|  | /* | 
|  | * Copyright (c) 2017 Google LLC. | 
|  | * Copyright (c) 2018 qianfan Zhao. | 
|  | * Copyright (c) 2023 Gerson Fernando Budke. | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | #define DT_DRV_COMPAT atmel_sam_spi | 
|  |  | 
|  | #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL | 
|  | #include <zephyr/logging/log.h> | 
|  | LOG_MODULE_REGISTER(spi_sam); | 
|  |  | 
|  | #include "spi_context.h" | 
|  | #include <errno.h> | 
|  | #include <zephyr/spinlock.h> | 
|  | #include <zephyr/device.h> | 
|  | #include <zephyr/drivers/spi.h> | 
|  | #include <zephyr/drivers/dma.h> | 
|  | #include <zephyr/drivers/pinctrl.h> | 
|  | #include <zephyr/drivers/clock_control/atmel_sam_pmc.h> | 
|  | #include <zephyr/rtio/rtio.h> | 
|  | #include <zephyr/rtio/rtio_executor_simple.h> | 
|  | #include <zephyr/sys/__assert.h> | 
|  | #include <zephyr/sys/util.h> | 
|  | #include <soc.h> | 
|  |  | 
|  | #define SAM_SPI_CHIP_SELECT_COUNT			4 | 
|  |  | 
|  | /* Number of bytes in transfer before using DMA if available */ | 
|  | #define SAM_SPI_DMA_THRESHOLD                           32 | 
|  |  | 
|  | /* Device constant configuration parameters */ | 
|  | struct spi_sam_config { | 
|  | Spi *regs; | 
|  | const struct atmel_sam_pmc_config clock_cfg; | 
|  | const struct pinctrl_dev_config *pcfg; | 
|  | bool loopback; | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  | const struct device *dma_dev; | 
|  | const uint32_t dma_tx_channel; | 
|  | const uint32_t dma_tx_perid; | 
|  | const uint32_t dma_rx_channel; | 
|  | const uint32_t dma_rx_perid; | 
|  | #endif /* CONFIG_SPI_SAM_DMA */ | 
|  | }; | 
|  |  | 
|  | /* Device run time data */ | 
|  | struct spi_sam_data { | 
|  | struct spi_context ctx; | 
|  | struct k_spinlock lock; | 
|  |  | 
|  | #ifdef CONFIG_SPI_RTIO | 
|  | struct rtio *r; /* context for thread calls */ | 
|  | struct rtio_iodev iodev; | 
|  | struct rtio_iodev_sqe *iodev_sqe; | 
|  | struct rtio_sqe *sqe; | 
|  | struct spi_dt_spec dt_spec; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  | struct k_sem dma_sem; | 
|  | #endif /* CONFIG_SPI_SAM_DMA */ | 
|  | }; | 
|  |  | 
|  | static inline k_spinlock_key_t spi_spin_lock(const struct device *dev) | 
|  | { | 
|  | struct spi_sam_data *data = dev->data; | 
|  |  | 
|  | return k_spin_lock(&data->lock); | 
|  | } | 
|  |  | 
|  | static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key) | 
|  | { | 
|  | struct spi_sam_data *data = dev->data; | 
|  |  | 
|  | k_spin_unlock(&data->lock, key); | 
|  | } | 
|  |  | 
|  | static int spi_slave_to_mr_pcs(int slave) | 
|  | { | 
|  | int pcs[SAM_SPI_CHIP_SELECT_COUNT] = {0x0, 0x1, 0x3, 0x7}; | 
|  |  | 
|  | /* SPI worked in fixed peripheral mode(SPI_MR.PS = 0) and disabled chip | 
|  | * select decode(SPI_MR.PCSDEC = 0), based on Atmel | SMART ARM-based | 
|  | * Flash MCU DATASHEET 40.8.2 SPI Mode Register: | 
|  | * PCS = xxx0    NPCS[3:0] = 1110 | 
|  | * PCS = xx01    NPCS[3:0] = 1101 | 
|  | * PCS = x011    NPCS[3:0] = 1011 | 
|  | * PCS = 0111    NPCS[3:0] = 0111 | 
|  | */ | 
|  |  | 
|  | return pcs[slave]; | 
|  | } | 
|  |  | 
|  | static int spi_sam_configure(const struct device *dev, | 
|  | const struct spi_config *config) | 
|  | { | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  | struct spi_sam_data *data = dev->data; | 
|  | Spi *regs = cfg->regs; | 
|  | uint32_t spi_mr = 0U, spi_csr = 0U; | 
|  | int div; | 
|  |  | 
