| /* |
| * Copyright © 2021, Keith Packard <keithp@keithp.com> |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <zephyr/posix/sys/stat.h> |
| #include <sys/time.h> |
| #include <zephyr/arch/cpu.h> |
| #include <zephyr/linker/linker-defs.h> |
| #include <zephyr/sys/util.h> |
| #include <zephyr/sys/errno_private.h> |
| #include <zephyr/sys/libc-hooks.h> |
| #include <zephyr/syscall_handler.h> |
| #include <zephyr/app_memory/app_memdomain.h> |
| #include <zephyr/init.h> |
| #include <zephyr/sys/sem.h> |
| #include <zephyr/logging/log.h> |
| #ifdef CONFIG_MMU |
| #include <zephyr/sys/mem_manage.h> |
| #endif |
| |
| #define LIBC_BSS K_APP_BMEM(z_libc_partition) |
| #define LIBC_DATA K_APP_DMEM(z_libc_partition) |
| |
| #ifdef CONFIG_MMU |
| |
| /* When there is an MMU, allocate the heap at startup time */ |
| |
| # if Z_MALLOC_PARTITION_EXISTS |
| struct k_mem_partition z_malloc_partition; |
| # endif |
| |
| static LIBC_BSS unsigned char *heap_base; |
| static LIBC_BSS size_t max_heap_size; |
| |
| # define HEAP_BASE ((uintptr_t) heap_base) |
| # define MAX_HEAP_SIZE max_heap_size |
| |
| # define USE_MALLOC_PREPARE 1 |
| |
| #elif CONFIG_PICOLIBC_HEAP_SIZE == 0 |
| |
| /* No heap at all */ |
| # define HEAP_BASE 0 |
| # define MAX_HEAP_SIZE 0 |
| |
| #else /* CONFIG_PICOLIBC_HEAP_SIZE != 0 */ |
| |
| /* Figure out alignment requirement */ |
| # ifdef Z_MALLOC_PARTITION_EXISTS |
| |
| # if defined(CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT) |
| # if CONFIG_PICOLIBC_HEAP_SIZE < 0 |
| # error CONFIG_PICOLIBC_HEAP_SIZE must be defined on this target |
| # endif |
| # if (CONFIG_PICOLIBC_HEAP_SIZE & (CONFIG_PICOLIBC_HEAP_SIZE - 1)) != 0 |
| # error CONFIG_PICOLIBC_HEAP_SIZE must be power of two on this target |
| # endif |
| # define HEAP_ALIGN CONFIG_PICOLIBC_HEAP_SIZE |
| # elif defined(CONFIG_ARM) || defined(CONFIG_ARM64) |
| # define HEAP_ALIGN CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE |
| # elif defined(CONFIG_ARC) |
| # define HEAP_ALIGN Z_ARC_MPU_ALIGN |
| # elif defined(CONFIG_RISCV) |
| # define HEAP_ALIGN Z_RISCV_STACK_GUARD_SIZE |
| # else |
| /* |
| * Default to 64-bytes; we'll get a run-time error if this doesn't work. |
| */ |
| # define HEAP_ALIGN 64 |
| # endif /* CONFIG_<arch> */ |
| |
| # else /* Z_MALLOC_PARTITION_EXISTS */ |
| |
| # define HEAP_ALIGN sizeof(double) |
| |
| # endif /* else Z_MALLOC_PARTITION_EXISTS */ |
| |
| # if CONFIG_PICOLIBC_HEAP_SIZE > 0 |
| |
| /* Static allocation of heap in BSS */ |
| |
| # ifdef Z_MALLOC_PARTITION_EXISTS |
| K_APPMEM_PARTITION_DEFINE(z_malloc_partition); |
| # define MALLOC_BSS K_APP_BMEM(z_malloc_partition) |
| # else |
| # define MALLOC_BSS __noinit |
| # endif |
| |
| static MALLOC_BSS unsigned char __aligned(HEAP_ALIGN) |
| heap_base[CONFIG_PICOLIBC_HEAP_SIZE]; |
| |
| # define HEAP_BASE ((uintptr_t) heap_base) |
| # define MAX_HEAP_SIZE CONFIG_PICOLIBC_HEAP_SIZE |
| |
| # else /* CONFIG_PICOLIBC_HEAP_SIZE > 0 */ |
| |
| /* |
| * Heap base and size are determined based on the available unused SRAM, in the |
| * interval from a properly aligned address after the linker symbol `_end`, to |
