blob: 99645337e544f6bcd640a22b71f8c31563694c7a [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/spinlock.h>
#include <zephyr/kernel/sched_priq.h>
#include <zephyr/wait_q.h>
#include <kswap.h>
#include <kernel_arch_func.h>
#include <zephyr/syscall_handler.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <stdbool.h>
#include <kernel_internal.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/sys/math_extras.h>
#include <zephyr/timing/timing.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
#if defined(CONFIG_SCHED_DUMB)
#define _priq_run_add z_priq_dumb_add
#define _priq_run_remove z_priq_dumb_remove
# if defined(CONFIG_SCHED_CPU_MASK)
# define _priq_run_best _priq_dumb_mask_best
# else
# define _priq_run_best z_priq_dumb_best
# endif
#elif defined(CONFIG_SCHED_SCALABLE)
#define _priq_run_add z_priq_rb_add
#define _priq_run_remove z_priq_rb_remove
#define _priq_run_best z_priq_rb_best
#elif defined(CONFIG_SCHED_MULTIQ)
#define _priq_run_add z_priq_mq_add
#define _priq_run_remove z_priq_mq_remove
#define _priq_run_best z_priq_mq_best
static ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq,
struct k_thread *thread);
static ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq,
struct k_thread *thread);
#endif
#if defined(CONFIG_WAITQ_SCALABLE)
#define z_priq_wait_add z_priq_rb_add
#define _priq_wait_remove z_priq_rb_remove
#define _priq_wait_best z_priq_rb_best
#elif defined(CONFIG_WAITQ_DUMB)
#define z_priq_wait_add z_priq_dumb_add
#define _priq_wait_remove z_priq_dumb_remove
#define _priq_wait_best z_priq_dumb_best
#endif
struct k_spinlock sched_spinlock;
static void update_cache(int preempt_ok);
static void end_thread(struct k_thread *thread);
static inline int is_preempt(struct k_thread *thread)
{
/* explanation in kernel_struct.h */
return thread->base.preempt <= _PREEMPT_THRESHOLD;
}
static inline int is_metairq(struct k_thread *thread)
{
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0
return (thread->base.prio - K_HIGHEST_THREAD_PRIO)
< CONFIG_NUM_METAIRQ_PRIORITIES;
#else
return 0;
#endif
}
#if CONFIG_ASSERT
static inline bool is_thread_dummy(struct k_thread *thread)
{
return (thread->base.thread_state & _THREAD_DUMMY) != 0U;
}
#endif
/*
* Return value same as e.g. memcmp
* > 0 -> thread 1 priority > thread 2 priority
* = 0 -> thread 1 priority == thread 2 priority
* < 0 -> thread 1 priority < thread 2 priority
* Do not rely on the actual value returned aside from the above.
* (Again, like memcmp.)
*/
int32_t z_sched_prio_cmp(struct k_thread *thread_1,
struct k_thread *thread_2)
{
/* `prio` is <32b, so the below cannot overflow. */
int32_t b1 = thread_1->base.prio;
int32_t b2 = thread_2->base.prio;
if (b1 != b2) {
return b2 - b1;
}
#ifdef CONFIG_SCHED_DEADLINE
/* If we assume all deadlines live within the same "half" of
* the 32 bit modulus space (this is a documented API rule),
* then the latest deadline in the queue minus the earliest is
* guaranteed to be (2's complement) non-negative. We can
* leverage that to compare the values without having to check
* the current time.
*/
uint32_t d1 = thread_1->base.prio_deadline;
uint32_t d2 = thread_2->base.prio_deadline;
if (d1 != d2) {
/* Sooner deadline means higher effective priority.
* Doing the calculation with unsigned types and casting
* to signed isn't perfect, but at least reduces this
* from UB on overflow to impdef.
*/
return (int32_t) (d2 - d1);
}
#endif
return 0;
}
static ALWAYS_INLINE bool should_preempt(struct k_thread *thread,
int preempt_ok)
{
/* Preemption is OK if it's being explicitly allowed by
* software state (e.g. the thread called k_yield())
*/
if (preempt_ok != 0) {
return true;
}
__ASSERT(_current != NULL, "");
/* Or if we're pended/suspended/dummy (duh) */
if (z_is_thread_prevented_from_running(_current)) {
return true;
}
/* Edge case on ARM where a thread can be pended out of an
* interrupt handler before the "synchronous" swap starts
* context switching. Platforms with atomic swap can never
* hit this.