|  | if (spi_context_configured(&data->ctx, config)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (config->operation & SPI_HALF_DUPLEX) { | 
|  | LOG_ERR("Half-duplex not supported"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) { | 
|  | /* Slave mode is not implemented. */ | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (config->slave > (SAM_SPI_CHIP_SELECT_COUNT - 1)) { | 
|  | LOG_ERR("Slave %d is greater than %d", | 
|  | config->slave, SAM_SPI_CHIP_SELECT_COUNT - 1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Set master mode, disable mode fault detection, set fixed peripheral | 
|  | * select mode. | 
|  | */ | 
|  | spi_mr |= (SPI_MR_MSTR | SPI_MR_MODFDIS); | 
|  | spi_mr |= SPI_MR_PCS(spi_slave_to_mr_pcs(config->slave)); | 
|  |  | 
|  | if (cfg->loopback) { | 
|  | spi_mr |= SPI_MR_LLB; | 
|  | } | 
|  |  | 
|  | if ((config->operation & SPI_MODE_CPOL) != 0U) { | 
|  | spi_csr |= SPI_CSR_CPOL; | 
|  | } | 
|  |  | 
|  | if ((config->operation & SPI_MODE_CPHA) == 0U) { | 
|  | spi_csr |= SPI_CSR_NCPHA; | 
|  | } | 
|  |  | 
|  | if (SPI_WORD_SIZE_GET(config->operation) != 8) { | 
|  | return -ENOTSUP; | 
|  | } else { | 
|  | spi_csr |= SPI_CSR_BITS(SPI_CSR_BITS_8_BIT); | 
|  | } | 
|  |  | 
|  | /* Use the requested or next highest possible frequency */ | 
|  | div = SOC_ATMEL_SAM_MCK_FREQ_HZ / config->frequency; | 
|  | div = CLAMP(div, 1, UINT8_MAX); | 
|  | spi_csr |= SPI_CSR_SCBR(div); | 
|  |  | 
|  | regs->SPI_CR = SPI_CR_SPIDIS; /* Disable SPI */ | 
|  | regs->SPI_MR = spi_mr; | 
|  | regs->SPI_CSR[config->slave] = spi_csr; | 
|  | regs->SPI_CR = SPI_CR_SPIEN; /* Enable SPI */ | 
|  |  | 
|  | data->ctx.config = config; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Finish any ongoing writes and drop any remaining read data */ | 
|  | static void spi_sam_finish(Spi *regs) | 
|  | { | 
|  | while ((regs->SPI_SR & SPI_SR_TXEMPTY) == 0) { | 
|  | } | 
|  |  | 
|  | while (regs->SPI_SR & SPI_SR_RDRF) { | 
|  | (void)regs->SPI_RDR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fast path that transmits a buf */ | 
|  | static void spi_sam_fast_tx(Spi *regs, const uint8_t *tx_buf, const uint32_t tx_buf_len) | 
|  | { | 
|  | const uint8_t *p = tx_buf; | 
|  | const uint8_t *pend = (uint8_t *)tx_buf + tx_buf_len; | 
|  | uint8_t ch; | 
|  |  | 
|  | while (p != pend) { | 
|  | ch = *p++; | 
|  |  | 
|  | while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { | 
|  | } | 
|  |  | 
|  | regs->SPI_TDR = SPI_TDR_TD(ch); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fast path that reads into a buf */ | 
|  | static void spi_sam_fast_rx(Spi *regs, uint8_t *rx_buf, const uint32_t rx_buf_len) | 
|  | { | 
|  | uint8_t *rx = rx_buf; | 
|  | int len = rx_buf_len; | 
|  |  | 
|  | if (len <= 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Write the first byte */ | 
|  | regs->SPI_TDR = SPI_TDR_TD(0); | 
|  | len--; | 
|  |  | 
|  | while (len) { | 
|  | while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { | 
|  | } | 
|  |  | 
|  | /* Read byte N+0 from the receive register */ | 
|  | while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { | 
|  | } | 
|  |  | 
|  | *rx = (uint8_t)regs->SPI_RDR; | 
|  | rx++; | 
|  |  | 
|  | /* Load byte N+1 into the transmit register */ | 
|  | regs->SPI_TDR = SPI_TDR_TD(0); | 
|  | len--; | 
|  | } | 
|  |  | 
|  | /* Read the final incoming byte */ | 
|  | while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { | 
|  | } | 
|  |  | 
|  | *rx = (uint8_t)regs->SPI_RDR; | 
|  | } | 
|  |  | 
|  | /* Fast path that writes and reads bufs of the same length */ | 
