blob: e453144473c0bc3854e4e2008b4b511e27ca1788 [file] [log] [blame]
/*
* Copyright (c) 2023 ITE Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ite_it82xx2_usb
#include <zephyr/kernel.h>
#include <zephyr/usb/usb_device.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
#include <soc_dt.h>
#include <string.h>
#include <zephyr/irq.h>
#include <zephyr/pm/policy.h>
#include <zephyr/drivers/interrupt_controller/wuc_ite_it8xxx2.h>
#include <zephyr/dt-bindings/interrupt-controller/it8xxx2-wuc.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(usb_dc_it82xx2, CONFIG_USB_DRIVER_LOG_LEVEL);
#define IT8XXX2_IS_EXTEND_ENDPOINT(n) (USB_EP_GET_IDX(n) >= 4)
/* USB Device Controller Registers Bits & Constants */
#define IT8XXX2_USB_IRQ DT_INST_IRQ_BY_IDX(0, 0, irq)
#define IT8XXX2_WU90_IRQ DT_INST_IRQ_BY_IDX(0, 1, irq)
#define FIFO_NUM 3
#define SETUP_DATA_CNT 8
#define DC_ADDR_NULL 0x00
#define DC_ADDR_MASK 0x7F
/* The related definitions of the register EP STATUS:
* 0x41/0x45/0x49/0x4D
*/
#define EP_STATUS_ERROR 0x0F
/* The related definitions of the register dc_line_status: 0x51 */
#define RX_LINE_STATE_MASK (RX_LINE_FULL_SPD | RX_LINE_LOW_SPD)
#define RX_LINE_LOW_SPD 0x02
#define RX_LINE_FULL_SPD 0x01
#define RX_LINE_RESET 0x00
/* EPN Extend Control 2 Register Mask Definition */
#define COMPLETED_TRANS 0xF0
/* Bit [1:0] represents the TRANSACTION_TYPE as follows: */
enum it82xx2_transaction_types {
DC_SETUP_TRANS,
DC_IN_TRANS,
DC_OUTDATA_TRANS,
DC_ALL_TRANS
};
/* The bit definitions of the register EP RX/TX FIFO Control:
* EP_RX_FIFO_CONTROL: 0X64/0x84/0xA4/0xC4
* EP_TX_FIFO_CONTROL: 0X74/0x94/0xB4/0xD4
*/
#define FIFO_FORCE_EMPTY BIT(0)
/* The bit definitions of the register Host/Device Control: 0XE0 */
#define RESET_CORE BIT(1)
/* ENDPOINT[3..0]_STATUS_REG */
#define DC_STALL_SENT BIT(5)
/* DC_INTERRUPT_STATUS_REG */
#define DC_TRANS_DONE BIT(0)
#define DC_RESUME_INT BIT(1)
#define DC_RESET_EVENT BIT(2)
#define DC_SOF_RECEIVED BIT(3)
#define DC_NAK_SENT_INT BIT(4)
/* DC_CONTROL_REG */
#define DC_GLOBAL_ENABLE BIT(0)
#define DC_TX_LINE_STATE_DM BIT(1)
#define DC_DIRECT_CONTROL BIT(3)
#define DC_FULL_SPEED_LINE_POLARITY BIT(4)
#define DC_FULL_SPEED_LINE_RATE BIT(5)
#define DC_CONNECT_TO_HOST BIT(6) /* internal pull-up */
/* ENDPOINT[3..0]_CONTROL_REG */
#define ENDPOINT_EN BIT(0)
#define ENDPOINT_RDY BIT(1)
#define EP_SEND_STALL BIT(3)
enum it82xx2_ep_status {
EP_INIT = 0,
EP_CHECK,
EP_CONFIG,
EP_CONFIG_IN,
EP_CONFIG_OUT,
};
enum it82xx2_trans_type {
SETUP_TOKEN,
IN_TOKEN,
OUT_TOKEN,
};
enum it82xx2_setup_stage {
INIT_ST,
SETUP_ST,
DIN_ST,
DOUT_ST,
STATUS_ST,
STALL_SEND,
};
enum it82xx2_ep_ctrl {
EP_IN_DIRECTION_SET,
EP_STALL_SEND,
EP_STALL_CHECK,
EP_IOS_ENABLE,
EP_ENABLE,
EP_DATA_SEQ_1,
EP_DATA_SEQ_TOGGLE,
EP_READY_ENABLE,
};
struct usb_it8xxx2_wuc {
/* WUC control device structure */
const struct device *wucs;
/* WUC pin mask */
uint8_t mask;
};
struct usb_it82xx2_config {
struct usb_it82xx2_regs *const base;
const struct pinctrl_dev_config *pcfg;
const struct usb_it8xxx2_wuc *wuc_list;
};
static const struct usb_it8xxx2_wuc usb_wuc0[IT8XXX2_DT_INST_WUCCTRL_LEN(0)] =
IT8XXX2_DT_WUC_ITEMS_LIST(0);
PINCTRL_DT_INST_DEFINE(0);
static const struct usb_it82xx2_config ucfg0 = {
.base = (struct usb_it82xx2_regs *)DT_INST_REG_ADDR(0),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.wuc_list = usb_wuc0
};
struct it82xx2_endpoint_data {
usb_dc_ep_callback cb_in;
usb_dc_ep_callback cb_out;
enum it82xx2_ep_status ep_status;
enum usb_dc_ep_transfer_type ep_type;
uint16_t remaining; /* remaining bytes */
uint16_t mps;
};
struct usb_it82xx2_data {
const struct device *dev;
struct it82xx2_endpoint_data ep_data[MAX_NUM_ENDPOINTS];
enum it82xx2_setup_stage st_state; /* Setup State */
/* EP0 status */
enum it82xx2_trans_type last_token;
/* EP0 status */
enum it82xx2_trans_type now_token;
uint8_t attached;
uint8_t addr;
bool no_data_ctrl;
bool suspended;
usb_dc_status_callback usb_status_cb;
/* FIFO_1/2/3 ready status */
bool fifo_ready[3];
struct k_sem fifo_sem[3];
struct k_sem suspended_sem;
struct k_work_delayable check_suspended_work;
};
/* The ep_fifo_res[ep_idx % FIFO_NUM] where the FIFO_NUM is 3 represents the
* EP mapping because when (ep_idx % FIFO_NUM) is 3, it actually means the EP0.