| * the end of SRAM |
| */ |
| |
| # ifdef Z_MALLOC_PARTITION_EXISTS |
| /* |
| * Need to be able to program a memory protection region from HEAP_BASE to the |
| * end of RAM so that user threads can get at it. Implies that the base address |
| * needs to be suitably aligned since the bounds have to go in a |
| * k_mem_partition. |
| */ |
| struct k_mem_partition z_malloc_partition; |
| |
| # define USE_MALLOC_PREPARE 1 |
| |
| # endif /* Z_MALLOC_PARTITION_EXISTS */ |
| |
| # define USED_RAM_END_ADDR POINTER_TO_UINT(&_end) |
| |
| /* |
| * No partition, heap can just start wherever _end is, with |
| * suitable alignment |
| */ |
| |
| # define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, HEAP_ALIGN) |
| |
| # ifdef CONFIG_XTENSA |
| extern char _heap_sentry[]; |
| # define MAX_HEAP_SIZE (POINTER_TO_UINT(_heap_sentry) - HEAP_BASE) |
| # else |
| # define MAX_HEAP_SIZE (KB(CONFIG_SRAM_SIZE) - \ |
| (HEAP_BASE - CONFIG_SRAM_BASE_ADDRESS)) |
| # endif /* CONFIG_XTENSA */ |
| |
| # endif /* CONFIG_PICOLIBC_HEAP_SIZE < 0 */ |
| |
| #endif /* CONFIG_PICOLIBC_HEAP_SIZE == 0 */ |
| |
| #ifdef USE_MALLOC_PREPARE |
| |
| static int malloc_prepare(const struct device *unused) |
| { |
| ARG_UNUSED(unused); |
| |
| #ifdef CONFIG_MMU |
| |
| /* With an MMU, the heap is allocated at runtime */ |
| |
| # if CONFIG_PICOLIBC_HEAP_SIZE < 0 |
| # define MMU_MAX_HEAP_SIZE PTRDIFF_MAX |
| # else |
| # define MMU_MAX_HEAP_SIZE CONFIG_PICOLIBC_HEAP_SIZE |
| # endif |
| max_heap_size = MIN(MMU_MAX_HEAP_SIZE, |
| k_mem_free_get()); |
| |
| max_heap_size &= ~(CONFIG_MMU_PAGE_SIZE-1); |
| |
| if (max_heap_size != 0) { |
| heap_base = k_mem_map(max_heap_size, K_MEM_PERM_RW); |
| __ASSERT(heap_base != NULL, |
| "failed to allocate heap of size %zu", max_heap_size); |
| |
| } |
| #endif |
| |
| #if Z_MALLOC_PARTITION_EXISTS |
| z_malloc_partition.start = HEAP_BASE; |
| z_malloc_partition.size = MAX_HEAP_SIZE; |
| z_malloc_partition.attr = K_MEM_PARTITION_P_RW_U_RW; |
| #endif |
| return 0; |
| } |
| |
| SYS_INIT(malloc_prepare, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); |
| |
| #endif /* USE_MALLOC_PREPARE */ |
| |
| static LIBC_BSS uintptr_t heap_sz; |
| |
| static LIBC_DATA int (*_stdout_hook)(int); |
| |
| int z_impl_zephyr_fputc(int a, FILE *out) |
| { |
| (*_stdout_hook)(a); |
| return 0; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_zephyr_fputc(int c, FILE *stream) |
| { |
| return z_impl_zephyr_fputc(c, stream); |
| } |
| #include <syscalls/zephyr_fputc_mrsh.c> |
| #endif |
| |
| static int picolibc_put(char a, FILE *f) |
| { |
| zephyr_fputc(a, f); |
| return 0; |
| } |
| |
| static LIBC_DATA FILE __stdout = FDEV_SETUP_STREAM(picolibc_put, NULL, NULL, 0); |
| static LIBC_DATA FILE __stdin = FDEV_SETUP_STREAM(NULL, NULL, NULL, 0); |
| |
| #ifdef __strong_reference |
| #define STDIO_ALIAS(x) __strong_reference(stdout, x); |
| #else |
| #define STDIO_ALIAS(x) FILE *const x = &__stdout; |
| #endif |
| |
| FILE *const stdin = &__stdin; |
| FILE *const stdout = &__stdout; |
| STDIO_ALIAS(stderr); |
| |