|  | static void spi_sam_fast_txrx(Spi *regs, | 
|  | const uint8_t *tx_buf, | 
|  | const uint8_t *rx_buf, | 
|  | const uint32_t len) | 
|  | { | 
|  | const uint8_t *tx = tx_buf; | 
|  | const uint8_t *txend = tx_buf + len; | 
|  | uint8_t *rx = (uint8_t *)rx_buf; | 
|  |  | 
|  | if (len == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The code below interleaves the transmit writes with the | 
|  | * receive reads to keep the bus fully utilised.  The code is | 
|  | * equivalent to: | 
|  | * | 
|  | * Transmit byte 0 | 
|  | * Loop: | 
|  | * - Transmit byte n+1 | 
|  | * - Receive byte n | 
|  | * Receive the final byte | 
|  | */ | 
|  |  | 
|  | /* Write the first byte */ | 
|  | regs->SPI_TDR = SPI_TDR_TD(*tx++); | 
|  |  | 
|  | while (tx != txend) { | 
|  | while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { | 
|  | } | 
|  |  | 
|  | /* Load byte N+1 into the transmit register.  TX is | 
|  | * single buffered and we have at most one byte in | 
|  | * flight so skip the DRE check. | 
|  | */ | 
|  | regs->SPI_TDR = SPI_TDR_TD(*tx++); | 
|  |  | 
|  | /* Read byte N+0 from the receive register */ | 
|  | while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { | 
|  | } | 
|  |  | 
|  | *rx++ = (uint8_t)regs->SPI_RDR; | 
|  | } | 
|  |  | 
|  | /* Read the final incoming byte */ | 
|  | while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { | 
|  | } | 
|  |  | 
|  | *rx = (uint8_t)regs->SPI_RDR; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  |  | 
|  | static __aligned(4) uint32_t tx_dummy; | 
|  | static __aligned(4) uint32_t rx_dummy; | 
|  |  | 
|  | #ifdef CONFIG_SPI_RTIO | 
|  | static void spi_sam_iodev_complete(const struct device *dev, int status); | 
|  | #endif | 
|  |  | 
|  | static void dma_callback(const struct device *dma_dev, void *user_data, | 
|  | uint32_t channel, int status) | 
|  | { | 
|  | ARG_UNUSED(dma_dev); | 
|  | ARG_UNUSED(channel); | 
|  | ARG_UNUSED(status); | 
|  |  | 
|  | const struct device *dev = user_data; | 
|  | struct spi_sam_data *drv_data = dev->data; | 
|  |  | 
|  | #ifdef CONFIG_SPI_RTIO | 
|  | if (drv_data->iodev_sqe != NULL) { | 
|  | spi_sam_iodev_complete(dev, status); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | k_sem_give(&drv_data->dma_sem); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* DMA transceive path */ | 
|  | static int spi_sam_dma_txrx(const struct device *dev, | 
|  | Spi *regs, | 
|  | const uint8_t *tx_buf, | 
|  | const uint8_t *rx_buf, | 
|  | const uint32_t len) | 
|  | { | 
|  | const struct spi_sam_config *drv_cfg = dev->config; | 
|  | struct spi_sam_data *drv_data = dev->data; | 
|  | #ifdef CONFIG_SPI_RTIO | 
|  | bool blocking = drv_data->iodev_sqe == NULL; | 
|  | #else | 
|  | bool blocking = true; | 
|  | #endif | 
|  |  | 
|  | int res = 0; | 
|  |  | 
|  | __ASSERT_NO_MSG(rx_buf != NULL || tx_buf != NULL); | 
|  |  | 
|  | struct dma_config rx_dma_cfg = { | 
|  | .source_data_size = 1, | 
|  | .dest_data_size = 1, | 
|  | .block_count = 1, | 
|  | .dma_slot = drv_cfg->dma_rx_perid, | 
|  | .channel_direction = PERIPHERAL_TO_MEMORY, | 
|  | .source_burst_length = 1, | 
|  | .dest_burst_length = 1, | 
|  | .complete_callback_en = true, | 
|  | .error_callback_en = true, | 
|  | .dma_callback = NULL, | 
|  | .user_data = (void *)dev, | 
|  | }; | 
|  |  | 
|  | uint32_t dest_address, dest_addr_adjust; | 
|  |  | 
|  | if (rx_buf != NULL) { | 
|  | dest_address = (uint32_t)rx_buf; | 