*/
static const uint8_t ep_fifo_res[3] = {3, 1, 2};
static struct usb_it82xx2_data udata0;
static struct usb_it82xx2_regs *it82xx2_get_usb_regs(void)
{
const struct device *dev = DEVICE_DT_GET(DT_NODELABEL(usb0));
const struct usb_it82xx2_config *cfg = dev->config;
struct usb_it82xx2_regs *const usb_regs = cfg->base;
return usb_regs;
}
static void it82xx2_enable_sof_int(bool enable)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
usb_regs->dc_interrupt_status = DC_SOF_RECEIVED;
if (enable) {
usb_regs->dc_interrupt_mask |= DC_SOF_RECEIVED;
} else {
usb_regs->dc_interrupt_mask &= ~DC_SOF_RECEIVED;
}
}
/* Standby(deep doze) mode enable/disable */
static void it82xx2_enable_standby_state(bool enable)
{
if (enable) {
pm_policy_state_lock_put(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
} else {
pm_policy_state_lock_get(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
}
}
/* WU90 (USB D+) Enable/Disable */
static void it82xx2_enable_wu90_irq(const struct device *dev, bool enable)
{
const struct usb_it82xx2_config *cfg = dev->config;
/* Clear pending interrupt */
it8xxx2_wuc_clear_status(cfg->wuc_list[0].wucs, cfg->wuc_list[0].mask);
if (enable) {
irq_enable(IT8XXX2_WU90_IRQ);
} else {
irq_disable(IT8XXX2_WU90_IRQ);
}
}
static void it82xx2_wu90_isr(const struct device *dev)
{
it82xx2_enable_wu90_irq(dev, false);
it82xx2_enable_standby_state(false);
LOG_DBG("USB D+ (WU90) Triggered");
}
/* WU90 (USB D+) Initializations */
static void it8xxx2_usb_dc_wuc_init(const struct device *dev)
{
const struct usb_it82xx2_config *cfg = dev->config;
/* Initializing the WUI */
it8xxx2_wuc_set_polarity(cfg->wuc_list[0].wucs,
cfg->wuc_list[0].mask,
WUC_TYPE_EDGE_FALLING);
it8xxx2_wuc_clear_status(cfg->wuc_list[0].wucs,
cfg->wuc_list[0].mask);
/* Enabling the WUI */
it8xxx2_wuc_enable(cfg->wuc_list[0].wucs, cfg->wuc_list[0].mask);
/* Connect WU90 (USB D+) interrupt but make it disabled initially */
IRQ_CONNECT(IT8XXX2_WU90_IRQ, 0, it82xx2_wu90_isr, 0, 0);
}
static int it82xx2_usb_fifo_ctrl(uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs = (struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
volatile uint8_t *ep_fifo_ctrl = usb_regs->fifo_regs[EP_EXT_REGS_BX].fifo_ctrl.ep_fifo_ctrl;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint8_t fifon_ctrl = (ep_fifo_res[ep_idx % FIFO_NUM] - 1) * 2;
int ret = 0;
if (ep_idx == 0) {
LOG_ERR("Invalid endpoint 0x%x", ep);
return -EINVAL;
}
if (USB_EP_DIR_IS_IN(ep) && udata0.ep_data[ep_idx].ep_status == EP_CONFIG_IN) {
if (ep_idx < 8) {
ep_fifo_ctrl[fifon_ctrl] = BIT(ep_idx);
ep_fifo_ctrl[fifon_ctrl + 1] = 0x0;
} else {
ep_fifo_ctrl[fifon_ctrl] = 0x0;
ep_fifo_ctrl[fifon_ctrl + 1] = BIT(ep_idx - 8);
}
} else if (USB_EP_DIR_IS_OUT(ep) &&
udata0.ep_data[ep_idx].ep_status == EP_CONFIG_OUT) {
if (ep_idx < 8) {
ep_fifo_ctrl[fifon_ctrl] |= BIT(ep_idx);
} else {
ep_fifo_ctrl[fifon_ctrl + 1] |= BIT(ep_idx - 8);
}
} else {
LOG_ERR("Failed to set fifo control register for ep 0x%x", ep);
ret = -EINVAL;
}
return ret;
}
static volatile void *it82xx2_get_ext_ctrl(int ep_idx, enum it82xx2_ep_ctrl ctrl)
{
uint8_t idx;
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
union epn0n1_extend_ctrl_reg *epn0n1_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_9X].ext_4_15.epn0n1_ext_ctrl;
struct epn_ext_ctrl_regs *ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
if ((ctrl == EP_IN_DIRECTION_SET) || (ctrl == EP_ENABLE)) {
idx = ((ep_idx - 4) % 3) + 1;
return &ext_ctrl[idx].epn_ext_ctrl1;
}
idx = (ep_idx - 4) / 2;
return &epn0n1_ext_ctrl[idx];
}
static int it82xx2_usb_extend_ep_ctrl(uint8_t ep, enum it82xx2_ep_ctrl ctrl, bool enable)
{
struct usb_it82xx2_regs *const usb_regs = (struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct epn_ext_ctrl_regs *ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
union epn_extend_ctrl1_reg *epn_ext_ctrl1 = NULL;
union epn0n1_extend_ctrl_reg *epn0n1_ext_ctrl = NULL;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (!IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
return -EINVAL;
}
if ((ctrl == EP_IN_DIRECTION_SET) || (ctrl == EP_ENABLE)) {
epn_ext_ctrl1 = (union epn_extend_ctrl1_reg *)it82xx2_get_ext_ctrl(ep_idx, ctrl);
} else {
epn0n1_ext_ctrl =
(union epn0n1_extend_ctrl_reg *)it82xx2_get_ext_ctrl(ep_idx, ctrl);
}
switch (ctrl) {
case EP_STALL_SEND:
if (ep_idx % 2) {
epn0n1_ext_ctrl->fields.epn1_send_stall_bit = enable;