| void __stdout_hook_install(int (*hook)(int)) |
| { |
| _stdout_hook = hook; |
| __stdout.flags |= _FDEV_SETUP_WRITE; |
| } |
| |
| void __stdin_hook_install(unsigned char (*hook)(void)) |
| { |
| __stdin.get = (int (*)(FILE *)) hook; |
| __stdin.flags |= _FDEV_SETUP_READ; |
| } |
| |
| int z_impl_zephyr_read_stdin(char *buf, int nbytes) |
| { |
| int i = 0; |
| |
| for (i = 0; i < nbytes; i++) { |
| *(buf + i) = getchar(); |
| if ((*(buf + i) == '\n') || (*(buf + i) == '\r')) { |
| i++; |
| break; |
| } |
| } |
| return i; |
| } |
| |
| int z_impl_zephyr_write_stdout(const void *buffer, int nbytes) |
| { |
| const char *buf = buffer; |
| int i; |
| |
| for (i = 0; i < nbytes; i++) { |
| if (*(buf + i) == '\n') { |
| putchar('\r'); |
| } |
| putchar(*(buf + i)); |
| } |
| return nbytes; |
| } |
| |
| #include <zephyr/sys/cbprintf.h> |
| |
| struct cb_bits { |
| FILE f; |
| cbprintf_cb out; |
| void *ctx; |
| }; |
| |
| static int cbputc(char c, FILE *_s) |
| { |
| struct cb_bits *s = (struct cb_bits *) _s; |
| |
| (*s->out) (c, s->ctx); |
| return 0; |
| } |
| |
| int cbvprintf(cbprintf_cb out, void *ctx, const char *fp, va_list ap) |
| { |
| struct cb_bits s = { |
| .f = FDEV_SETUP_STREAM(cbputc, NULL, NULL, _FDEV_SETUP_WRITE), |
| .out = out, |
| .ctx = ctx, |
| }; |
| return vfprintf(&s.f, fp, ap); |
| } |
| |
| __weak void _exit(int status) |
| { |
| printk("exit\n"); |
| while (1) { |
| ; |
| } |
| } |
| |
| static LIBC_DATA SYS_SEM_DEFINE(heap_sem, 1, 1); |
| |
| void *sbrk(intptr_t incr) |
| { |
| void *ret = (void *) -1; |
| char *brk; |
| char *heap_start = (char *) HEAP_BASE; |
| char *heap_end = (char *) (HEAP_BASE + MAX_HEAP_SIZE); |
| |
| sys_sem_take(&heap_sem, K_FOREVER); |
| |
| brk = ((char *)HEAP_BASE) + heap_sz; |
| |
| if (incr < 0) { |
| if (brk - heap_start < -incr) { |
| goto out; |
| } |
| } else { |
| if (heap_end - brk < incr) { |
| goto out; |
| } |
| } |
| |
| ret = brk; |
| heap_sz += incr; |
| |
| out: |
| /* coverity[CHECKED_RETURN] */ |
| sys_sem_give(&heap_sem); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_MULTITHREADING |
| #define _LOCK_T void * |
| K_MUTEX_DEFINE(__lock___libc_recursive_mutex); |
| |
| #ifdef CONFIG_USERSPACE |
| /* Grant public access to picolibc lock after boot */ |
| static int picolibc_locks_prepare(const struct device *unused) |
| { |
| ARG_UNUSED(unused); |
| |
| /* Initialise recursive locks */ |
| k_object_access_all_grant(&__lock___libc_recursive_mutex); |
| |
| return 0; |
| } |
| |
| SYS_INIT(picolibc_locks_prepare, POST_KERNEL, |
| CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); |
| #endif /* CONFIG_USERSPACE */ |
| |
| /* Create a new dynamic non-recursive lock */ |
| void __retarget_lock_init(_LOCK_T *lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| |
| /* Allocate semaphore object */ |
| #ifndef CONFIG_USERSPACE |
| *lock = malloc(sizeof(struct k_sem)); |
| #else |
| *lock = k_object_alloc(K_OBJ_SEM); |
| #endif /* !CONFIG_USERSPACE */ |
| __ASSERT(*lock != NULL, "non-recursive lock allocation failed"); |
| |
| k_sem_init((struct k_sem *)*lock, 1, 1); |
| } |
| |