|  | dest_addr_adjust = DMA_ADDR_ADJ_INCREMENT; | 
|  | } else { | 
|  | dest_address = (uint32_t)&rx_dummy; | 
|  | dest_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE; | 
|  | } | 
|  |  | 
|  | struct dma_block_config rx_block_cfg = { | 
|  | .dest_addr_adj = dest_addr_adjust, | 
|  | .block_size = len, | 
|  | .source_address = (uint32_t)®s->SPI_RDR, | 
|  | .dest_address = dest_address | 
|  | }; | 
|  |  | 
|  | rx_dma_cfg.head_block = &rx_block_cfg; | 
|  |  | 
|  | struct dma_config tx_dma_cfg = { | 
|  | .source_data_size = 1, | 
|  | .dest_data_size = 1, | 
|  | .block_count = 1, | 
|  | .dma_slot = drv_cfg->dma_tx_perid, | 
|  | .channel_direction = MEMORY_TO_PERIPHERAL, | 
|  | .source_burst_length = 1, | 
|  | .dest_burst_length = 1, | 
|  | .complete_callback_en = true, | 
|  | .error_callback_en = true, | 
|  | .dma_callback = dma_callback, | 
|  | .user_data = (void *)dev, | 
|  | }; | 
|  |  | 
|  | uint32_t source_address, source_addr_adjust; | 
|  |  | 
|  | if (tx_buf != NULL) { | 
|  | source_address = (uint32_t)tx_buf; | 
|  | source_addr_adjust = DMA_ADDR_ADJ_INCREMENT; | 
|  | } else { | 
|  | LOG_INF("using tx dummy"); | 
|  | source_address = (uint32_t)&tx_dummy; | 
|  | source_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE; | 
|  | } | 
|  |  | 
|  | struct dma_block_config tx_block_cfg = { | 
|  | .source_addr_adj = source_addr_adjust, | 
|  | .block_size = len, | 
|  | .source_address = source_address, | 
|  | .dest_address = (uint32_t)®s->SPI_TDR | 
|  | }; | 
|  |  | 
|  | tx_dma_cfg.head_block = &tx_block_cfg; | 
|  |  | 
|  | res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_rx_channel, &rx_dma_cfg); | 
|  | if (res != 0) { | 
|  | LOG_ERR("failed to configure SPI DMA RX"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_tx_channel, &tx_dma_cfg); | 
|  | if (res != 0) { | 
|  | LOG_ERR("failed to configure SPI DMA TX"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Clocking begins on tx, so start rx first */ | 
|  | res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_rx_channel); | 
|  | if (res != 0) { | 
|  | LOG_ERR("failed to start SPI DMA RX"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_tx_channel); | 
|  | if (res != 0) { | 
|  | LOG_ERR("failed to start SPI DMA TX"); | 
|  | dma_stop(drv_cfg->dma_dev, drv_cfg->dma_rx_channel); | 
|  | } | 
|  |  | 
|  | /* Move up a level or wrap in branch when blocking */ | 
|  | if (blocking) { | 
|  | k_sem_take(&drv_data->dma_sem, K_FOREVER); | 
|  | spi_sam_finish(regs); | 
|  | } else { | 
|  | res = -EWOULDBLOCK; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SPI_SAM_DMA */ | 
|  |  | 
|  |  | 
|  | static inline int spi_sam_rx(const struct device *dev, | 
|  | Spi *regs, | 
|  | uint8_t *rx_buf, | 
|  | uint32_t rx_buf_len) | 
|  | { | 
|  | k_spinlock_key_t key; | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  |  | 
|  | if (rx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) { | 
|  | key = spi_spin_lock(dev); | 
|  | spi_sam_fast_rx(regs, rx_buf, rx_buf_len); | 
|  | } else { | 
|  | return spi_sam_dma_txrx(dev, regs, NULL, rx_buf, rx_buf_len); | 
|  | } | 
|  | #else | 
|  | key = spi_spin_lock(dev); | 
|  | spi_sam_fast_rx(regs, rx_buf, rx_buf_len); | 
|  | #endif | 
|  | spi_sam_finish(regs); | 
|  |  | 
|  | spi_spin_unlock(dev, key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int spi_sam_tx(const struct device *dev, | 
|  | Spi *regs, | 
|  | const uint8_t *tx_buf, | 
|  | uint32_t tx_buf_len) | 
|  | { | 