} else {
epn0n1_ext_ctrl->fields.epn0_send_stall_bit = enable;
}
break;
case EP_STALL_CHECK:
if (ep_idx % 2) {
return epn0n1_ext_ctrl->fields.epn1_send_stall_bit;
} else {
return epn0n1_ext_ctrl->fields.epn0_send_stall_bit;
}
break;
case EP_IOS_ENABLE:
if (ep_idx % 2) {
epn0n1_ext_ctrl->fields.epn1_iso_enable_bit = enable;
} else {
epn0n1_ext_ctrl->fields.epn0_iso_enable_bit = enable;
}
break;
case EP_DATA_SEQ_1:
if (ep_idx % 2) {
epn0n1_ext_ctrl->fields.epn1_outdata_sequence_bit = enable;
} else {
epn0n1_ext_ctrl->fields.epn0_outdata_sequence_bit = enable;
}
break;
case EP_DATA_SEQ_TOGGLE:
if (!enable) {
break;
}
if (ep_idx % 2) {
if (epn0n1_ext_ctrl->fields.epn1_outdata_sequence_bit) {
epn0n1_ext_ctrl->fields.epn1_outdata_sequence_bit = 0;
} else {
epn0n1_ext_ctrl->fields.epn1_outdata_sequence_bit = 1;
}
} else {
if (epn0n1_ext_ctrl->fields.epn0_outdata_sequence_bit) {
epn0n1_ext_ctrl->fields.epn0_outdata_sequence_bit = 0;
} else {
epn0n1_ext_ctrl->fields.epn0_outdata_sequence_bit = 1;
}
}
break;
case EP_IN_DIRECTION_SET:
if (((ep_idx - 4) / 3 == 0)) {
epn_ext_ctrl1->fields.epn0_direction_bit = enable;
} else if (((ep_idx - 4) / 3 == 1)) {
epn_ext_ctrl1->fields.epn3_direction_bit = enable;
} else if (((ep_idx - 4) / 3 == 2)) {
epn_ext_ctrl1->fields.epn6_direction_bit = enable;
} else if (((ep_idx - 4) / 3 == 3)) {
epn_ext_ctrl1->fields.epn9_direction_bit = enable;
} else {
LOG_ERR("Invalid endpoint 0x%x for control type 0x%x", ep, ctrl);
return -EINVAL;
}
break;
case EP_ENABLE:
if (((ep_idx - 4) / 3 == 0)) {
epn_ext_ctrl1->fields.epn0_enable_bit = enable;
} else if (((ep_idx - 4) / 3 == 1)) {
epn_ext_ctrl1->fields.epn3_enable_bit = enable;
} else if (((ep_idx - 4) / 3 == 2)) {
epn_ext_ctrl1->fields.epn6_enable_bit = enable;
} else if (((ep_idx - 4) / 3 == 3)) {
epn_ext_ctrl1->fields.epn9_enable_bit = enable;
} else {
LOG_ERR("Invalid endpoint 0x%x for control type 0x%x", ep, ctrl);
return -EINVAL;
}
break;
case EP_READY_ENABLE:
int idx = ((ep_idx - 4) % 3) + 1;
(enable) ? (ext_ctrl[idx].epn_ext_ctrl2 |= BIT((ep_idx - 4) / 3))
: (ext_ctrl[idx].epn_ext_ctrl2 &= ~BIT((ep_idx - 4) / 3));
break;
default:
LOG_ERR("Unknown control type 0x%x", ctrl);
return -EINVAL;
}
return 0;
}
static int it82xx2_usb_ep_ctrl(uint8_t ep, enum it82xx2_ep_ctrl ctrl, bool enable)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
return -EINVAL;
}
switch (ctrl) {
case EP_IN_DIRECTION_SET:
ep_regs[ep_idx].ep_ctrl.fields.direction_bit = enable;
break;
case EP_STALL_SEND:
ep_regs[ep_idx].ep_ctrl.fields.send_stall_bit = enable;
break;
case EP_STALL_CHECK:
return ep_regs[ep_idx].ep_ctrl.fields.send_stall_bit;
case EP_IOS_ENABLE:
ep_regs[ep_idx].ep_ctrl.fields.iso_enable_bit = enable;
break;
case EP_ENABLE:
ep_regs[ep_idx].ep_ctrl.fields.enable_bit = enable;
break;
case EP_READY_ENABLE:
ep_regs[ep_idx].ep_ctrl.fields.ready_bit = enable;
break;
case EP_DATA_SEQ_1:
ep_regs[ep_idx].ep_ctrl.fields.outdata_sequence_bit = enable;
break;
case EP_DATA_SEQ_TOGGLE:
if (!enable) {
break;
}
if (ep_regs[ep_idx].ep_ctrl.fields.outdata_sequence_bit) {
ep_regs[ep_idx].ep_ctrl.fields.outdata_sequence_bit = 0;
} else {
ep_regs[ep_idx].ep_ctrl.fields.outdata_sequence_bit = 1;
}
break;
default:
LOG_ERR("Unknown control type 0x%x", ctrl);
return -EINVAL;
}
return 0;
}
static int it82xx2_usb_set_ep_ctrl(uint8_t ep, enum it82xx2_ep_ctrl ctrl, bool enable)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
int ret = 0;
if (IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
ret = it82xx2_usb_extend_ep_ctrl(ep, ctrl, enable);
} else {
ret = it82xx2_usb_ep_ctrl(ep, ctrl, enable);
}
return ret;
}
static int it82xx2_usb_dc_ip_init(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
/* Reset Device Controller */
usb_regs->host_device_control = RESET_CORE;
k_msleep(1);
usb_regs->port0_misc_control &= ~(PULL_DOWN_EN);
usb_regs->port1_misc_control &= ~(PULL_DOWN_EN);
/* clear reset bit */
usb_regs->host_device_control = 0;
usb_regs->dc_interrupt_status =
DC_TRANS_DONE | DC_RESET_EVENT | DC_SOF_RECEIVED;
usb_regs->dc_interrupt_mask = 0x00;
usb_regs->dc_interrupt_mask =
DC_TRANS_DONE | DC_RESET_EVENT | DC_SOF_RECEIVED;
usb_regs->dc_address = DC_ADDR_NULL;
return 0;
}
static int it82xx2_usb_dc_attach_init(void)
{
struct gctrl_it8xxx2_regs *const gctrl_regs = GCTRL_IT8XXX2_REGS_BASE;
/*
* Disable USB debug path , prevent CPU enter
* JTAG mode and then reset by USB command.