| /* Create a new dynamic recursive lock */ |
| void __retarget_lock_init_recursive(_LOCK_T *lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| |
| /* Allocate mutex object */ |
| #ifndef CONFIG_USERSPACE |
| *lock = malloc(sizeof(struct k_mutex)); |
| #else |
| *lock = k_object_alloc(K_OBJ_MUTEX); |
| #endif /* !CONFIG_USERSPACE */ |
| __ASSERT(*lock != NULL, "recursive lock allocation failed"); |
| |
| k_mutex_init((struct k_mutex *)*lock); |
| } |
| |
| /* Close dynamic non-recursive lock */ |
| void __retarget_lock_close(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| #ifndef CONFIG_USERSPACE |
| free(lock); |
| #else |
| k_object_release(lock); |
| #endif /* !CONFIG_USERSPACE */ |
| } |
| |
| /* Close dynamic recursive lock */ |
| void __retarget_lock_close_recursive(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| #ifndef CONFIG_USERSPACE |
| free(lock); |
| #else |
| k_object_release(lock); |
| #endif /* !CONFIG_USERSPACE */ |
| } |
| |
| /* Acquiure non-recursive lock */ |
| void __retarget_lock_acquire(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| k_sem_take((struct k_sem *)lock, K_FOREVER); |
| } |
| |
| /* Acquiure recursive lock */ |
| void __retarget_lock_acquire_recursive(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| k_mutex_lock((struct k_mutex *)lock, K_FOREVER); |
| } |
| |
| /* Try acquiring non-recursive lock */ |
| int __retarget_lock_try_acquire(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| return !k_sem_take((struct k_sem *)lock, K_NO_WAIT); |
| } |
| |
| /* Try acquiring recursive lock */ |
| int __retarget_lock_try_acquire_recursive(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| return !k_mutex_lock((struct k_mutex *)lock, K_NO_WAIT); |
| } |
| |
| /* Release non-recursive lock */ |
| void __retarget_lock_release(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| k_sem_give((struct k_sem *)lock); |
| } |
| |
| /* Release recursive lock */ |
| void __retarget_lock_release_recursive(_LOCK_T lock) |
| { |
| __ASSERT_NO_MSG(lock != NULL); |
| k_mutex_unlock((struct k_mutex *)lock); |
| } |
| |
| #endif /* CONFIG_MULTITHREADING */ |
| |
| /* This function gets called if static buffer overflow detection is enabled on |
| * stdlib side (Picolibc here), in case such an overflow is detected. Picolibc |
| * provides an implementation not suitable for us, so we override it here. |
| */ |
| __weak FUNC_NORETURN void __chk_fail(void) |
| { |
| printk("* buffer overflow detected *\n"); |
| z_except_reason(K_ERR_STACK_CHK_FAIL); |
| CODE_UNREACHABLE; |
| } |
| |
| #include <stdlib.h> |
| #include <zephyr/kernel.h> |
| |
| /* Replace picolibc abort with native Zephyr one */ |
| void abort(void) |
| { |
| printk("%s\n", __func__); |
| k_panic(); |
| CODE_UNREACHABLE; |
| } |
| |
| #ifndef CONFIG_LIBC_ERRNO |
| |
| /* |
| * Picolibc needs to be able to declare this itself so that the library |
| * doesn't end up needing zephyr header files. That means using a regular |
| * function instead of an inline. |
| */ |
| int *z_errno_wrap(void) |
| { |
| return z_errno(); |
| } |
| |
| #endif |