blob: 276912f6496956e851c62b373fe9483338cfdb1a [file] [log] [blame]
/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Kernel initialization module
*
* This module contains routines that are used to initialize the kernel.
*/
#include <zephyr.h>
#include <offsets_short.h>
#include <kernel.h>
#include <misc/printk.h>
#include <misc/stack.h>
#include <random/rand32.h>
#include <linker/sections.h>
#include <toolchain.h>
#include <kernel_structs.h>
#include <device.h>
#include <init.h>
#include <linker/linker-defs.h>
#include <ksched.h>
#include <version.h>
#include <string.h>
#include <misc/dlist.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <entropy.h>
#include <logging/log_ctrl.h>
#include <tracing.h>
#include <stdbool.h>
#include <misc/gcov.h>
#define IDLE_THREAD_NAME "idle"
#define LOG_LEVEL CONFIG_KERNEL_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(kernel);
/* boot banner items */
#if defined(CONFIG_MULTITHREADING) && defined(CONFIG_BOOT_DELAY) \
&& CONFIG_BOOT_DELAY > 0
#define BOOT_DELAY_BANNER " (delayed boot " \
STRINGIFY(CONFIG_BOOT_DELAY) "ms)"
#else
#define BOOT_DELAY_BANNER ""
#endif
#ifdef BUILD_VERSION
#define BOOT_BANNER "Booting Zephyr OS " \
STRINGIFY(BUILD_VERSION) BOOT_DELAY_BANNER
#else
#define BOOT_BANNER "Booting Zephyr OS " \
KERNEL_VERSION_STRING BOOT_DELAY_BANNER
#endif
#if !defined(CONFIG_BOOT_BANNER)
#define PRINT_BOOT_BANNER() do { } while (false)
#else
#define PRINT_BOOT_BANNER() printk("***** " BOOT_BANNER " *****\n")
#endif
/* boot time measurement items */
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
u64_t __noinit __start_time_stamp; /* timestamp when kernel starts */
u64_t __noinit __main_time_stamp; /* timestamp when main task starts */
u64_t __noinit __idle_time_stamp; /* timestamp when CPU goes idle */
#endif
/* init/main and idle threads */
#define IDLE_STACK_SIZE CONFIG_IDLE_STACK_SIZE
#define MAIN_STACK_SIZE CONFIG_MAIN_STACK_SIZE
K_THREAD_STACK_DEFINE(_main_stack, MAIN_STACK_SIZE);
K_THREAD_STACK_DEFINE(_idle_stack, IDLE_STACK_SIZE);
static struct k_thread _main_thread_s;
static struct k_thread _idle_thread_s;
k_tid_t const _main_thread = (k_tid_t)&_main_thread_s;
k_tid_t const _idle_thread = (k_tid_t)&_idle_thread_s;
/*
* storage space for the interrupt stack
*
* Note: This area is used as the system stack during kernel initialization,
* since the kernel hasn't yet set up its own stack areas. The dual purposing
* of this area is safe since interrupts are disabled until the kernel context
* switches to the init thread.
*/
K_THREAD_STACK_DEFINE(_interrupt_stack, CONFIG_ISR_STACK_SIZE);
/*
* Similar idle thread & interrupt stack definitions for the
* auxiliary CPUs. The declaration macros aren't set up to define an
* array, so do it with a simple test for up to 4 processors. Should
* clean this up in the future.
*/
#if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1
K_THREAD_STACK_DEFINE(_idle_stack1, IDLE_STACK_SIZE);
static struct k_thread _idle_thread1_s;
k_tid_t const _idle_thread1 = (k_tid_t)&_idle_thread1_s;
K_THREAD_STACK_DEFINE(_interrupt_stack1, CONFIG_ISR_STACK_SIZE);
#endif
#if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 2
K_THREAD_STACK_DEFINE(_idle_stack2, IDLE_STACK_SIZE);
static struct k_thread _idle_thread2_s;
k_tid_t const _idle_thread2 = (k_tid_t)&_idle_thread2_s;
K_THREAD_STACK_DEFINE(_interrupt_stack2, CONFIG_ISR_STACK_SIZE);
#endif
#if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 3
K_THREAD_STACK_DEFINE(_idle_stack3, IDLE_STACK_SIZE);
static struct k_thread _idle_thread3_s;
k_tid_t const _idle_thread3 = (k_tid_t)&_idle_thread3_s;
K_THREAD_STACK_DEFINE(_interrupt_stack3, CONFIG_ISR_STACK_SIZE);
#endif
#ifdef CONFIG_SYS_CLOCK_EXISTS
#define initialize_timeouts() do { \
sys_dlist_init(&_timeout_q); \
} while (false)
#else
#define initialize_timeouts() do { } while ((0))
#endif
extern void idle(void *unused1, void *unused2, void *unused3);
/**
*
* @brief Clear BSS
*
* This routine clears the BSS region, so all bytes are 0.