*/
gctrl_regs->GCTRL_MCCR &= ~(IT8XXX2_GCTRL_MCCR_USB_EN);
gctrl_regs->gctrl_pmer2 |= IT8XXX2_GCTRL_PMER2_USB_PAD_EN;
return it82xx2_usb_dc_ip_init();
}
/* Check the condition that SETUP_TOKEN following OUT_TOKEN and return it */
static bool it82xx2_check_setup_following_out(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
return ((ep_regs[EP0].ep_transtype_sts & DC_ALL_TRANS) == 0 ||
(udata0.last_token == IN_TOKEN &&
ff_regs[EP0].ep_rx_fifo_dcnt_lsb == SETUP_DATA_CNT));
}
static inline void it82xx2_handler_setup(uint8_t fifo_idx, uint8_t ep_ctrl)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = fifo_idx;
/* wrong trans */
if (ep_ctrl & EP_SEND_STALL) {
ep_regs[fifo_idx].ep_ctrl.fields.send_stall_bit = 0;
udata0.st_state = STALL_SEND;
ff_regs[fifo_idx].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
LOG_DBG("Clear Stall Bit & RX FIFO");
return;
}
if (udata0.st_state == DIN_ST) {
/* setup -> in(data) -> out(status) */
udata0.last_token = udata0.now_token;
udata0.now_token = OUT_TOKEN;
udata0.st_state = STATUS_ST;
udata0.ep_data[ep_idx].cb_out(ep_idx | USB_EP_DIR_OUT, USB_DC_EP_DATA_OUT);
} else if (udata0.st_state == DOUT_ST || udata0.st_state == SETUP_ST) {
/* setup -> out(data) -> in(status)
* or
* setup -> in(status)
*/
udata0.last_token = udata0.now_token;
udata0.now_token = IN_TOKEN;
udata0.st_state = STATUS_ST;
udata0.ep_data[ep_idx].cb_in(ep_idx | USB_EP_DIR_IN, USB_DC_EP_DATA_IN);
}
udata0.last_token = udata0.now_token;
udata0.now_token = SETUP_TOKEN;
udata0.st_state = SETUP_ST;
ep_regs[fifo_idx].ep_ctrl.fields.outdata_sequence_bit = 1;
udata0.ep_data[ep_idx].cb_out(ep_idx | USB_EP_DIR_OUT, USB_DC_EP_SETUP);
/* Set ready bit to no-data control in */
if (udata0.no_data_ctrl) {
ep_regs[fifo_idx].ep_ctrl.fields.ready_bit = 1;
udata0.no_data_ctrl = false;
}
}
static inline void it82xx2_handler_in(uint8_t fifo_idx, uint8_t ep_ctrl)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
volatile struct epn_ext_ctrl_regs *epn_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
uint8_t ep_idx;
if (fifo_idx != 0) {
if (!udata0.fifo_ready[fifo_idx - 1]) {
return;
}
ep_idx = (epn_ext_ctrl[fifo_idx].epn_ext_ctrl2 & COMPLETED_TRANS) >> 4;
if (ep_idx == 0 || udata0.ep_data[ep_idx].ep_status != EP_CONFIG_IN) {
return;
}
udata0.fifo_ready[fifo_idx - 1] = false;
} else {
ep_idx = 0;
if (ep_ctrl & EP_SEND_STALL) {
ep_regs[fifo_idx].ep_ctrl.fields.send_stall_bit = 0;
udata0.st_state = STALL_SEND;
LOG_DBG("Clear Stall Bit");
return;
}
if (udata0.st_state >= STATUS_ST) {
return;
}
udata0.last_token = udata0.now_token;
udata0.now_token = IN_TOKEN;
if (udata0.addr != DC_ADDR_NULL &&
udata0.addr != usb_regs->dc_address) {
usb_regs->dc_address = udata0.addr;
LOG_DBG("Address Is Set Successfully");
}
if (udata0.st_state == DOUT_ST) {
/* setup -> out(data) -> in(status) */
udata0.st_state = STATUS_ST;
} else if (udata0.ep_data[ep_idx].remaining == 0 &&
udata0.st_state == SETUP_ST) {
/* setup -> in(status) */
udata0.st_state = STATUS_ST;
} else {
/* setup -> in(data) */
udata0.st_state = DIN_ST;
}
}
it82xx2_usb_set_ep_ctrl(ep_idx, EP_DATA_SEQ_TOGGLE, true);
if (udata0.ep_data[ep_idx].cb_in) {
udata0.ep_data[ep_idx].cb_in(ep_idx | USB_EP_DIR_IN, USB_DC_EP_DATA_IN);
}
if (fifo_idx != 0) {
k_sem_give(&udata0.fifo_sem[fifo_idx - 1]);
} else {
if (udata0.st_state == DIN_ST && udata0.ep_data[ep_idx].remaining == 0) {
ep_regs[fifo_idx].ep_ctrl.fields.ready_bit = 1;
}
}
}
static inline void it82xx2_handler_out(uint8_t fifo_idx)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
volatile struct epn_ext_ctrl_regs *epn_ext_ctrl =
usb_regs->fifo_regs[EP_EXT_REGS_DX].ext_0_3.epn_ext_ctrl;
uint8_t ep_idx;
if (fifo_idx != 0) {
if (!udata0.fifo_ready[fifo_idx - 1]) {
return;
}
ep_idx = (epn_ext_ctrl[fifo_idx].epn_ext_ctrl2 & COMPLETED_TRANS) >> 4;
if (ep_idx == 0 || udata0.ep_data[ep_idx].ep_status != EP_CONFIG_OUT) {
return;
}
udata0.fifo_ready[fifo_idx - 1] = false;
} else {
ep_idx = 0;
/* ep0 wrong enter check */
if (udata0.st_state >= STATUS_ST) {
return;
}
udata0.last_token = udata0.now_token;
udata0.now_token = OUT_TOKEN;
if (udata0.st_state == SETUP_ST) {
/* setup -> out(data) */
udata0.st_state = DOUT_ST;
} else {
/* setup -> in(data) -> out(status) */
udata0.st_state = STATUS_ST;
}
}
if (udata0.ep_data[ep_idx].cb_out) {
udata0.ep_data[ep_idx].cb_out(ep_idx, USB_DC_EP_DATA_OUT);
}