*/
if (IS_ENABLED(CONFIG_SWAP_NONATOMIC)
&& z_is_thread_timeout_active(thread)) {
return true;
}
/* Otherwise we have to be running a preemptible thread or
* switching to a metairq
*/
if (is_preempt(_current) || is_metairq(thread)) {
return true;
}
return false;
}
#ifdef CONFIG_SCHED_CPU_MASK
static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq)
{
/* With masks enabled we need to be prepared to walk the list
* looking for one we can run
*/
struct k_thread *thread;
SYS_DLIST_FOR_EACH_CONTAINER(pq, thread, base.qnode_dlist) {
if ((thread->base.cpu_mask & BIT(_current_cpu->id)) != 0) {
return thread;
}
}
return NULL;
}
#endif
static ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq,
struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
if (z_sched_prio_cmp(thread, t) > 0) {
sys_dlist_insert(&t->base.qnode_dlist,
&thread->base.qnode_dlist);
return;
}
}
sys_dlist_append(pq, &thread->base.qnode_dlist);
}
static ALWAYS_INLINE void *thread_runq(struct k_thread *thread)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
int cpu, m = thread->base.cpu_mask;
/* Edge case: it's legal per the API to "make runnable" a
* thread with all CPUs masked off (i.e. one that isn't
* actually runnable!). Sort of a wart in the API and maybe
* we should address this in docs/assertions instead to avoid
* the extra test.
*/
cpu = m == 0 ? 0 : u32_count_trailing_zeros(m);
return &_kernel.cpus[cpu].ready_q.runq;
#else
return &_kernel.ready_q.runq;
#endif
}
static ALWAYS_INLINE void *curr_cpu_runq(void)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
return &arch_curr_cpu()->ready_q.runq;
#else
return &_kernel.ready_q.runq;
#endif
}
static ALWAYS_INLINE void runq_add(struct k_thread *thread)
{
_priq_run_add(thread_runq(thread), thread);
}
static ALWAYS_INLINE void runq_remove(struct k_thread *thread)
{
_priq_run_remove(thread_runq(thread), thread);
}
static ALWAYS_INLINE struct k_thread *runq_best(void)
{
return _priq_run_best(curr_cpu_runq());
}
/* _current is never in the run queue until context switch on
* SMP configurations, see z_requeue_current()
*/
static inline bool should_queue_thread(struct k_thread *th)
{
return !IS_ENABLED(CONFIG_SMP) || th != _current;
}
static ALWAYS_INLINE void queue_thread(struct k_thread *thread)
{
thread->base.thread_state |= _THREAD_QUEUED;
if (should_queue_thread(thread)) {
runq_add(thread);
}
#ifdef CONFIG_SMP
if (thread == _current) {
/* add current to end of queue means "yield" */
_current_cpu->swap_ok = true;
}
#endif
}
static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread)
{
thread->base.thread_state &= ~_THREAD_QUEUED;
if (should_queue_thread(thread)) {
runq_remove(thread);
}
}
static void signal_pending_ipi(void)
{
/* Synchronization note: you might think we need to lock these
* two steps, but an IPI is idempotent. It's OK if we do it
* twice. All we require is that if a CPU sees the flag true,
* it is guaranteed to send the IPI, and if a core sets
* pending_ipi, the IPI will be sent the next time through
* this code.
*/
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
if (CONFIG_MP_NUM_CPUS > 1) {
if (_kernel.pending_ipi) {
_kernel.pending_ipi = false;
arch_sched_ipi();
}
}
#endif
}
#ifdef CONFIG_SMP
/* Called out of z_swap() when CONFIG_SMP. The current thread can
* never live in the run queue until we are inexorably on the context
* switch path on SMP, otherwise there is a deadlock condition where a
* set of CPUs pick a cycle of threads to run and wait for them all to
* context switch forever.
*/
void z_requeue_current(struct k_thread *curr)
{
if (z_is_thread_queued(curr)) {
runq_add(curr);
}
signal_pending_ipi();
}
static inline bool is_aborting(struct k_thread *thread)
{
return (thread->base.thread_state & _THREAD_ABORTING) != 0U;
}
#endif
static ALWAYS_INLINE struct k_thread *next_up(void)
{
struct k_thread *thread = runq_best();
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && (CONFIG_NUM_COOP_PRIORITIES > 0)
/* MetaIRQs must always attempt to return back to a
* cooperative thread they preempted and not whatever happens
* to be highest priority now. The cooperative thread was
* promised it wouldn't be preempted (by non-metairq threads)!
