| /* |
| * Copyright 2022-2023 NXP |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT nxp_s32_spi |
| |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include "spi_nxp_s32.h" |
| |
| extern Spi_Ip_StateStructureType * Spi_Ip_apxStateStructureArray[SPI_INSTANCE_COUNT]; |
| |
| static bool spi_nxp_s32_last_packet(struct spi_nxp_s32_data *data) |
| { |
| struct spi_context *ctx = &data->ctx; |
| |
| if (ctx->tx_count <= 1U && ctx->rx_count <= 1U) { |
| if (!spi_context_tx_on(ctx) && (data->transfer_len == ctx->rx_len)) { |
| return true; |
| } |
| |
| if (!spi_context_rx_on(ctx) && (data->transfer_len == ctx->tx_len)) { |
| return true; |
| } |
| |
| if ((ctx->rx_len == ctx->tx_len) && (data->transfer_len == ctx->tx_len)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static inline bool spi_nxp_s32_transfer_done(struct spi_context *ctx) |
| { |
| return !spi_context_tx_on(ctx) && !spi_context_rx_on(ctx); |
| } |
| |
| static int spi_nxp_s32_transfer_next_packet(const struct device *dev) |
| { |
| const struct spi_nxp_s32_config *config = dev->config; |
| struct spi_nxp_s32_data *data = dev->data; |
| |
| Spi_Ip_StatusType status; |
| Spi_Ip_CallbackType data_cb; |
| |
| #ifdef CONFIG_NXP_S32_SPI_INTERRUPT |
| data_cb = config->cb; |
| #else |
| data_cb = NULL; |
| #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ |
| |
| data->transfer_len = spi_context_max_continuous_chunk(&data->ctx); |
| data->transfer_len = MIN(data->transfer_len, |
| SPI_NXP_S32_MAX_BYTES_PER_PACKAGE(data->bytes_per_frame)); |
| |
| /* |
| * Keep CS signal asserted until the last package, there is no other way |
| * than directly intervening to internal state of low level driver |
| */ |
| Spi_Ip_apxStateStructureArray[config->spi_hw_cfg->Instance]->KeepCs = |
| !spi_nxp_s32_last_packet(data); |
| |
| status = Spi_Ip_AsyncTransmit(&data->transfer_cfg, (uint8_t *)data->ctx.tx_buf, |
| data->ctx.rx_buf, data->transfer_len, data_cb); |
| |
| if (status) { |
| LOG_ERR("Transfer could not start"); |
| return -EIO; |
| } |
| |
| #ifdef CONFIG_NXP_S32_SPI_INTERRUPT |
| return 0; |
| #else |
| |
| while (Spi_Ip_GetStatus(config->spi_hw_cfg->Instance) == SPI_IP_BUSY) { |
| Spi_Ip_ManageBuffers(config->spi_hw_cfg->Instance); |
| } |
| |
| if (Spi_Ip_GetStatus(config->spi_hw_cfg->Instance) == SPI_IP_FAULT) { |
| return -EIO; |
| } |
| |
| return 0; |
| #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ |
| } |
| |
| /* |
| * The function to get Scaler and Prescaler for corresponding registers |
| * to configure the baudrate for the transmission. The real frequency is |
| * computated to ensure it will always equal or the nearest approximation |
| * lower to the expected one. |
| */ |
| static void spi_nxp_s32_getbestfreq(uint32_t clock_frequency, |
| uint32_t requested_baud, |
| struct spi_nxp_s32_baudrate_param *best_baud) |
| { |
| uint8_t scaler; |
| uint8_t prescaler; |
| |
| uint32_t low, high; |
| uint32_t curr_freq; |
| |
| uint32_t best_freq = 0U; |
| |
| static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {2U, 3U, 5U, 7U}; |
| |
| static const uint16_t scaller_arr[SPI_NXP_S32_NUM_SCALER] = { |
| 2U, 4U, 6U, 8U, 16U, 32U, 64U, 128U, 256U, 512U, 1024U, 2048U, |
| 4096U, 8192U, 16384U, 32768U |
| }; |
| |
| for (prescaler = 0U; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) { |
| low = 0U; |
| high = SPI_NXP_S32_NUM_SCALER - 1U; |
| |
| /* Implement golden section search algorithm */ |
| do { |