if (fifo_idx == 0) {
/* SETUP_TOKEN follow OUT_TOKEN */
if (it82xx2_check_setup_following_out()) {
udata0.last_token = udata0.now_token;
udata0.now_token = SETUP_TOKEN;
udata0.st_state = SETUP_ST;
ep_regs[fifo_idx].ep_ctrl.fields.outdata_sequence_bit = 1;
udata0.ep_data[ep_idx].cb_out(ep_idx | USB_EP_DIR_OUT, USB_DC_EP_SETUP);
if (udata0.no_data_ctrl) {
ep_regs[fifo_idx].ep_ctrl.fields.ready_bit = 1;
udata0.no_data_ctrl = false;
}
}
}
}
static void it82xx2_usb_dc_trans_done(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
for (uint8_t fifo_idx = 0; fifo_idx < 4; fifo_idx++) {
uint8_t ep_ctrl = ep_regs[fifo_idx].ep_ctrl.value;
/* check ready bit ,will be 0 when trans done */
if ((ep_ctrl & ENDPOINT_EN) && !(ep_ctrl & ENDPOINT_RDY)) {
switch (ep_regs[fifo_idx].ep_transtype_sts & DC_ALL_TRANS) {
case DC_SETUP_TRANS:
if (fifo_idx == 0) {
it82xx2_handler_setup(fifo_idx, ep_ctrl);
}
break;
case DC_IN_TRANS:
it82xx2_handler_in(fifo_idx, ep_ctrl);
break;
case DC_OUTDATA_TRANS:
it82xx2_handler_out(fifo_idx);
break;
default:
break;
}
}
}
}
static void it82xx2_usb_dc_isr(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
uint8_t status = usb_regs->dc_interrupt_status &
usb_regs->dc_interrupt_mask; /* mask non enable int */
/* reset */
if (status & DC_RESET_EVENT) {
if ((usb_regs->dc_line_status & RX_LINE_STATE_MASK) ==
RX_LINE_RESET) {
usb_dc_reset();
usb_regs->dc_interrupt_status = DC_RESET_EVENT;
return;
} else {
usb_regs->dc_interrupt_status = DC_RESET_EVENT;
}
}
/* sof received */
if (status & DC_SOF_RECEIVED) {
it82xx2_enable_sof_int(false);
k_work_reschedule(&udata0.check_suspended_work, K_MSEC(5));
}
/* transaction done */
if (status & DC_TRANS_DONE) {
/* clear interrupt before new transaction */
usb_regs->dc_interrupt_status = DC_TRANS_DONE;
it82xx2_usb_dc_trans_done();
return;
}
}
static void suspended_check_handler(struct k_work *item)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(item);
struct usb_it82xx2_data *udata =
CONTAINER_OF(dwork, struct usb_it82xx2_data, check_suspended_work);
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
if (usb_regs->dc_interrupt_status & DC_SOF_RECEIVED) {
usb_regs->dc_interrupt_status = DC_SOF_RECEIVED;
if (udata->suspended) {
if (udata->usb_status_cb) {
(*(udata->usb_status_cb))(USB_DC_RESUME, NULL);
}
udata->suspended = false;
k_sem_give(&udata->suspended_sem);
}
k_work_reschedule(&udata->check_suspended_work, K_MSEC(5));
return;
}
it82xx2_enable_sof_int(true);
if (!udata->suspended) {
if (udata->usb_status_cb) {
(*(udata->usb_status_cb))(USB_DC_SUSPEND, NULL);
}
udata->suspended = true;
it82xx2_enable_wu90_irq(udata->dev, true);
it82xx2_enable_standby_state(true);
k_sem_reset(&udata->suspended_sem);
}
}
/*
* USB Device Controller API
*/
int usb_dc_attach(void)
{
int ret;
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
if (udata0.attached) {
LOG_DBG("Already Attached");
return 0;
}
LOG_DBG("Attached");
ret = it82xx2_usb_dc_attach_init();
if (ret) {
return ret;
}
for (uint8_t idx = 0; idx < MAX_NUM_ENDPOINTS; idx++) {
udata0.ep_data[idx].ep_status = EP_INIT;
}
udata0.attached = 1U;
/* init fifo ready status */
udata0.fifo_ready[0] = false;
udata0.fifo_ready[1] = false;
udata0.fifo_ready[2] = false;
k_sem_init(&udata0.fifo_sem[0], 1, 1);
k_sem_init(&udata0.fifo_sem[1], 1, 1);
k_sem_init(&udata0.fifo_sem[2], 1, 1);
k_sem_init(&udata0.suspended_sem, 0, 1);
k_work_init_delayable(&udata0.check_suspended_work, suspended_check_handler);
/* Connect USB interrupt */
IRQ_CONNECT(IT8XXX2_USB_IRQ, 0, it82xx2_usb_dc_isr, 0, 0);
usb_regs->dc_control =
DC_GLOBAL_ENABLE | DC_FULL_SPEED_LINE_POLARITY |
DC_FULL_SPEED_LINE_RATE | DC_CONNECT_TO_HOST;
/* Enable USB D+ and USB interrupts */
it82xx2_enable_wu90_irq(udata0.dev, true);
irq_enable(IT8XXX2_USB_IRQ);
return 0;
}
int usb_dc_detach(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
if (!udata0.attached) {
LOG_DBG("Already Detached");
return 0;
}
LOG_DBG("Detached");
irq_disable(IT8XXX2_USB_IRQ);
/* stop pull-up D+ D-*/
usb_regs->dc_control &= ~DC_CONNECT_TO_HOST;
udata0.attached = 0U;
return 0;
}
int usb_dc_reset(void)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
LOG_DBG("USB Device Reset");
ff_regs[EP0].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
ff_regs[EP0].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
for (uint8_t idx = 1; idx < 4; idx++) {