|  | k_spinlock_key_t key; | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  |  | 
|  | if (tx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) { | 
|  | key = spi_spin_lock(dev); | 
|  | spi_sam_fast_tx(regs, tx_buf, tx_buf_len); | 
|  | } else { | 
|  | return spi_sam_dma_txrx(dev, regs, tx_buf, NULL, tx_buf_len); | 
|  | } | 
|  | #else | 
|  | key = spi_spin_lock(dev); | 
|  | spi_sam_fast_tx(regs, tx_buf, tx_buf_len); | 
|  | #endif | 
|  | spi_sam_finish(regs); | 
|  | spi_spin_unlock(dev, key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int spi_sam_txrx(const struct device *dev, | 
|  | Spi *regs, | 
|  | const uint8_t *tx_buf, | 
|  | const uint8_t *rx_buf, | 
|  | uint32_t buf_len) | 
|  | { | 
|  | k_spinlock_key_t key; | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  |  | 
|  | if (buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) { | 
|  | key = spi_spin_lock(dev); | 
|  | spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len); | 
|  | } else { | 
|  | return spi_sam_dma_txrx(dev, regs, tx_buf, rx_buf, buf_len); | 
|  | } | 
|  | #else | 
|  | key = spi_spin_lock(dev); | 
|  | spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len); | 
|  | #endif | 
|  | spi_sam_finish(regs); | 
|  | spi_spin_unlock(dev, key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SPI_RTIO | 
|  |  | 
|  | /* Fast path where every overlapping tx and rx buffer is the same length */ | 
|  | static void spi_sam_fast_transceive(const struct device *dev, | 
|  | const struct spi_config *config, | 
|  | const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs) | 
|  | { | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  | size_t tx_count = 0; | 
|  | size_t rx_count = 0; | 
|  | Spi *regs = cfg->regs; | 
|  | const struct spi_buf *tx = NULL; | 
|  | const struct spi_buf *rx = NULL; | 
|  |  | 
|  | if (tx_bufs) { | 
|  | tx = tx_bufs->buffers; | 
|  | tx_count = tx_bufs->count; | 
|  | } | 
|  |  | 
|  | if (rx_bufs) { | 
|  | rx = rx_bufs->buffers; | 
|  | rx_count = rx_bufs->count; | 
|  | } | 
|  |  | 
|  | while (tx_count != 0 && rx_count != 0) { | 
|  | if (tx->buf == NULL) { | 
|  | spi_sam_rx(dev, regs, rx->buf, rx->len); | 
|  | } else if (rx->buf == NULL) { | 
|  | spi_sam_tx(dev, regs, tx->buf, tx->len); | 
|  | } else if (rx->len == tx->len) { | 
|  | spi_sam_txrx(dev, regs, tx->buf, rx->buf, rx->len); | 
|  | } else { | 
|  | __ASSERT_NO_MSG("Invalid fast transceive configuration"); | 
|  | } | 
|  |  | 
|  | tx++; | 
|  | tx_count--; | 
|  | rx++; | 
|  | rx_count--; | 
|  | } | 
|  |  | 
|  | for (; tx_count != 0; tx_count--) { | 
|  | spi_sam_tx(dev, regs, tx->buf, tx->len); | 
|  | tx++; | 
|  | } | 
|  |  | 
|  | for (; rx_count != 0; rx_count--) { | 
|  | spi_sam_rx(dev, regs, rx->buf, rx->len); | 
|  | rx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool spi_sam_transfer_ongoing(struct spi_sam_data *data) | 
|  | { | 
|  | return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); | 
|  | } | 
|  |  | 
|  | static void spi_sam_shift_master(Spi *regs, struct spi_sam_data *data) | 
|  | { | 
|  | uint8_t tx; | 
|  | uint8_t rx; | 
|  |  | 
|  | if (spi_context_tx_buf_on(&data->ctx)) { | 
|  | tx = *(uint8_t *)(data->ctx.tx_buf); | 
|  | } else { | 
|  | tx = 0U; | 
|  | } | 
|  |  | 
|  | while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { | 
|  | } | 
|  |  | 
|  | regs->SPI_TDR = SPI_TDR_TD(tx); | 
|  | spi_context_update_tx(&data->ctx, 1, 1); | 
|  |  | 
|  | while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { | 