| scaler = (low + high) / 2U; |
| |
| curr_freq = clock_frequency * 1U / |
| (prescaler_arr[prescaler] * scaller_arr[scaler]); |
| |
| /* |
| * If the scaler make current frequency higher than the |
| * expected one, skip the next step |
| */ |
| if (curr_freq > requested_baud) { |
| low = scaler; |
| continue; |
| } else { |
| high = scaler; |
| } |
| |
| if ((requested_baud - best_freq) > (requested_baud - curr_freq)) { |
| best_freq = curr_freq; |
| best_baud->prescaler = prescaler; |
| best_baud->scaler = scaler; |
| } |
| |
| if (best_freq == requested_baud) { |
| break; |
| } |
| |
| } while ((high - low) > 1U); |
| |
| if ((high - low) <= 1U) { |
| |
| if (high == scaler) { |
| /* use low value */ |
| scaler = low; |
| } else { |
| scaler = high; |
| } |
| |
| curr_freq = clock_frequency * 1U / |
| (prescaler_arr[prescaler] * scaller_arr[scaler]); |
| |
| if (curr_freq <= requested_baud) { |
| |
| if ((requested_baud - best_freq) > (requested_baud - curr_freq)) { |
| best_freq = curr_freq; |
| best_baud->prescaler = prescaler; |
| best_baud->scaler = scaler; |
| } |
| } |
| } |
| |
| if (best_freq == requested_baud) { |
| break; |
| } |
| } |
| |
| best_baud->frequency = best_freq; |
| } |
| |
| /* |
| * The function to get Scaler and Prescaler for corresponding registers |
| * to configure the delay for the transmission. The real delay is computated |
| * to ensure it will always equal or the nearest approximation higher to |
| * the expected one. In the worst case, use the delay as much as possible. |
| */ |
| static void spi_nxp_s32_getbestdelay(uint32_t clock_frequency, uint32_t requested_delay, |
| uint8_t *best_scaler, uint8_t *best_prescaler) |
| { |
| uint32_t current_delay; |
| uint8_t scaler, prescaler; |
| uint32_t low, high; |
| |
| uint32_t best_delay = 0xFFFFFFFFU; |
| |
| /* The scaler array is a power of two, so do not need to be defined */ |
| static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {1U, 3U, 5U, 7U}; |
| |
| clock_frequency = clock_frequency / MHZ(1); |
| |
| for (prescaler = 0; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) { |
| low = 0U; |
| high = SPI_NXP_S32_NUM_SCALER - 1U; |
| |
| do { |
| scaler = (low + high) / 2U; |
| |
| current_delay = NSEC_PER_USEC * prescaler_arr[prescaler] |
| * (1U << (scaler + 1)) / clock_frequency; |
| |
| /* |
| * If the scaler make current delay smaller than |
| * the expected one, skip the next step |
| */ |
| if (current_delay < requested_delay) { |
| low = scaler; |
| continue; |
| } else { |
| high = scaler; |
| } |
| |
| if ((best_delay - requested_delay) > (current_delay - requested_delay)) { |
| best_delay = current_delay; |
| *best_prescaler = prescaler; |
| *best_scaler = scaler; |
| } |
| |
| if (best_delay == requested_delay) { |
| break; |
| } |
| |
| } while ((high - low) > 1U); |
| |
| if ((high - low) <= 1U) { |
| |
| if (high == scaler) { |
| /* use low value */ |
| scaler = low; |
| } else { |
| scaler = high; |
| } |
| |
| current_delay = NSEC_PER_USEC * prescaler_arr[prescaler] |
| * (1U << (scaler + 1)) / clock_frequency; |
| |
| if (current_delay >= requested_delay) { |
| if ((best_delay - requested_delay) > |
| (current_delay - requested_delay)) { |
| |
| best_delay = current_delay; |
| *best_prescaler = prescaler; |
| *best_scaler = scaler; |
| } |
| } |
| } |
| |
| if (best_delay == requested_delay) { |
| break; |
| } |
| } |
| |
| if (best_delay == 0xFFFFFFFFU) { |
| /* Use the delay as much as possible */ |