if (udata0.ep_data[idx].ep_status > EP_CHECK) {
ff_regs[idx].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
ff_regs[idx].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
}
}
ep_regs[0].ep_ctrl.value = ENDPOINT_EN;
usb_regs->dc_address = DC_ADDR_NULL;
udata0.addr = DC_ADDR_NULL;
usb_regs->dc_interrupt_status = DC_NAK_SENT_INT | DC_SOF_RECEIVED;
if (udata0.usb_status_cb) {
(*(udata0.usb_status_cb))(USB_DC_RESET, NULL);
}
return 0;
}
int usb_dc_set_address(const uint8_t addr)
{
LOG_DBG("Set Address(0x%02x) to Data", addr);
udata0.addr = addr & DC_ADDR_MASK;
return 0;
}
void usb_dc_set_status_callback(const usb_dc_status_callback cb)
{
udata0.usb_status_cb = cb;
}
int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data * const cfg)
{
uint8_t ep_idx = USB_EP_GET_IDX(cfg->ep_addr);
bool in = USB_EP_DIR_IS_IN(cfg->ep_addr);
if ((cfg->ep_type == USB_DC_EP_CONTROL) && ep_idx > EP0) {
LOG_ERR("Invalid Endpoint Configuration");
return -EINVAL;
}
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_WRN("Invalid Endpoint Number 0x%02x", cfg->ep_addr);
return -EINVAL;
}
if ((ep_idx != 0) && (!in && ep_idx % FIFO_NUM != 2)) {
LOG_WRN("Invalid Endpoint Number 0x%02x", cfg->ep_addr);
return -EINVAL;
}
if ((ep_idx != 0) && (in && ep_idx % FIFO_NUM == 2)) {
LOG_WRN("Invalid Endpoint Number 0x%02x", cfg->ep_addr);
return -EINVAL;
}
if (udata0.ep_data[ep_idx].ep_status > EP_INIT) {
LOG_WRN("EP%d have been used", ep_idx);
return -EINVAL;
}
if (ep_idx > EP0) {
udata0.ep_data[ep_idx].mps = cfg->ep_mps;
}
udata0.ep_data[ep_idx].ep_status = EP_CHECK;
LOG_DBG("Check cap(%02x)", cfg->ep_addr);
return 0;
}
int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const cfg)
{
uint8_t ep_idx = USB_EP_GET_IDX(cfg->ep_addr);
bool in = USB_EP_DIR_IS_IN(cfg->ep_addr);
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_DBG("Not attached / Invalid Endpoint: 0x%X", cfg->ep_addr);
return -EINVAL;
}
if (!cfg->ep_mps) {
LOG_DBG("Wrong EP or Descriptor");
return -EINVAL;
}
udata0.ep_data[ep_idx].ep_status = EP_CONFIG;
udata0.ep_data[ep_idx].mps = cfg->ep_mps;
LOG_DBG("ep_status: %d, mps: %d",
udata0.ep_data[ep_idx].ep_status, udata0.ep_data[ep_idx].mps);
if (!(ep_idx > EP0)) {
return 0;
}
it82xx2_usb_set_ep_ctrl(ep_idx, EP_IN_DIRECTION_SET, in);
if (in) {
if (IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
it82xx2_usb_extend_ep_ctrl(ep_idx, EP_DATA_SEQ_1, false);
}
udata0.ep_data[ep_idx].ep_status = EP_CONFIG_IN;
} else {
udata0.ep_data[ep_idx].ep_status = EP_CONFIG_OUT;
it82xx2_usb_fifo_ctrl(cfg->ep_addr);
}
switch (cfg->ep_type) {
case USB_DC_EP_CONTROL:
return -EINVAL;
case USB_DC_EP_ISOCHRONOUS:
it82xx2_usb_set_ep_ctrl(ep_idx, EP_IOS_ENABLE, true);
break;
case USB_DC_EP_BULK:
__fallthrough;
case USB_DC_EP_INTERRUPT:
__fallthrough;
default:
it82xx2_usb_set_ep_ctrl(ep_idx, EP_IOS_ENABLE, false);
break;
}
udata0.ep_data[ep_idx].ep_type = cfg->ep_type;
LOG_DBG("EP%d Configured: 0x%2X(%d)", ep_idx, !!(in), cfg->ep_type);
return 0;
}
int usb_dc_ep_set_callback(const uint8_t ep, const usb_dc_ep_callback cb)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d)Not attached / Invalid endpoint: EP 0x%x",
__LINE__, ep);
return -EINVAL;
}
if (cb == NULL) {
LOG_ERR("(%d): NO callback function", __LINE__);
return -EINVAL;
}
LOG_DBG("EP%d set callback: %d", ep_idx, !!(ep & USB_EP_DIR_IN));
if (USB_EP_DIR_IS_IN(ep)) {
udata0.ep_data[ep_idx].cb_in = cb;
} else {
udata0.ep_data[ep_idx].cb_out = cb;
}
return 0;
}
int usb_dc_ep_enable(const uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
int ret = 0;
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("Not attached / Invalid endpoint: EP 0x%x", ep_idx);
return -EINVAL;
}
if (IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
uint8_t ep_fifo = ep_fifo_res[ep_idx % FIFO_NUM];
it82xx2_usb_set_ep_ctrl(ep_fifo, EP_ENABLE, true);
}
ret = it82xx2_usb_set_ep_ctrl(ep_idx, EP_ENABLE, true);
if (ret < 0) {
return ret;
}
LOG_DBG("Endpoint 0x%02x is enabled", ep);
return 0;
}
int usb_dc_ep_disable(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (!udata0.attached || ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("Not attached / Invalid endpoint: EP 0x%x", ep_idx);
return -EINVAL;
}
return it82xx2_usb_set_ep_ctrl(ep_idx, EP_ENABLE, false);
}
int usb_dc_ep_set_stall(const uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
