
#include <zephyr/drivers/interrupt_controller/ioapic.h>
#endif
#include <zephyr/drivers/spi.h>
#include <zephyr/irq.h>
#include "spi_dw.h"
#include "spi_context.h"
#ifdef CONFIG_PINCTRL
#include <zephyr/drivers/pinctrl.h>
#endif
static inline bool spi_dw_is_slave(struct spi_dw_data *spi)
{
return (IS_ENABLED(CONFIG_SPI_SLAVE) &&
spi_context_is_slave(&spi->ctx));
}
static void completed(const struct device *dev, int error)
{
struct spi_dw_data *spi = dev->data;
struct spi_context *ctx = &spi->ctx;
if (error) {
goto out;
}
if (spi_context_tx_on(&spi->ctx) ||
spi_context_rx_on(&spi->ctx)) {
return;
}
out:
/* need to give time for FIFOs to drain before issuing more commands */
while (test_bit_sr_busy(dev)) {
}
/* Disabling interrupts */
write_imr(dev, DW_SPI_IMR_MASK);
/* Disabling the controller */
clear_bit_ssienr(dev);
if (!spi_dw_is_slave(spi)) {
if (spi_cs_is_gpio(ctx->config)) {
spi_context_cs_control(ctx, false);
} else {
write_ser(dev, 0);
}
}
LOG_DBG("SPI transaction completed %s error",
error ? "with" : "without");
spi_context_complete(&spi->ctx, dev, error);
}
static void push_data(const struct device *dev)
{
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
uint32_t data = 0U;
uint32_t f_tx;
if (spi_context_rx_on(&spi->ctx)) {
f_tx = info->fifo_depth - read_txflr(dev) -
read_rxflr(dev);
if ((int)f_tx < 0) {
f_tx = 0U; /* if rx-fifo is full, hold off tx */
}
} else {
f_tx = info->fifo_depth - read_txflr(dev);
}
while (f_tx) {
if (spi_context_tx_buf_on(&spi->ctx)) {
switch (spi->dfs) {
case 1:
data = UNALIGNED_GET((uint8_t *)
(spi->ctx.tx_buf));
break;
case 2:
data = UNALIGNED_GET((uint16_t *)
(spi->ctx.tx_buf));
break;
case 4:
data = UNALIGNED_GET((uint32_t *)
(spi->ctx.tx_buf));
break;
}
} else if (spi_context_rx_on(&spi->ctx)) {
/* No need to push more than necessary */
if ((int)(spi->ctx.rx_len - spi->fifo_diff) <= 0) {
break;
}
data = 0U;
} else if (spi_context_tx_on(&spi->ctx)) {
data = 0U;
} else {
/* Nothing to push anymore */
break;
}
write_dr(dev, data);
spi_context_update_tx(&spi->ctx, spi->dfs, 1);
spi->fifo_diff++;
f_tx--;
}
if (!spi_context_tx_on(&spi->ctx)) {
/* prevents any further interrupts demanding TX fifo fill */
write_txftlr(dev, 0);
}
}
static void pull_data(const struct device *dev)
{
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
while (read_rxflr(dev)) {
uint32_t data = read_dr(dev);
if (spi_context_rx_buf_on(&spi->ctx)) {
switch (spi->dfs) {
case 1:
UNALIGNED_PUT(data, (uint8_t *)spi->ctx.rx_buf);
break;
case 2:
UNALIGNED_PUT(data, (uint16_t *)spi->ctx.rx_buf);
break;
case 4:
UNALIGNED_PUT(data, (uint32_t *)spi->ctx.rx_buf);
break;
}
}
spi_context_update_rx(&spi->ctx, spi->dfs, 1);
spi->fifo_diff--;
}
if (!spi->ctx.rx_len && spi->ctx.tx_len < info->fifo_depth) {
write_rxftlr(dev, spi->ctx.tx_len - 1);
} else if (read_rxftlr(dev) >= spi->ctx.rx_len) {
write_rxftlr(dev, spi->ctx.rx_len - 1);
}
}
static int spi_dw_configure(const struct device *dev,
struct spi_dw_data *spi,
const struct spi_config *config)
{
const struct spi_dw_config *info = dev->config;
uint32_t ctrlr0 = 0U;
LOG_DBG("%p (prev %p)", config, spi->ctx.config);
if (spi_context_configured(&spi->ctx, config)) {
/* Nothing to do */
return 0;
}
if (config->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
/* Verify if requested op mode is relevant to this controller */
if (config->operation & SPI_OP_MODE_SLAVE) {
if (!(info->serial_target)) {
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
} else {
if (info->serial_target) {
LOG_ERR("Master mode not supported");
return -ENOTSUP;
}
}