|  | } | 
|  |  | 
|  | rx = (uint8_t)regs->SPI_RDR; | 
|  |  | 
|  | if (spi_context_rx_buf_on(&data->ctx)) { | 
|  | *data->ctx.rx_buf = rx; | 
|  | } | 
|  | spi_context_update_rx(&data->ctx, 1, 1); | 
|  | } | 
|  |  | 
|  | /* Returns true if the request is suitable for the fast | 
|  | * path. Specifically, the bufs are a sequence of: | 
|  | * | 
|  | * - Zero or more RX and TX buf pairs where each is the same length. | 
|  | * - Zero or more trailing RX only bufs | 
|  | * - Zero or more trailing TX only bufs | 
|  | */ | 
|  | static bool spi_sam_is_regular(const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs) | 
|  | { | 
|  | const struct spi_buf *tx = NULL; | 
|  | const struct spi_buf *rx = NULL; | 
|  | size_t tx_count = 0; | 
|  | size_t rx_count = 0; | 
|  |  | 
|  | if (tx_bufs) { | 
|  | tx = tx_bufs->buffers; | 
|  | tx_count = tx_bufs->count; | 
|  | } | 
|  |  | 
|  | if (rx_bufs) { | 
|  | rx = rx_bufs->buffers; | 
|  | rx_count = rx_bufs->count; | 
|  | } | 
|  |  | 
|  | if (!tx || !rx) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | while (tx_count != 0 && rx_count != 0) { | 
|  | if (tx->len != rx->len) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | tx++; | 
|  | tx_count--; | 
|  | rx++; | 
|  | rx_count--; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void spi_sam_iodev_complete(const struct device *dev, int status); | 
|  |  | 
|  | static void spi_sam_iodev_start(const struct device *dev) | 
|  | { | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  | struct spi_sam_data *data = dev->data; | 
|  | struct rtio_sqe *sqe = data->sqe; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (sqe->op) { | 
|  | case RTIO_OP_RX: | 
|  | ret = spi_sam_rx(dev, cfg->regs, sqe->buf, sqe->buf_len); | 
|  | break; | 
|  | case RTIO_OP_TX: | 
|  | ret = spi_sam_tx(dev, cfg->regs, sqe->buf, sqe->buf_len); | 
|  | break; | 
|  | case RTIO_OP_TINY_TX: | 
|  | ret = spi_sam_tx(dev, cfg->regs, sqe->tiny_buf, sqe->tiny_buf_len); | 
|  | break; | 
|  | case RTIO_OP_TXRX: | 
|  | ret = spi_sam_txrx(dev, cfg->regs, sqe->tx_buf, sqe->rx_buf, sqe->txrx_buf_len); | 
|  | break; | 
|  | default: | 
|  | LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe); | 
|  | rtio_iodev_sqe_err(data->iodev_sqe, -EINVAL); | 
|  | data->iodev_sqe = NULL; | 
|  | data->sqe = NULL; | 
|  | ret = 0; | 
|  | } | 
|  | if (ret == 0) { | 
|  | spi_sam_iodev_complete(dev, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spi_sam_iodev_next(const struct device *dev, bool completion) | 
|  | { | 
|  | struct spi_sam_data *data = dev->data; | 
|  |  | 
|  | k_spinlock_key_t key  = spi_spin_lock(dev); | 
|  |  | 
|  | if (!completion && data->iodev_sqe != NULL) { | 
|  | spi_spin_unlock(dev, key); | 
|  | return; | 
|  | } | 
|  |  | 
|  | struct rtio_mpsc_node *next = rtio_mpsc_pop(&data->iodev.iodev_sq); | 
|  |  | 
|  | if (next != NULL) { | 
|  | struct rtio_iodev_sqe *next_sqe = CONTAINER_OF(next, struct rtio_iodev_sqe, q); | 
|  |  | 
|  | data->iodev_sqe = next_sqe; | 
|  | data->sqe = (struct rtio_sqe *)next_sqe->sqe; | 
|  | } else { | 
|  | data->iodev_sqe = NULL; | 
|  | data->sqe = NULL; | 
|  | } | 
|  |  | 
|  | spi_spin_unlock(dev, key); | 
|  |  | 
|  | if (data->iodev_sqe != NULL) { | 
|  | struct spi_dt_spec *spi_dt_spec = data->sqe->iodev->data; | 
|  | struct spi_config *spi_cfg = &spi_dt_spec->config; | 
|  |  | 
|  | spi_sam_configure(dev, spi_cfg); | 
|  | spi_context_cs_control(&data->ctx, true); | 