struct gctrl_it8xxx2_regs *const gctrl_regs = GCTRL_IT8XXX2_REGS_BASE;
if (ep_idx >= MAX_NUM_ENDPOINTS) {
return -EINVAL;
}
it82xx2_usb_set_ep_ctrl(ep_idx, EP_STALL_SEND, true);
if (ep_idx == 0) {
uint32_t idx = 0;
ep_regs[ep_idx].ep_ctrl.fields.ready_bit = 1;
/* polling if stall send for 3ms */
while (idx < 198 &&
!(ep_regs[ep_idx].ep_status & DC_STALL_SENT)) {
/* wait 15.15us */
gctrl_regs->GCTRL_WNCKR = 0;
idx++;
}
if (idx < 198) {
ep_regs[ep_idx].ep_ctrl.fields.send_stall_bit = 0;
}
udata0.no_data_ctrl = false;
udata0.st_state = STALL_SEND;
}
LOG_DBG("EP(%d) ctrl: 0x%02x", ep_idx, ep_regs[ep_idx].ep_ctrl.value);
LOG_DBG("EP(%d) Set Stall", ep_idx);
return 0;
}
int usb_dc_ep_clear_stall(const uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= MAX_NUM_ENDPOINTS) {
return -EINVAL;
}
it82xx2_usb_set_ep_ctrl(ep_idx, EP_STALL_SEND, false);
LOG_DBG("EP(%d) clear stall", ep_idx);
return 0;
}
int usb_dc_ep_is_stalled(const uint8_t ep, uint8_t *stalled)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if ((!stalled) || (ep_idx >= MAX_NUM_ENDPOINTS)) {
return -EINVAL;
}
*stalled = it82xx2_usb_set_ep_ctrl(ep_idx, EP_STALL_CHECK, true);
return 0;
}
int usb_dc_ep_halt(uint8_t ep)
{
return usb_dc_ep_set_stall(ep);
}
int usb_dc_ep_flush(uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint8_t ep_fifo = (ep_idx > 0) ? (ep_fifo_res[ep_idx % FIFO_NUM]) : 0;
if (ep_idx >= MAX_NUM_ENDPOINTS) {
return -EINVAL;
}
if (USB_EP_DIR_IS_IN(ep)) {
ff_regs[ep_fifo].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
} else {
ff_regs[ep_fifo].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
}
return 0;
}
int usb_dc_ep_write(uint8_t ep, const uint8_t *buf,
uint32_t data_len, uint32_t *ret_bytes)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint8_t ep_fifo = (ep_idx > 0) ? (ep_fifo_res[ep_idx % FIFO_NUM]) : 0;
if (ep_idx >= MAX_NUM_ENDPOINTS) {
return -EINVAL;
}
if (ep_idx == EP0) {
if ((udata0.now_token == SETUP_TOKEN) && (data_len == 0)) {
return 0;
}
/* clear fifo before write*/
ff_regs[ep_idx].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
if (udata0.st_state == SETUP_ST) {
udata0.st_state = DIN_ST;
}
} else {
k_sem_take(&udata0.fifo_sem[ep_fifo - 1], K_FOREVER);
it82xx2_usb_fifo_ctrl(ep);
}
if (data_len > udata0.ep_data[ep_idx].mps) {
for (uint32_t idx = 0; idx < udata0.ep_data[ep_idx].mps; idx++) {
ff_regs[ep_fifo].ep_tx_fifo_data = buf[idx];
}
*ret_bytes = udata0.ep_data[ep_idx].mps;
udata0.ep_data[ep_idx].remaining =
data_len - udata0.ep_data[ep_idx].mps;
LOG_DBG("data_len: %d, Write Max Packets to TX FIFO(%d)",
data_len, ep_idx);
} else {
for (uint32_t idx = 0; idx < data_len; idx++) {
ff_regs[ep_fifo].ep_tx_fifo_data = buf[idx];
}
*ret_bytes = data_len;
udata0.ep_data[ep_idx].remaining = 0;
LOG_DBG("Write %d Packets to TX FIFO(%d)", data_len, ep_idx);
}
if (IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
it82xx2_usb_extend_ep_ctrl(ep_idx, EP_READY_ENABLE, true);
}
ep_regs[ep_fifo].ep_ctrl.fields.ready_bit = 1;
if (ep_fifo > EP0) {
udata0.fifo_ready[ep_fifo - 1] = true;
}
LOG_DBG("Set EP%d Ready(%d)", ep_idx, __LINE__);
return 0;
}
/* Read data from an OUT endpoint */
int usb_dc_ep_read(uint8_t ep, uint8_t *buf, uint32_t max_data_len,
uint32_t *read_bytes)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint8_t ep_fifo = (ep_idx > 0) ? (ep_fifo_res[ep_idx % FIFO_NUM]) : 0;
uint16_t rx_fifo_len;
if (ep_idx >= MAX_NUM_ENDPOINTS) {
return -EINVAL;
}
if (ep_regs[ep_fifo].ep_status & EP_STATUS_ERROR) {
LOG_WRN("fifo_%d error status: 0x%02x", ep_fifo, ep_regs[ep_fifo].ep_status);
}
if (max_data_len == 0) {
*read_bytes = 0;
if (ep_idx > 0) {
ep_regs[ep_idx].ep_ctrl.fields.ready_bit = 1;
}
return 0;
}
rx_fifo_len = (uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_lsb +
(((uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_msb) << 8);
if (ep_idx == 0) {
/* Prevent wrong read_bytes cause memory error
* if EP0 is in OUT status stage
*/
if (udata0.st_state == STATUS_ST) {
*read_bytes = 0;
return 0;
} else if (udata0.now_token == SETUP_TOKEN) {
if (rx_fifo_len == 0) {
LOG_ERR("Setup length 0, reset to 8");
rx_fifo_len = 8;
}
if (rx_fifo_len != 8) {
LOG_ERR("Setup length: %d", rx_fifo_len);
ff_regs[0].ep_rx_fifo_ctrl = FIFO_FORCE_EMPTY;
return -EIO;
}
}
}
if (rx_fifo_len > max_data_len) {
*read_bytes = max_data_len;
for (uint32_t idx = 0; idx < max_data_len; idx++) {
buf[idx] = ff_regs[ep_fifo].ep_rx_fifo_data;