| *best_prescaler = SPI_NXP_S32_NUM_PRESCALER - 1U; |
| *best_scaler = SPI_NXP_S32_NUM_SCALER - 1U; |
| } |
| } |
| |
| static int spi_nxp_s32_configure(const struct device *dev, |
| const struct spi_config *spi_cfg) |
| { |
| const struct spi_nxp_s32_config *config = dev->config; |
| struct spi_nxp_s32_data *data = dev->data; |
| |
| bool clk_phase, clk_polarity; |
| bool lsb, hold_cs; |
| bool slave_mode, cs_active_high; |
| |
| uint8_t frame_size; |
| |
| struct spi_nxp_s32_baudrate_param best_baud = {0}; |
| uint32_t clock_rate; |
| int err; |
| |
| if (spi_context_configured(&data->ctx, spi_cfg)) { |
| /* This configuration is already in use */ |
| return 0; |
| } |
| |
| err = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate); |
| if (err) { |
| LOG_ERR("Failed to get clock frequency"); |
| return err; |
| } |
| |
| clk_phase = !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA); |
| clk_polarity = !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL); |
| |
| hold_cs = !!(spi_cfg->operation & SPI_HOLD_ON_CS); |
| lsb = !!(spi_cfg->operation & SPI_TRANSFER_LSB); |
| |
| slave_mode = !!(SPI_OP_MODE_GET(spi_cfg->operation)); |
| frame_size = SPI_WORD_SIZE_GET(spi_cfg->operation); |
| cs_active_high = !!(spi_cfg->operation & SPI_CS_ACTIVE_HIGH); |
| |
| if (slave_mode == (!!(config->spi_hw_cfg->Mcr & SPI_MCR_MSTR_MASK))) { |
| LOG_ERR("SPI mode (master/slave) must be same as configured in DT"); |
| return -ENOTSUP; |
| } |
| |
| if (slave_mode && !IS_ENABLED(CONFIG_SPI_SLAVE)) { |
| LOG_ERR("Kconfig for enable SPI in slave mode is not enabled"); |
| return -ENOTSUP; |
| } |
| |
| if (slave_mode && lsb) { |
| LOG_ERR("SPI does not support to shifting out with LSB in slave mode"); |
| return -ENOTSUP; |
| } |
| |
| if (spi_cfg->slave >= config->num_cs) { |
| LOG_ERR("Slave %d excess the allowed maximum value (%d)", |
| spi_cfg->slave, config->num_cs - 1); |
| return -ENOTSUP; |
| } |
| |
| if (frame_size > 32U) { |
| LOG_ERR("Unsupported frame size %d bits", frame_size); |
| return -ENOTSUP; |
| } |
| |
| if ((spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { |
| LOG_ERR("Only single line mode is supported"); |
| return -ENOTSUP; |
| } |
| |
| if (spi_cfg->operation & SPI_MODE_LOOP) { |
| LOG_ERR("Loopback mode is not supported"); |
| return -ENOTSUP; |
| } |
| |
| if (cs_active_high && !spi_cs_is_gpio(spi_cfg)) { |
| LOG_ERR("For CS has active state is high, a GPIO pin must be used to" |
| " control CS line instead"); |
| return -ENOTSUP; |
| } |
| |
| if (!slave_mode) { |
| |
| if ((spi_cfg->frequency < SPI_NXP_S32_MIN_FREQ) || |
| (spi_cfg->frequency > SPI_NXP_S32_MAX_FREQ)) { |
| |
| LOG_ERR("The frequency is out of range"); |
| return -ENOTSUP; |
| } |
| |
| spi_nxp_s32_getbestfreq(clock_rate, spi_cfg->frequency, &best_baud); |
| |
| data->transfer_cfg.Ctar &= ~(SPI_CTAR_BR_MASK | SPI_CTAR_PBR_MASK); |
| data->transfer_cfg.Ctar |= SPI_CTAR_BR(best_baud.scaler) | |
| SPI_CTAR_PBR(best_baud.prescaler); |
| |
| data->transfer_cfg.PushrCmd &= ~((SPI_PUSHR_CONT_MASK | SPI_PUSHR_PCS_MASK) >> 16U); |
| |
| if (!spi_cs_is_gpio(spi_cfg)) { |
| /* Use inner CS signal from SPI module */ |
| data->transfer_cfg.PushrCmd |= hold_cs << 15U; |
| data->transfer_cfg.PushrCmd |= (1U << spi_cfg->slave); |
| } |
| } |
| |
| data->transfer_cfg.Ctar &= ~(SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK); |
| data->transfer_cfg.Ctar |= SPI_CTAR_CPHA(clk_phase) | SPI_CTAR_CPOL(clk_polarity); |