if ((config->operation & SPI_TRANSFER_LSB) ||
(IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(config->operation & (SPI_LINES_DUAL |
SPI_LINES_QUAD | SPI_LINES_OCTAL)))) {
LOG_ERR("Unsupported configuration");
return -EINVAL;
}
if (info->max_xfer_size < SPI_WORD_SIZE_GET(config->operation)) {
LOG_ERR("Max xfer size is %u, word size of %u not allowed",
info->max_xfer_size, SPI_WORD_SIZE_GET(config->operation));
return -ENOTSUP;
}
/* Word size */
if (info->max_xfer_size == 32) {
ctrlr0 |= DW_SPI_CTRLR0_DFS_32(SPI_WORD_SIZE_GET(config->operation));
} else {
ctrlr0 |= DW_SPI_CTRLR0_DFS_16(SPI_WORD_SIZE_GET(config->operation));
}
/* Determine how many bytes are required per-frame */
spi->dfs = SPI_WS_TO_DFS(SPI_WORD_SIZE_GET(config->operation));
/* SPI mode */
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
ctrlr0 |= DW_SPI_CTRLR0_SCPOL;
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
ctrlr0 |= DW_SPI_CTRLR0_SCPH;
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) {
ctrlr0 |= DW_SPI_CTRLR0_SRL;
}
/* Installing the configuration */
write_ctrlr0(dev, ctrlr0);
/* At this point, it's mandatory to set this on the context! */
spi->ctx.config = config;
if (!spi_dw_is_slave(spi)) {
/* Baud rate and Slave select, for master only */
write_baudr(dev, SPI_DW_CLK_DIVIDER(info->clock_frequency,
config->frequency));
}
if (spi_dw_is_slave(spi)) {
LOG_DBG("Installed slave config %p:"
" ws/dfs %u/%u, mode %u/%u/%u",
config,
SPI_WORD_SIZE_GET(config->operation), spi->dfs,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPOL) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPHA) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_LOOP) ? 1 : 0);
} else {
LOG_DBG("Installed master config %p: freq %uHz (div = %u),"
" ws/dfs %u/%u, mode %u/%u/%u, slave %u",
config, config->frequency,
SPI_DW_CLK_DIVIDER(info->clock_frequency,
config->frequency),
SPI_WORD_SIZE_GET(config->operation), spi->dfs,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPOL) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPHA) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_LOOP) ? 1 : 0,
config->slave);
}
return 0;
}
static uint32_t spi_dw_compute_ndf(const struct spi_buf *rx_bufs,
size_t rx_count, uint8_t dfs)
{
uint32_t len = 0U;
for (; rx_count; rx_bufs++, rx_count--) {
if (len > (UINT16_MAX - rx_bufs->len)) {
goto error;
}
len += rx_bufs->len;
}
if (len) {
return (len / dfs) - 1;
}
error:
return UINT32_MAX;
}
static void spi_dw_update_txftlr(const struct device *dev,
struct spi_dw_data *spi)
{
const struct spi_dw_config *info = dev->config;
uint32_t dw_spi_txftlr_dflt = (info->fifo_depth * 1) / 2;
uint32_t reg_data = dw_spi_txftlr_dflt;
if (spi_dw_is_slave(spi)) {
if (!spi->ctx.tx_len) {
reg_data = 0U;
} else if (spi->ctx.tx_len < dw_spi_txftlr_dflt) {
reg_data = spi->ctx.tx_len - 1;
}
}
LOG_DBG("TxFTLR: %u", reg_data);
write_txftlr(dev, reg_data);
}
static int transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
uint32_t tmod = DW_SPI_CTRLR0_TMOD_TX_RX;
uint32_t dw_spi_rxftlr_dflt = (info->fifo_depth * 5) / 8;
uint32_t reg_data;
int ret;
spi_context_lock(&spi->ctx, asynchronous, cb, userdata, config);
#ifdef CONFIG_PM_DEVICE
if (!pm_device_is_busy(dev)) {
pm_device_busy_set(dev);
}
#endif /* CONFIG_PM_DEVICE */
/* Configure */
ret = spi_dw_configure(dev, spi, config);
if (ret) {
goto out;
}
if (!rx_bufs || !rx_bufs->buffers) {
tmod = DW_SPI_CTRLR0_TMOD_TX;
} else if (!tx_bufs || !tx_bufs->buffers) {
tmod = DW_SPI_CTRLR0_TMOD_RX;
}
/* ToDo: add a way to determine EEPROM mode */
if (tmod >= DW_SPI_CTRLR0_TMOD_RX &&