}
LOG_DBG("Read Max (%d) Packets", max_data_len);
} else {
*read_bytes = rx_fifo_len;
for (uint32_t idx = 0; idx < rx_fifo_len; idx++) {
buf[idx] = ff_regs[ep_fifo].ep_rx_fifo_data;
}
if (ep_fifo == 0 &&
udata0.now_token == SETUP_TOKEN) {
LOG_DBG("RX buf: (%x)(%x)(%x)(%x)(%x)(%x)(%x)(%x)",
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7]);
}
if (ep_fifo > EP0) {
ep_regs[ep_fifo].ep_ctrl.fields.ready_bit = 1;
if (IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
it82xx2_usb_extend_ep_ctrl(ep_idx, EP_READY_ENABLE, true);
}
udata0.fifo_ready[ep_fifo - 1] = true;
} else if (udata0.now_token == SETUP_TOKEN) {
if (!(buf[0] & USB_EP_DIR_MASK)) {
/* request type: host-to-device transfer direction */
ff_regs[0].ep_tx_fifo_ctrl = FIFO_FORCE_EMPTY;
if (buf[6] != 0 || buf[7] != 0) {
/* set status IN after data OUT */
ep_regs[0].ep_ctrl.fields.outdata_sequence_bit = 1;
ep_regs[0].ep_ctrl.fields.ready_bit = 1;
} else {
/* no_data_ctrl status */
udata0.no_data_ctrl = true;
}
}
}
}
return 0;
}
int usb_dc_ep_read_wait(uint8_t ep, uint8_t *buf, uint32_t max_data_len,
uint32_t *read_bytes)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
struct it82xx2_usb_ep_fifo_regs *ff_regs = usb_regs->fifo_regs;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint8_t ep_fifo = (ep_idx > 0) ? (ep_fifo_res[ep_idx % FIFO_NUM]) : 0;
uint16_t rx_fifo_len;
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d): Wrong Endpoint Index/Address", __LINE__);
return -EINVAL;
}
if (USB_EP_DIR_IS_IN(ep)) {
LOG_ERR("Wrong Endpoint Direction");
return -EINVAL;
}
if (ep_regs[ep_fifo].ep_status & EP_STATUS_ERROR) {
LOG_WRN("fifo_%d error status(%02x)", ep_fifo, ep_regs[ep_fifo].ep_status);
}
rx_fifo_len = (uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_lsb +
(((uint16_t)ff_regs[ep_fifo].ep_rx_fifo_dcnt_msb) << 8);
LOG_DBG("ep_read_wait (EP: %d), len: %d", ep_idx, rx_fifo_len);
*read_bytes = (rx_fifo_len > max_data_len) ?
max_data_len : rx_fifo_len;
for (uint32_t idx = 0; idx < *read_bytes; idx++) {
buf[idx] = ff_regs[ep_fifo].ep_rx_fifo_data;
}
LOG_DBG("Read %d packets", *read_bytes);
return 0;
}
int usb_dc_ep_read_continue(uint8_t ep)
{
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
struct it82xx2_usb_ep_regs *ep_regs = usb_regs->usb_ep_regs;
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint8_t ep_fifo = (ep_idx > 0) ? (ep_fifo_res[ep_idx % FIFO_NUM]) : 0;
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d): Wrong Endpoint Index/Address", __LINE__);
return -EINVAL;
}
if (USB_EP_DIR_IS_IN(ep)) {
LOG_ERR("Wrong Endpoint Direction");
return -EINVAL;
}
if (IT8XXX2_IS_EXTEND_ENDPOINT(ep_idx)) {
it82xx2_usb_extend_ep_ctrl(ep_idx, EP_READY_ENABLE, true);
}
ep_regs[ep_fifo].ep_ctrl.fields.ready_bit = 1;
udata0.fifo_ready[ep_fifo - 1] = true;
LOG_DBG("EP(%d) Read Continue", ep_idx);
return 0;
}
int usb_dc_ep_mps(const uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= MAX_NUM_ENDPOINTS) {
LOG_ERR("(%d): Wrong Endpoint Index/Address", __LINE__);
return -EINVAL;
}
/* Not configured, return length 0 */
if (udata0.ep_data[ep_idx].ep_status < EP_CONFIG) {
LOG_WRN("(%d)EP not set", __LINE__);
return 0;
}
return udata0.ep_data[ep_idx].mps;
}
int usb_dc_wakeup_request(void)
{
int ret;
struct usb_it82xx2_regs *const usb_regs =
(struct usb_it82xx2_regs *)it82xx2_get_usb_regs();
if (udata0.suspended) {
usb_regs->dc_control =
DC_GLOBAL_ENABLE | DC_FULL_SPEED_LINE_POLARITY |
DC_FULL_SPEED_LINE_RATE | DC_DIRECT_CONTROL |
DC_TX_LINE_STATE_DM | DC_CONNECT_TO_HOST;
/* The remote wakeup device must hold the resume signal for */
/* at least 1 ms but for no more than 15 ms */
k_msleep(2);
usb_regs->dc_control =
DC_GLOBAL_ENABLE | DC_FULL_SPEED_LINE_POLARITY |
DC_FULL_SPEED_LINE_RATE | DC_CONNECT_TO_HOST;
ret = k_sem_take(&udata0.suspended_sem, K_MSEC(500));
if (ret < 0) {
LOG_ERR("failed to wake up host");
}
}
return 0;
}
static int it82xx2_usb_dc_init(const struct device *dev)
{
const struct usb_it82xx2_config *cfg = dev->config;
int status = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (status < 0) {
LOG_ERR("Failed to configure USB pins");
return status;
}
/* Initializing WU90 (USB D+) */
it8xxx2_usb_dc_wuc_init(dev);
udata0.dev = dev;
return 0;
}
DEVICE_DT_INST_DEFINE(0,
&it82xx2_usb_dc_init,
NULL,
&udata0,
&ucfg0,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
NULL);