*/
struct k_thread *mirqp = _current_cpu->metairq_preempted;
if (mirqp != NULL && (thread == NULL || !is_metairq(thread))) {
if (!z_is_thread_prevented_from_running(mirqp)) {
thread = mirqp;
} else {
_current_cpu->metairq_preempted = NULL;
}
}
#endif
#ifndef CONFIG_SMP
/* In uniprocessor mode, we can leave the current thread in
* the queue (actually we have to, otherwise the assembly
* context switch code for all architectures would be
* responsible for putting it back in z_swap and ISR return!),
* which makes this choice simple.
*/
return (thread != NULL) ? thread : _current_cpu->idle_thread;
#else
/* Under SMP, the "cache" mechanism for selecting the next
* thread doesn't work, so we have more work to do to test
* _current against the best choice from the queue. Here, the
* thread selected above represents "the best thread that is
* not current".
*
* Subtle note on "queued": in SMP mode, _current does not
* live in the queue, so this isn't exactly the same thing as
* "ready", it means "is _current already added back to the
* queue such that we don't want to re-add it".
*/
if (is_aborting(_current)) {
end_thread(_current);
}
int queued = z_is_thread_queued(_current);
int active = !z_is_thread_prevented_from_running(_current);
if (thread == NULL) {
thread = _current_cpu->idle_thread;
}
if (active) {
int32_t cmp = z_sched_prio_cmp(_current, thread);
/* Ties only switch if state says we yielded */
if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) {
thread = _current;
}
if (!should_preempt(thread, _current_cpu->swap_ok)) {
thread = _current;
}
}
/* Put _current back into the queue */
if (thread != _current && active &&
!z_is_idle_thread_object(_current) && !queued) {
queue_thread(_current);
}
/* Take the new _current out of the queue */
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
_current_cpu->swap_ok = false;
return thread;
#endif
}
static void move_thread_to_end_of_prio_q(struct k_thread *thread)
{
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
queue_thread(thread);
update_cache(thread == _current);
}
#ifdef CONFIG_TIMESLICING
static int slice_ticks;
static int slice_max_prio;
static inline int slice_time(struct k_thread *curr)
{
int ret = slice_ticks;
#ifdef CONFIG_TIMESLICE_PER_THREAD
if (curr->base.slice_ticks != 0) {
ret = curr->base.slice_ticks;
}
#endif
return ret;
}
#ifdef CONFIG_SWAP_NONATOMIC
/* If z_swap() isn't atomic, then it's possible for a timer interrupt
* to try to timeslice away _current after it has already pended
* itself but before the corresponding context switch. Treat that as
* a noop condition in z_time_slice().
*/
static struct k_thread *pending_current;
#endif
void z_reset_time_slice(struct k_thread *curr)
{
/* Add the elapsed time since the last announced tick to the
* slice count, as we'll see those "expired" ticks arrive in a
* FUTURE z_time_slice() call.
*/
if (slice_time(curr) != 0) {
_current_cpu->slice_ticks = slice_time(curr) + sys_clock_elapsed();
z_set_timeout_expiry(slice_time(curr), false);
}
}
void k_sched_time_slice_set(int32_t slice, int prio)
{
LOCKED(&sched_spinlock) {
_current_cpu->slice_ticks = 0;
slice_ticks = k_ms_to_ticks_ceil32(slice);
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && slice > 0) {
/* It's not possible to reliably set a 1-tick
* timeout if ticks aren't regular.
*/
slice_ticks = MAX(2, slice_ticks);
}
slice_max_prio = prio;
z_reset_time_slice(_current);
}
}
#ifdef CONFIG_TIMESLICE_PER_THREAD
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
k_thread_timeslice_fn_t expired, void *data)
{
LOCKED(&sched_spinlock) {
th->base.slice_ticks = slice_ticks;
th->base.slice_expired = expired;
th->base.slice_data = data;
}
}
#endif
static inline bool sliceable(struct k_thread *thread)
{
bool ret = is_preempt(thread)
&& !z_is_thread_prevented_from_running(thread)
&& !z_is_prio_higher(thread->base.prio, slice_max_prio)
&& !z_is_idle_thread_object(thread);
#ifdef CONFIG_TIMESLICE_PER_THREAD
ret |= thread->base.slice_ticks != 0;
#endif
return ret;
}
static k_spinlock_key_t slice_expired_locked(k_spinlock_key_t sched_lock_key)
{
struct k_thread *curr = _current;
#ifdef CONFIG_TIMESLICE_PER_THREAD
if (curr->base.slice_expired) {
k_spin_unlock(&sched_spinlock, sched_lock_key);
curr->base.slice_expired(curr, curr->base.slice_data);
sched_lock_key = k_spin_lock(&sched_spinlock);
}
#endif
if (!z_is_thread_prevented_from_running(curr)) {
move_thread_to_end_of_prio_q(curr);
}
z_reset_time_slice(curr);
return sched_lock_key;
}
/* Called out of each timer interrupt */
void z_time_slice(int ticks)
{
/* Hold sched_spinlock, so that activity on another CPU
* (like a call to k_thread_abort() at just the wrong time)
* won't affect the correctness of the decisions made here.