| |
| Spi_Ip_UpdateFrameSize(&data->transfer_cfg, frame_size); |
| Spi_Ip_UpdateLsb(&data->transfer_cfg, lsb); |
| |
| data->ctx.config = spi_cfg; |
| data->bytes_per_frame = SPI_NXP_S32_BYTE_PER_FRAME(frame_size); |
| |
| if (slave_mode) { |
| LOG_DBG("SPI configuration: cpol = %u, cpha = %u," |
| " lsb = %u, frame_size = %u, mode: slave", |
| clk_polarity, clk_phase, lsb, frame_size); |
| } else { |
| LOG_DBG("SPI configuration: frequency = %uHz, cpol = %u," |
| " cpha = %u, lsb = %u, hold_cs = %u, frame_size = %u," |
| " mode: master, CS = %u\n", |
| best_baud.frequency, clk_polarity, clk_phase, |
| lsb, hold_cs, frame_size, spi_cfg->slave); |
| } |
| |
| return 0; |
| } |
| |
| static int transceive(const struct device *dev, |
| const struct spi_config *spi_cfg, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| bool asynchronous, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| struct spi_nxp_s32_data *data = dev->data; |
| struct spi_context *context = &data->ctx; |
| int ret; |
| |
| if (!tx_bufs && !rx_bufs) { |
| return 0; |
| } |
| |
| #ifndef CONFIG_NXP_S32_SPI_INTERRUPT |
| if (asynchronous) { |
| return -ENOTSUP; |
| } |
| #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ |
| |
| spi_context_lock(context, asynchronous, cb, userdata, spi_cfg); |
| |
| ret = spi_nxp_s32_configure(dev, spi_cfg); |
| if (ret) { |
| LOG_ERR("An error occurred in the SPI configuration"); |
| spi_context_release(context, ret); |
| return ret; |
| } |
| |
| spi_context_buffers_setup(context, tx_bufs, rx_bufs, 1U); |
| |
| if (spi_nxp_s32_transfer_done(context)) { |
| spi_context_release(context, 0); |
| return 0; |
| } |
| |
| spi_context_cs_control(context, true); |
| |
| #ifdef CONFIG_NXP_S32_SPI_INTERRUPT |
| ret = spi_nxp_s32_transfer_next_packet(dev); |
| |
| if (!ret) { |
| ret = spi_context_wait_for_completion(context); |
| } else { |
| spi_context_cs_control(context, false); |
| } |
| #else |
| do { |
| ret = spi_nxp_s32_transfer_next_packet(dev); |
| |
| if (!ret) { |
| spi_context_update_tx(context, 1U, data->transfer_len); |
| spi_context_update_rx(context, 1U, data->transfer_len); |
| } |
| } while (!ret && !spi_nxp_s32_transfer_done(context)); |
| |
| spi_context_cs_control(context, false); |
| |
| #ifdef CONFIG_SPI_SLAVE |
| if (spi_context_is_slave(context) && !ret) { |
| ret = data->ctx.recv_frames; |
| } |
| #endif /* CONFIG_SPI_SLAVE */ |
| #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ |
| |
| spi_context_release(context, ret); |
| |
| return ret; |
| } |
| |
| static int spi_nxp_s32_transceive(const struct device *dev, |
| const struct spi_config *spi_cfg, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); |
| } |
| #ifdef CONFIG_SPI_ASYNC |
| static int spi_nxp_s32_transceive_async(const struct device *dev, |
| const struct spi_config *spi_cfg, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| spi_callback_t callback, |
| void *userdata) |
| { |
| return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, callback, userdata); |
| } |
| #endif /* CONFIG_SPI_ASYNC */ |
| |
| static int spi_nxp_s32_release(const struct device *dev, |
| const struct spi_config *spi_cfg) |
| { |
| struct spi_nxp_s32_data *data = dev->data; |
| |
| (void)spi_cfg; |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| static int spi_nxp_s32_init(const struct device *dev) |
| { |
| const struct spi_nxp_s32_config *config = dev->config; |