!spi_dw_is_slave(spi)) {
reg_data = spi_dw_compute_ndf(rx_bufs->buffers,
rx_bufs->count,
spi->dfs);
if (reg_data == UINT32_MAX) {
ret = -EINVAL;
goto out;
}
write_ctrlr1(dev, reg_data);
} else {
write_ctrlr1(dev, 0);
}
if (spi_dw_is_slave(spi)) {
/* Enabling MISO line relevantly */
if (tmod == DW_SPI_CTRLR0_TMOD_RX) {
tmod |= DW_SPI_CTRLR0_SLV_OE;
} else {
tmod &= ~DW_SPI_CTRLR0_SLV_OE;
}
}
/* Updating TMOD in CTRLR0 register */
reg_data = read_ctrlr0(dev);
reg_data &= ~DW_SPI_CTRLR0_TMOD_RESET;
reg_data |= tmod;
write_ctrlr0(dev, reg_data);
/* Set buffers info */
spi_context_buffers_setup(&spi->ctx, tx_bufs, rx_bufs, spi->dfs);
spi->fifo_diff = 0U;
/* Tx Threshold */
spi_dw_update_txftlr(dev, spi);
/* Does Rx thresholds needs to be lower? */
reg_data = dw_spi_rxftlr_dflt;
if (spi_dw_is_slave(spi)) {
if (spi->ctx.rx_len &&
spi->ctx.rx_len < dw_spi_rxftlr_dflt) {
reg_data = spi->ctx.rx_len - 1;
}
} else {
if (spi->ctx.rx_len && spi->ctx.rx_len < info->fifo_depth) {
reg_data = spi->ctx.rx_len - 1;
}
}
/* Rx Threshold */
write_rxftlr(dev, reg_data);
/* Enable interrupts */
reg_data = !rx_bufs ?
DW_SPI_IMR_UNMASK & DW_SPI_IMR_MASK_RX :
DW_SPI_IMR_UNMASK;
write_imr(dev, reg_data);
if (!spi_dw_is_slave(spi)) {
/* if cs is not defined as gpio, use hw cs */
if (spi_cs_is_gpio(config)) {
spi_context_cs_control(&spi->ctx, true);
} else {
write_ser(dev, BIT(config->slave));
}
}
LOG_DBG("Enabling controller");
set_bit_ssienr(dev);
ret = spi_context_wait_for_completion(&spi->ctx);
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(&spi->ctx) && !ret) {
ret = spi->ctx.recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
out:
spi_context_release(&spi->ctx, ret);
pm_device_busy_clear(dev);
return ret;
}
static int spi_dw_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
LOG_DBG("%p, %p, %p", dev, tx_bufs, rx_bufs);
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_dw_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
LOG_DBG("%p, %p, %p, %p, %p", dev, tx_bufs, rx_bufs, cb, userdata);
return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_dw_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_dw_data *spi = dev->data;
if (!spi_context_configured(&spi->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&spi->ctx);
return 0;
}
void spi_dw_isr(const struct device *dev)
{
uint32_t int_status;
int error;
int_status = read_isr(dev);
LOG_DBG("SPI %p int_status 0x%x - (tx: %d, rx: %d)", dev, int_status,
read_txflr(dev), read_rxflr(dev));
if (int_status & DW_SPI_ISR_ERRORS_MASK) {
error = -EIO;
goto out;
}
error = 0;
if (int_status & DW_SPI_ISR_RXFIS) {
pull_data(dev);
}
if (int_status & DW_SPI_ISR_TXEIS) {
push_data(dev);
}
out:
clear_interrupts(dev);
completed(dev, error);
}
static const struct spi_driver_api dw_spi_api = {
.transceive = spi_dw_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_dw_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
.release = spi_dw_release,
};
int spi_dw_init(const struct device *dev)
{
int err;
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
#ifdef CONFIG_PINCTRL
pinctrl_apply_state(info->pcfg, PINCTRL_STATE_DEFAULT);
#endif
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
info->config_func();
/* Masking interrupt and making sure controller is disabled */
write_imr(dev, DW_SPI_IMR_MASK);
clear_bit_ssienr(dev);
LOG_DBG("Designware SPI driver initialized on device: %p", dev);
err = spi_context_cs_configure_all(&spi->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&spi->ctx);
return 0;
}
#define SPI_CFG_IRQS_SINGLE_ERR_LINE(inst) \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, rx_avail, irq), \