* Also prevents any nested interrupts from changing
* thread state to avoid similar issues, since this would
* normally run with IRQs enabled.
*/
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
#ifdef CONFIG_SWAP_NONATOMIC
if (pending_current == _current) {
z_reset_time_slice(_current);
k_spin_unlock(&sched_spinlock, key);
return;
}
pending_current = NULL;
#endif
if (slice_time(_current) && sliceable(_current)) {
if (ticks >= _current_cpu->slice_ticks) {
/* Note: this will (if so enabled) internally
* drop and reacquire the scheduler lock
* around the callback! Don't put anything
* after this line that requires
* synchronization.
*/
key = slice_expired_locked(key);
} else {
_current_cpu->slice_ticks -= ticks;
}
} else {
_current_cpu->slice_ticks = 0;
}
k_spin_unlock(&sched_spinlock, key);
}
#endif
/* Track cooperative threads preempted by metairqs so we can return to
* them specifically. Called at the moment a new thread has been
* selected to run.
*/
static void update_metairq_preempt(struct k_thread *thread)
{
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && (CONFIG_NUM_COOP_PRIORITIES > 0)
if (is_metairq(thread) && !is_metairq(_current) &&
!is_preempt(_current)) {
/* Record new preemption */
_current_cpu->metairq_preempted = _current;
} else if (!is_metairq(thread) && !z_is_idle_thread_object(thread)) {
/* Returning from existing preemption */
_current_cpu->metairq_preempted = NULL;
}
#endif
}
static void update_cache(int preempt_ok)
{
#ifndef CONFIG_SMP
struct k_thread *thread = next_up();
if (should_preempt(thread, preempt_ok)) {
#ifdef CONFIG_TIMESLICING
if (thread != _current) {
z_reset_time_slice(thread);
}
#endif
update_metairq_preempt(thread);
_kernel.ready_q.cache = thread;
} else {
_kernel.ready_q.cache = _current;
}
#else
/* The way this works is that the CPU record keeps its
* "cooperative swapping is OK" flag until the next reschedule
* call or context switch. It doesn't need to be tracked per
* thread because if the thread gets preempted for whatever
* reason the scheduler will make the same decision anyway.
*/
_current_cpu->swap_ok = preempt_ok;
#endif
}
static bool thread_active_elsewhere(struct k_thread *thread)
{
/* True if the thread is currently running on another CPU.
* There are more scalable designs to answer this question in
* constant time, but this is fine for now.