*
* @return N/A
*/
void z_bss_zero(void)
{
(void)memset(&__bss_start, 0,
((u32_t) &__bss_end - (u32_t) &__bss_start));
#ifdef DT_CCM_BASE_ADDRESS
(void)memset(&__ccm_bss_start, 0,
((u32_t) &__ccm_bss_end - (u32_t) &__ccm_bss_start));
#endif
#ifdef CONFIG_CODE_DATA_RELOCATION
extern void bss_zeroing_relocation(void);
bss_zeroing_relocation();
#endif /* CONFIG_CODE_DATA_RELOCATION */
#ifdef CONFIG_COVERAGE_GCOV
(void)memset(&__gcov_bss_start, 0,
((u32_t) &__gcov_bss_end - (u32_t) &__gcov_bss_start));
#endif
}
#ifdef CONFIG_STACK_CANARIES
extern volatile uintptr_t __stack_chk_guard;
#endif /* CONFIG_STACK_CANARIES */
#ifdef CONFIG_XIP
/**
*
* @brief Copy the data section from ROM to RAM
*
* This routine copies the data section from ROM to RAM.
*
* @return N/A
*/
void z_data_copy(void)
{
(void)memcpy(&__data_ram_start, &__data_rom_start,
((u32_t) &__data_ram_end - (u32_t) &__data_ram_start));
#ifdef CONFIG_ARCH_HAS_RAMFUNC_SUPPORT
(void)memcpy(&_ramfunc_ram_start, &_ramfunc_rom_start,
((u32_t) &_ramfunc_ram_size));
#endif /* CONFIG_ARCH_HAS_RAMFUNC_SUPPORT */
#ifdef DT_CCM_BASE_ADDRESS
(void)memcpy(&__ccm_data_start, &__ccm_data_rom_start,
((u32_t) &__ccm_data_end - (u32_t) &__ccm_data_start));
#endif
#ifdef CONFIG_CODE_DATA_RELOCATION
extern void data_copy_xip_relocation(void);
data_copy_xip_relocation();
#endif /* CONFIG_CODE_DATA_RELOCATION */
#ifdef CONFIG_USERSPACE
#ifdef CONFIG_STACK_CANARIES
/* stack canary checking is active for all C functions.
* __stack_chk_guard is some uninitialized value living in the
* app shared memory sections. Preserve it, and don't make any
* function calls to perform the memory copy. The true canary
* value gets set later in z_cstart().
*/
uintptr_t guard_copy = __stack_chk_guard;
u8_t *src = (u8_t *)&_app_smem_rom_start;
u8_t *dst = (u8_t *)&_app_smem_start;
u32_t count = (u32_t)&_app_smem_end - (u32_t)&_app_smem_start;
guard_copy = __stack_chk_guard;
while (count > 0) {
*(dst++) = *(src++);
count--;
}
__stack_chk_guard = guard_copy;
#else
(void)memcpy(&_app_smem_start, &_app_smem_rom_start,
((u32_t) &_app_smem_end - (u32_t) &_app_smem_start));
#endif /* CONFIG_STACK_CANARIES */
#endif /* CONFIG_USERSPACE */
}
#endif
/**
*
* @brief Mainline for kernel's background thread
*
* This routine completes kernel initialization by invoking the remaining
* init functions, then invokes application's main() routine.