|  | spi_sam_iodev_start(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spi_sam_iodev_complete(const struct device *dev, int status) | 
|  | { | 
|  | struct spi_sam_data *data = dev->data; | 
|  |  | 
|  | if (data->sqe->flags & RTIO_SQE_TRANSACTION) { | 
|  | data->sqe = rtio_spsc_next(data->iodev_sqe->r->sq, data->sqe); | 
|  | spi_sam_iodev_start(dev); | 
|  | } else { | 
|  | struct rtio_iodev_sqe *iodev_sqe = data->iodev_sqe; | 
|  |  | 
|  | spi_context_cs_control(&data->ctx, false); | 
|  | spi_sam_iodev_next(dev, true); | 
|  | rtio_iodev_sqe_ok(iodev_sqe, status); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spi_sam_iodev_submit(const struct device *dev, | 
|  | struct rtio_iodev_sqe *iodev_sqe) | 
|  | { | 
|  | struct spi_sam_data *data = dev->data; | 
|  |  | 
|  | rtio_mpsc_push(&data->iodev.iodev_sq, &iodev_sqe->q); | 
|  | spi_sam_iodev_next(dev, false); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int spi_sam_transceive(const struct device *dev, | 
|  | const struct spi_config *config, | 
|  | const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs) | 
|  | { | 
|  | struct spi_sam_data *data = dev->data; | 
|  | int err = 0; | 
|  |  | 
|  | spi_context_lock(&data->ctx, false, NULL, NULL, config); | 
|  |  | 
|  | #if CONFIG_SPI_RTIO | 
|  | struct rtio_sqe *sqe; | 
|  | struct rtio_cqe *cqe; | 
|  |  | 
|  | struct spi_dt_spec *dt_spec = &data->dt_spec; | 
|  |  | 
|  | dt_spec->config = *config; | 
|  |  | 
|  | sqe = spi_rtio_copy(data->r, &data->iodev, tx_bufs, rx_bufs); | 
|  | if (sqe == NULL) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Submit request and wait */ | 
|  | rtio_submit(data->r, 1); | 
|  |  | 
|  | cqe = rtio_cqe_consume(data->r); | 
|  |  | 
|  | err = cqe->result; | 
|  |  | 
|  | rtio_cqe_release(data->r); | 
|  | #else | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  |  | 
|  | err = spi_sam_configure(dev, config); | 
|  | if (err != 0) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | spi_context_cs_control(&data->ctx, true); | 
|  |  | 
|  | if (spi_sam_is_regular(tx_bufs, rx_bufs)) { | 
|  | spi_sam_fast_transceive(dev, config, tx_bufs, rx_bufs); | 
|  | } else { | 
|  | spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); | 
|  |  | 
|  | do { | 
|  | spi_sam_shift_master(cfg->regs, data); | 
|  | } while (spi_sam_transfer_ongoing(data)); | 
|  | } | 
|  |  | 
|  | spi_context_cs_control(&data->ctx, false); | 
|  | #endif | 
|  | done: | 
|  | spi_context_release(&data->ctx, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int spi_sam_transceive_sync(const struct device *dev, | 
|  | const struct spi_config *config, | 
|  | const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs) | 
|  | { | 
|  | return spi_sam_transceive(dev, config, tx_bufs, rx_bufs); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPI_ASYNC | 
|  | static int spi_sam_transceive_async(const struct device *dev, | 
|  | const struct spi_config *config, | 
|  | const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs, | 
|  | spi_callback_t cb, | 
|  | void *userdata) | 
|  | { | 
|  | /* TODO: implement async transceive */ | 
|  | return -ENOTSUP; | 
|  | } | 
|  | #endif /* CONFIG_SPI_ASYNC */ | 
|  |  | 
|  | static int spi_sam_release(const struct device *dev, | 
|  | const struct spi_config *config) | 
|  | { | 
|  | struct spi_sam_data *data = dev->data; | 
|  |  | 
|  | spi_context_unlock_unconditionally(&data->ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_sam_init(const struct device *dev) | 