DT_INST_IRQ_BY_NAME(inst, rx_avail, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, tx_req, irq), \
DT_INST_IRQ_BY_NAME(inst, tx_req, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, err_int, irq), \
DT_INST_IRQ_BY_NAME(inst, err_int, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, rx_avail, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, tx_req, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, err_int, irq));
#define SPI_CFG_IRQS_MULTIPLE_ERR_LINES(inst) \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, rx_avail, irq), \
DT_INST_IRQ_BY_NAME(inst, rx_avail, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, tx_req, irq), \
DT_INST_IRQ_BY_NAME(inst, tx_req, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, txo_err, irq), \
DT_INST_IRQ_BY_NAME(inst, txo_err, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, rxo_err, irq), \
DT_INST_IRQ_BY_NAME(inst, rxo_err, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, rxu_err, irq), \
DT_INST_IRQ_BY_NAME(inst, rxu_err, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(inst, mst_err, irq), \
DT_INST_IRQ_BY_NAME(inst, mst_err, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, rx_avail, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, tx_req, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, txo_err, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, rxo_err, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, rxu_err, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(inst, mst_err, irq));
#define SPI_DW_IRQ_HANDLER(inst) \
void spi_dw_irq_config_##inst(void) \
{ \
COND_CODE_1(IS_EQ(DT_NUM_IRQS(DT_DRV_INST(inst)), 1), \
(IRQ_CONNECT(DT_INST_IRQN(inst), \
DT_INST_IRQ(inst, priority), \
spi_dw_isr, DEVICE_DT_INST_GET(inst), \
0); \
irq_enable(DT_INST_IRQN(inst));), \
(COND_CODE_1(IS_EQ(DT_NUM_IRQS(DT_DRV_INST(inst)), 3), \
(SPI_CFG_IRQS_SINGLE_ERR_LINE(inst)), \
(SPI_CFG_IRQS_MULTIPLE_ERR_LINES(inst))))) \
}
#define SPI_DW_INIT(inst) \
IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_INST_DEFINE(inst);)) \
SPI_DW_IRQ_HANDLER(inst); \
static struct spi_dw_data spi_dw_data_##inst = { \
SPI_CONTEXT_INIT_LOCK(spi_dw_data_##inst, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_dw_data_##inst, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(inst), ctx) \
}; \
static const struct spi_dw_config spi_dw_config_##inst = { \
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(inst)), \
.clock_frequency = COND_CODE_1( \
DT_NODE_HAS_PROP(DT_INST_PHANDLE(inst, clocks), clock_frequency), \
(DT_INST_PROP_BY_PHANDLE(inst, clocks, clock_frequency)), \
(DT_INST_PROP(inst, clock_frequency))), \
.config_func = spi_dw_irq_config_##inst, \
.serial_target = DT_INST_PROP(inst, serial_target), \
.fifo_depth = DT_INST_PROP(inst, fifo_depth), \
.max_xfer_size = DT_INST_PROP(inst, max_xfer_size), \
IF_ENABLED(CONFIG_PINCTRL, (.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst),)) \
COND_CODE_1(DT_INST_PROP(inst, aux_reg), \
(.read_func = aux_reg_read, \
.write_func = aux_reg_write, \
.set_bit_func = aux_reg_set_bit, \
.clear_bit_func = aux_reg_clear_bit, \
.test_bit_func = aux_reg_test_bit,), \
(.read_func = reg_read, \
.write_func = reg_write, \
.set_bit_func = reg_set_bit, \
.clear_bit_func = reg_clear_bit, \
.test_bit_func = reg_test_bit,)) \
}; \
DEVICE_DT_INST_DEFINE(inst, \
spi_dw_init, \
NULL, \
&spi_dw_data_##inst, \
&spi_dw_config_##inst, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&dw_spi_api);
DT_INST_FOREACH_STATUS_OKAY(SPI_DW_INIT)