| struct spi_nxp_s32_data *data = dev->data; |
| uint32_t clock_rate; |
| uint8_t scaler, prescaler; |
| |
| uint32_t ctar = 0; |
| int ret = 0; |
| |
| if (!device_is_ready(config->clock_dev)) { |
| LOG_ERR("Clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| ret = clock_control_on(config->clock_dev, config->clock_subsys); |
| if (ret) { |
| LOG_ERR("Failed to enable clock"); |
| return ret; |
| } |
| |
| ret = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate); |
| if (ret) { |
| LOG_ERR("Failed to get clock frequency"); |
| return ret; |
| } |
| |
| ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (Spi_Ip_Init(config->spi_hw_cfg)) { |
| return -EBUSY; |
| } |
| |
| #ifdef CONFIG_NXP_S32_SPI_INTERRUPT |
| if (Spi_Ip_UpdateTransferMode(config->spi_hw_cfg->Instance, SPI_IP_INTERRUPT)) { |
| return -EBUSY; |
| } |
| |
| config->irq_config_func(dev); |
| #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ |
| |
| /* |
| * Update the delay timings configuration that are |
| * applied for all inner CS signals of SPI module. |
| */ |
| spi_nxp_s32_getbestdelay(clock_rate, config->sck_cs_delay, &scaler, &prescaler); |
| |
| ctar |= SPI_CTAR_ASC(scaler) | SPI_CTAR_PASC(prescaler); |
| |
| spi_nxp_s32_getbestdelay(clock_rate, config->cs_sck_delay, &scaler, &prescaler); |
| |
| ctar |= SPI_CTAR_CSSCK(scaler) | SPI_CTAR_PCSSCK(prescaler); |
| |
| spi_nxp_s32_getbestdelay(clock_rate, config->cs_cs_delay, &scaler, &prescaler); |
| |
| ctar |= SPI_CTAR_DT(scaler) | SPI_CTAR_PDT(prescaler); |
| |
| data->transfer_cfg.Ctar |= ctar; |
| data->transfer_cfg.DeviceParams = &data->transfer_params; |
| |
| ret = spi_context_cs_configure_all(&data->ctx); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_NXP_S32_SPI_INTERRUPT |
| void spi_nxp_s32_isr(const struct device *dev) |
| { |
| const struct spi_nxp_s32_config *config = dev->config; |
| |
| Spi_Ip_IrqHandler(config->spi_hw_cfg->Instance); |
| } |
| |
| static void spi_nxp_s32_transfer_callback(const struct device *dev, Spi_Ip_EventType event) |
| { |
| struct spi_nxp_s32_data *data = dev->data; |
| int ret = 0; |
| |
| if (event == SPI_IP_EVENT_END_TRANSFER) { |
| spi_context_update_tx(&data->ctx, 1U, data->transfer_len); |
| spi_context_update_rx(&data->ctx, 1U, data->transfer_len); |
| |
| if (spi_nxp_s32_transfer_done(&data->ctx)) { |
| spi_context_complete(&data->ctx, dev, 0); |
| spi_context_cs_control(&data->ctx, false); |
| } else { |
| ret = spi_nxp_s32_transfer_next_packet(dev); |
| } |
| } else { |
| LOG_ERR("Failing in transfer_callback"); |
| ret = -EIO; |
| } |
| |
| if (ret) { |
| spi_context_complete(&data->ctx, dev, ret); |
| spi_context_cs_control(&data->ctx, false); |
| } |
| } |
| #endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/ |
| |
| static const struct spi_driver_api spi_nxp_s32_driver_api = { |
| .transceive = spi_nxp_s32_transceive, |
| #ifdef CONFIG_SPI_ASYNC |
| .transceive_async = spi_nxp_s32_transceive_async, |
| #endif |
| .release = spi_nxp_s32_release, |
| }; |
| |
| #define SPI_NXP_S32_HW_INSTANCE_CHECK(i, n) \ |
| ((DT_INST_REG_ADDR(n) == IP_SPI_##i##_BASE) ? i : 0) |
| |
| #define SPI_NXP_S32_HW_INSTANCE(n) \ |
| LISTIFY(__DEBRACKET SPI_INSTANCE_COUNT, SPI_NXP_S32_HW_INSTANCE_CHECK, (|), n) |
| |
| #define SPI_NXP_S32_NUM_CS(n) DT_INST_PROP(n, num_cs) |
| #define SPI_NXP_S32_IS_MASTER(n) !DT_INST_PROP(n, slave) |
| |
| #ifdef CONFIG_SPI_SLAVE |
| #define SPI_NXP_S32_SET_SLAVE(n) .SlaveMode = DT_INST_PROP(n, slave), |