|  | { | 
|  | int err; | 
|  | const struct spi_sam_config *cfg = dev->config; | 
|  | struct spi_sam_data *data = dev->data; | 
|  |  | 
|  | /* Enable SPI clock in PMC */ | 
|  | (void)clock_control_on(SAM_DT_PMC_CONTROLLER, | 
|  | (clock_control_subsys_t *)&cfg->clock_cfg); | 
|  |  | 
|  | err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); | 
|  | if (err < 0) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = spi_context_cs_configure_all(&data->ctx); | 
|  | if (err < 0) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  | k_sem_init(&data->dma_sem, 0, K_SEM_MAX_LIMIT); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPI_RTIO | 
|  | data->dt_spec.bus = dev; | 
|  | data->iodev.api = &spi_iodev_api; | 
|  | data->iodev.data = &data->dt_spec; | 
|  | rtio_mpsc_init(&data->iodev.iodev_sq); | 
|  | #endif | 
|  |  | 
|  | spi_context_unlock_unconditionally(&data->ctx); | 
|  |  | 
|  | /* The device will be configured and enabled when transceive | 
|  | * is called. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct spi_driver_api spi_sam_driver_api = { | 
|  | .transceive = spi_sam_transceive_sync, | 
|  | #ifdef CONFIG_SPI_ASYNC | 
|  | .transceive_async = spi_sam_transceive_async, | 
|  | #endif | 
|  | #ifdef CONFIG_SPI_RTIO | 
|  | .iodev_submit = spi_sam_iodev_submit, | 
|  | #endif | 
|  | .release = spi_sam_release, | 
|  | }; | 
|  |  | 
|  | #define SPI_DMA_INIT(n)										\ | 
|  | .dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)),				\ | 
|  | .dma_tx_channel = DT_INST_DMAS_CELL_BY_NAME(n, tx, channel),				\ | 
|  | .dma_tx_perid = DT_INST_DMAS_CELL_BY_NAME(n, tx, perid),				\ | 
|  | .dma_rx_channel = DT_INST_DMAS_CELL_BY_NAME(n, rx, channel),				\ | 
|  | .dma_rx_perid = DT_INST_DMAS_CELL_BY_NAME(n, rx, perid), | 
|  |  | 
|  | #ifdef CONFIG_SPI_SAM_DMA | 
|  | #define SPI_SAM_USE_DMA(n) DT_INST_DMAS_HAS_NAME(n, tx) | 
|  | #else | 
|  | #define SPI_SAM_USE_DMA(n) 0 | 
|  | #endif | 
|  |  | 
|  | #define SPI_SAM_DEFINE_CONFIG(n)								\ | 
|  | static const struct spi_sam_config spi_sam_config_##n = {				\ | 
|  | .regs = (Spi *)DT_INST_REG_ADDR(n),						\ | 
|  | .clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n),					\ | 
|  | .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),					\ | 
|  | .loopback = DT_INST_PROP(n, loopback),						\ | 
|  | COND_CODE_1(SPI_SAM_USE_DMA(n), (SPI_DMA_INIT(n)), ())				\ | 
|  | } | 
|  |  | 
|  | #define SPI_SAM_RTIO_DEFINE(n)									\ | 
|  | RTIO_EXECUTOR_SIMPLE_DEFINE(spi_sam_exec_##n);						\ | 
|  | RTIO_DEFINE(spi_sam_rtio_##n, (struct rtio_executor *)&spi_sam_exec_##n,		\ | 
|  | CONFIG_SPI_SAM_RTIO_SQ_SIZE, 1) | 
|  |  | 
|  | #define SPI_SAM_DEVICE_INIT(n)									\ | 
|  | PINCTRL_DT_INST_DEFINE(n);								\ | 
|  | SPI_SAM_DEFINE_CONFIG(n);								\ | 
|  | COND_CODE_1(CONFIG_SPI_RTIO, (SPI_SAM_RTIO_DEFINE(n)), ());				\ | 
|  | static struct spi_sam_data spi_sam_dev_data_##n = {					\ | 
|  | SPI_CONTEXT_INIT_LOCK(spi_sam_dev_data_##n, ctx),				\ | 
|  | SPI_CONTEXT_INIT_SYNC(spi_sam_dev_data_##n, ctx),				\ | 
|  | SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx)				\ | 
|  | IF_ENABLED(CONFIG_SPI_RTIO, (.r = &spi_sam_rtio_##n))				\ | 
|  | };											\ | 
|  | DEVICE_DT_INST_DEFINE(n, &spi_sam_init, NULL,						\ | 
|  | &spi_sam_dev_data_##n,						\ | 
|  | &spi_sam_config_##n, POST_KERNEL,					\ | 
|  | CONFIG_SPI_INIT_PRIORITY, &spi_sam_driver_api); | 
|  |  | 
|  | DT_INST_FOREACH_STATUS_OKAY(SPI_SAM_DEVICE_INIT) |