*
* @return N/A
*/
static void bg_thread_main(void *unused1, void *unused2, void *unused3)
{
ARG_UNUSED(unused1);
ARG_UNUSED(unused2);
ARG_UNUSED(unused3);
#if defined(CONFIG_BOOT_DELAY) && CONFIG_BOOT_DELAY > 0
static const unsigned int boot_delay = CONFIG_BOOT_DELAY;
#else
static const unsigned int boot_delay;
#endif
z_sys_device_do_config_level(_SYS_INIT_LEVEL_POST_KERNEL);
#if CONFIG_STACK_POINTER_RANDOM
z_stack_adjust_initialized = 1;
#endif
if (boot_delay > 0 && IS_ENABLED(CONFIG_MULTITHREADING)) {
printk("***** delaying boot " STRINGIFY(CONFIG_BOOT_DELAY)
"ms (per build configuration) *****\n");
k_busy_wait(CONFIG_BOOT_DELAY * USEC_PER_MSEC);
}
PRINT_BOOT_BANNER();
/* Final init level before app starts */
z_sys_device_do_config_level(_SYS_INIT_LEVEL_APPLICATION);
#ifdef CONFIG_CPLUSPLUS
/* Process the .ctors and .init_array sections */
extern void __do_global_ctors_aux(void);
extern void __do_init_array_aux(void);
__do_global_ctors_aux();
__do_init_array_aux();
#endif
z_init_static_threads();
#ifdef CONFIG_SMP
smp_init();
#endif
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
/* record timestamp for kernel's _main() function */
extern u64_t __main_time_stamp;
__main_time_stamp = (u64_t)k_cycle_get_32();
#endif
extern void main(void);
main();
/* Dump coverage data once the main() has exited. */
gcov_coverage_dump();
/* Terminate thread normally since it has no more work to do */
_main_thread->base.user_options &= ~K_ESSENTIAL;
}
void __weak main(void)
{
/* NOP default main() if the application does not provide one. */
arch_nop();
}
#if defined(CONFIG_MULTITHREADING)
static void init_idle_thread(struct k_thread *thr, k_thread_stack_t *stack)
{
#ifdef CONFIG_SMP
thr->base.is_idle = 1U;
#endif
z_setup_new_thread(thr, stack,
IDLE_STACK_SIZE, idle, NULL, NULL, NULL,
K_LOWEST_THREAD_PRIO, K_ESSENTIAL, IDLE_THREAD_NAME);
z_mark_thread_as_started(thr);
}
#endif
/**
*
* @brief Initializes kernel data structures
*
* This routine initializes various kernel data structures, including
* the init and idle threads and any architecture-specific initialization.
*
* Note that all fields of "_kernel" are set to zero on entry, which may
* be all the initialization many of them require.
*
* @return N/A
*/
#ifdef CONFIG_MULTITHREADING
static void prepare_multithreading(struct k_thread *dummy_thread)
{
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
ARG_UNUSED(dummy_thread);
#else
#ifdef CONFIG_TRACING
sys_trace_thread_switched_out();
#endif
#ifdef CONFIG_TRACING
sys_trace_thread_switched_in();
#endif
/*
* Initialize the current execution thread to permit a level of
* debugging output if an exception should happen during kernel
* initialization. However, don't waste effort initializing the
* fields of the dummy thread beyond those needed to identify it as a
* dummy thread.
*/
dummy_thread->base.user_options = K_ESSENTIAL;
dummy_thread->base.thread_state = _THREAD_DUMMY;
#ifdef CONFIG_THREAD_STACK_INFO
dummy_thread->stack_info.start = 0U;
dummy_thread->stack_info.size = 0U;
#endif
#ifdef CONFIG_USERSPACE
dummy_thread->mem_domain_info.mem_domain = 0;
#endif
#endif
/* _kernel.ready_q is all zeroes */
z_sched_init();
#ifndef CONFIG_SMP
/*
* prime the cache with the main thread since:
*
* - the cache can never be NULL
* - the main thread will be the one to run first
* - no other thread is initialized yet and thus their priority fields
* contain garbage, which would prevent the cache loading algorithm
* to work as intended
*/
_kernel.ready_q.cache = _main_thread;
#endif
z_setup_new_thread(_main_thread, _main_stack,
MAIN_STACK_SIZE, bg_thread_main,
NULL, NULL, NULL,
CONFIG_MAIN_THREAD_PRIORITY, K_ESSENTIAL, "main");
sys_trace_thread_create(_main_thread);
z_mark_thread_as_started(_main_thread);