| #else |
| #define SPI_NXP_S32_SET_SLAVE(n) |
| #endif |
| |
| #ifdef CONFIG_NXP_S32_SPI_INTERRUPT |
| |
| #define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) \ |
| .irq_config_func = spi_nxp_s32_config_func_##n, |
| |
| #define SPI_NXP_S32_INTERRUPT_DEFINE(n) \ |
| static void spi_nxp_s32_config_func_##n(const struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \ |
| spi_nxp_s32_isr, DEVICE_DT_INST_GET(n), \ |
| DT_INST_IRQ(n, flags)); \ |
| irq_enable(DT_INST_IRQN(n)); \ |
| } |
| |
| #define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) \ |
| .cb = spi_nxp_s32_##n##_callback, |
| |
| #define SPI_NXP_S32_CALLBACK_DEFINE(n) \ |
| static void spi_nxp_s32_##n##_callback(uint8 instance, Spi_Ip_EventType event) \ |
| { \ |
| ARG_UNUSED(instance); \ |
| const struct device *dev = DEVICE_DT_INST_GET(n); \ |
| \ |
| spi_nxp_s32_transfer_callback(dev, event); \ |
| } |
| #else |
| #define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) |
| #define SPI_NXP_S32_INTERRUPT_DEFINE(n) |
| #define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) |
| #define SPI_NXP_S32_CALLBACK_DEFINE(n) |
| #endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/ |
| |
| /* |
| * Declare the default configuration for SPI driver, no DMA |
| * support, all inner module Chip Selects are active low. |
| */ |
| #define SPI_NXP_S32_INSTANCE_CONFIG(n) \ |
| static const Spi_Ip_ConfigType spi_nxp_s32_default_config_##n = { \ |
| .Instance = SPI_NXP_S32_HW_INSTANCE(n), \ |
| .Mcr = (SPI_MCR_MSTR(SPI_NXP_S32_IS_MASTER(n)) | \ |
| SPI_MCR_CONT_SCKE(0U) | SPI_MCR_FRZ(0U) | \ |
| SPI_MCR_MTFE(0U) | SPI_MCR_SMPL_PT(0U) | \ |
| SPI_MCR_PCSIS(BIT_MASK(SPI_NXP_S32_NUM_CS(n))) | \ |
| SPI_MCR_MDIS(0U) | SPI_MCR_XSPI(1U) | SPI_MCR_HALT(1U)), \ |
| .TransferMode = SPI_IP_POLLING, \ |
| .StateIndex = n, \ |
| SPI_NXP_S32_SET_SLAVE(n) \ |
| } |
| |
| #define SPI_NXP_S32_TRANSFER_CONFIG(n) \ |
| .transfer_cfg = { \ |
| .Instance = SPI_NXP_S32_HW_INSTANCE(n), \ |
| .Ctare = SPI_CTARE_FMSZE(0U) | SPI_CTARE_DTCP(1U), \ |
| } |
| |
| #define SPI_NXP_S32_DEVICE(n) \ |
| PINCTRL_DT_INST_DEFINE(n); \ |
| SPI_NXP_S32_CALLBACK_DEFINE(n) \ |
| SPI_NXP_S32_INTERRUPT_DEFINE(n) \ |
| SPI_NXP_S32_INSTANCE_CONFIG(n); \ |
| static const struct spi_nxp_s32_config spi_nxp_s32_config_##n = { \ |
| .num_cs = SPI_NXP_S32_NUM_CS(n), \ |
| .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \ |
| .clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \ |
| .sck_cs_delay = DT_INST_PROP_OR(n, spi_sck_cs_delay, 0U), \ |
| .cs_sck_delay = DT_INST_PROP_OR(n, spi_cs_sck_delay, 0U), \ |
| .cs_cs_delay = DT_INST_PROP_OR(n, spi_cs_cs_delay, 0U), \ |
| .spi_hw_cfg = (Spi_Ip_ConfigType *)&spi_nxp_s32_default_config_##n, \ |
| .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ |
| SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) \ |
| SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) \ |
| }; \ |
| static struct spi_nxp_s32_data spi_nxp_s32_data_##n = { \ |
| SPI_NXP_S32_TRANSFER_CONFIG(n), \ |
| SPI_CONTEXT_INIT_LOCK(spi_nxp_s32_data_##n, ctx), \ |
| SPI_CONTEXT_INIT_SYNC(spi_nxp_s32_data_##n, ctx), \ |
| SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \ |
| }; \ |
| DEVICE_DT_INST_DEFINE(n, \ |
| spi_nxp_s32_init, NULL, \ |
| &spi_nxp_s32_data_##n, &spi_nxp_s32_config_##n, \ |
| POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ |
| &spi_nxp_s32_driver_api); |
| |
| DT_INST_FOREACH_STATUS_OKAY(SPI_NXP_S32_DEVICE) |