z_ready_thread(_main_thread);
#ifdef CONFIG_MULTITHREADING
init_idle_thread(_idle_thread, _idle_stack);
_kernel.cpus[0].idle_thread = _idle_thread;
sys_trace_thread_create(_idle_thread);
#endif
#if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1
init_idle_thread(_idle_thread1, _idle_stack1);
_kernel.cpus[1].idle_thread = _idle_thread1;
_kernel.cpus[1].id = 1;
_kernel.cpus[1].irq_stack = Z_THREAD_STACK_BUFFER(_interrupt_stack1)
+ CONFIG_ISR_STACK_SIZE;
#endif
#if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 2
init_idle_thread(_idle_thread2, _idle_stack2);
_kernel.cpus[2].idle_thread = _idle_thread2;
_kernel.cpus[2].id = 2;
_kernel.cpus[2].irq_stack = Z_THREAD_STACK_BUFFER(_interrupt_stack2)
+ CONFIG_ISR_STACK_SIZE;
#endif
#if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 3
init_idle_thread(_idle_thread3, _idle_stack3);
_kernel.cpus[3].idle_thread = _idle_thread3;
_kernel.cpus[3].id = 3;
_kernel.cpus[3].irq_stack = Z_THREAD_STACK_BUFFER(_interrupt_stack3)
+ CONFIG_ISR_STACK_SIZE;
#endif
initialize_timeouts();
}
static void switch_to_main_thread(void)
{
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
z_arch_switch_to_main_thread(_main_thread, _main_stack, MAIN_STACK_SIZE,
bg_thread_main);
#else
/*
* Context switch to main task (entry function is _main()): the
* current fake thread is not on a wait queue or ready queue, so it
* will never be rescheduled in.
*/
z_swap_unlocked();
#endif
}
#endif /* CONFIG_MULTITHREADING */
u32_t z_early_boot_rand32_get(void)
{
#ifdef CONFIG_ENTROPY_HAS_DRIVER
struct device *entropy = device_get_binding(CONFIG_ENTROPY_NAME);
int rc;
u32_t retval;
if (entropy == NULL) {
goto sys_rand32_fallback;
}
/* Try to see if driver provides an ISR-specific API */
rc = entropy_get_entropy_isr(entropy, (u8_t *)&retval,
sizeof(retval), ENTROPY_BUSYWAIT);
if (rc == -ENOTSUP) {
/* Driver does not provide an ISR-specific API, assume it can
* be called from ISR context
*/
rc = entropy_get_entropy(entropy, (u8_t *)&retval,
sizeof(retval));
}
if (rc >= 0) {
return retval;
}
/* Fall through to fallback */
sys_rand32_fallback:
#endif
/* FIXME: this assumes sys_rand32_get() won't use any synchronization
* primitive, like semaphores or mutexes. It's too early in the boot
* process to use any of them. Ideally, only the path where entropy
* devices are available should be built, this is only a fallback for
* those devices without a HWRNG entropy driver.
*/
return sys_rand32_get();
}
/**
*
* @brief Initialize kernel
*
* This routine is invoked when the system is ready to run C code. The
* processor must be running in 32-bit mode, and the BSS must have been
* cleared/zeroed.
*
* @return Does not return
*/
FUNC_NORETURN void z_cstart(void)
{
/* gcov hook needed to get the coverage report.*/
gcov_static_init();
if (IS_ENABLED(CONFIG_LOG)) {
log_core_init();
}
/* perform any architecture-specific initialization */
kernel_arch_init();
#ifdef CONFIG_MULTITHREADING
struct k_thread dummy_thread = {
.base.thread_state = _THREAD_DUMMY,
# ifdef CONFIG_SCHED_CPU_MASK
.base.cpu_mask = -1,
# endif
};
_current = &dummy_thread;
#endif
#ifdef CONFIG_USERSPACE
z_app_shmem_bss_zero();
#endif
/* perform basic hardware initialization */
z_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_1);
z_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_2);
#ifdef CONFIG_STACK_CANARIES
__stack_chk_guard = z_early_boot_rand32_get();
#endif
#ifdef CONFIG_MULTITHREADING
prepare_multithreading(&dummy_thread);
switch_to_main_thread();
#else
bg_thread_main(NULL, NULL, NULL);
irq_lock();
while (true) {
}
#endif
/*
* Compiler can't tell that the above routines won't return and issues
* a warning unless we explicitly tell it that control never gets this
* far.
*/
CODE_UNREACHABLE;
}