*/
#ifdef CONFIG_SMP
int currcpu = _current_cpu->id;
for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) {
if ((i != currcpu) &&
(_kernel.cpus[i].current == thread)) {
return true;
}
}
#endif
return false;
}
static void flag_ipi(void)
{
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
if (CONFIG_MP_NUM_CPUS > 1) {
_kernel.pending_ipi = true;
}
#endif
}
static void ready_thread(struct k_thread *thread)
{
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(thread));
#endif
/* If thread is queued already, do not try and added it to the
* run queue again
*/
if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) {
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread);
queue_thread(thread);
update_cache(0);
flag_ipi();
}
}
void z_ready_thread(struct k_thread *thread)
{
LOCKED(&sched_spinlock) {
if (!thread_active_elsewhere(thread)) {
ready_thread(thread);
}
}
}
void z_move_thread_to_end_of_prio_q(struct k_thread *thread)
{
LOCKED(&sched_spinlock) {
move_thread_to_end_of_prio_q(thread);
}
}
void z_sched_start(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
if (z_has_thread_started(thread)) {
k_spin_unlock(&sched_spinlock, key);
return;
}
z_mark_thread_as_started(thread);
ready_thread(thread);
z_reschedule(&sched_spinlock, key);
}
void z_impl_k_thread_suspend(struct k_thread *thread)
{
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread);
(void)z_abort_thread_timeout(thread);
LOCKED(&sched_spinlock) {
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
z_mark_thread_as_suspended(thread);
update_cache(thread == _current);
}
if (thread == _current) {
z_reschedule_unlocked();
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_suspend(struct k_thread *thread)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
z_impl_k_thread_suspend(thread);
}
#include <syscalls/k_thread_suspend_mrsh.c>
#endif
void z_impl_k_thread_resume(struct k_thread *thread)
{
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread);
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
/* Do not try to resume a thread that was not suspended */
if (!z_is_thread_suspended(thread)) {
k_spin_unlock(&sched_spinlock, key);
return;
}
z_mark_thread_as_not_suspended(thread);
ready_thread(thread);
z_reschedule(&sched_spinlock, key);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_resume(struct k_thread *thread)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
z_impl_k_thread_resume(thread);
}
#include <syscalls/k_thread_resume_mrsh.c>
#endif
static _wait_q_t *pended_on_thread(struct k_thread *thread)
{
__ASSERT_NO_MSG(thread->base.pended_on);
return thread->base.pended_on;
}
static void unready_thread(struct k_thread *thread)
{
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
update_cache(thread == _current);
}
/* sched_spinlock must be held */
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q)
{
unready_thread(thread);
z_mark_thread_as_pending(thread);
SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread);
if (wait_q != NULL) {
thread->base.pended_on = wait_q;
z_priq_wait_add(&wait_q->waitq, thread);
}
}
static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout)
{
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
z_add_thread_timeout(thread, timeout);
}
}
static void pend(struct k_thread *thread, _wait_q_t *wait_q,
k_timeout_t timeout)
{
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q));
#endif
LOCKED(&sched_spinlock) {
add_to_waitq_locked(thread, wait_q);
}
add_thread_timeout(thread, timeout);
}
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
k_timeout_t timeout)
{
__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread));
pend(thread, wait_q, timeout);
}
static inline void unpend_thread_no_timeout(struct k_thread *thread)
{
_priq_wait_remove(&pended_on_thread(thread)->waitq, thread);
z_mark_thread_as_not_pending(thread);
thread->base.pended_on = NULL;
}
ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread)
{
LOCKED(&sched_spinlock) {
unpend_thread_no_timeout(thread);
}
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
/* Timeout handler for *_thread_timeout() APIs */
void z_thread_timeout(struct _timeout *timeout)
{
struct k_thread *thread = CONTAINER_OF(timeout,
struct k_thread, base.timeout);
LOCKED(&sched_spinlock) {
bool killed = ((thread->base.thread_state & _THREAD_DEAD) ||
(thread->base.thread_state & _THREAD_ABORTING));
if (!killed) {
if (thread->base.pended_on != NULL) {
unpend_thread_no_timeout(thread);
}
z_mark_thread_as_started(thread);
z_mark_thread_as_not_suspended(thread);
ready_thread(thread);
}
}
}
#endif
int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout)
{
pend(_current, wait_q, timeout);
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
int ret = z_swap_irqlock(key);
LOCKED(&sched_spinlock) {
if (pending_current == _current) {
pending_current = NULL;
}
}
return ret;
#else
return z_swap_irqlock(key);
#endif
}
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
_wait_q_t *wait_q, k_timeout_t timeout)
{
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif
pend(_current, wait_q, timeout);
return z_swap(lock, key);
}
struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q)
{
struct k_thread *thread = NULL;
LOCKED(&sched_spinlock) {
thread = _priq_wait_best(&wait_q->waitq);
if (thread != NULL) {
unpend_thread_no_timeout(thread);
}
}
return thread;
}
struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
{
struct k_thread *thread = NULL;
LOCKED(&sched_spinlock) {
thread = _priq_wait_best(&wait_q->waitq);
if (thread != NULL) {
unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
}
}
return thread;
}
void z_unpend_thread(struct k_thread *thread)
{
z_unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
}
/* Priority set utility that does no rescheduling, it just changes the
* run queue state, returning true if a reschedule is needed later.
*/
bool z_set_prio(struct k_thread *thread, int prio)
{
bool need_sched = 0;
LOCKED(&sched_spinlock) {
need_sched = z_is_thread_ready(thread);
if (need_sched) {
/* Don't requeue on SMP if it's the running thread */
if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) {
dequeue_thread(thread);
thread->base.prio = prio;
queue_thread(thread);
} else {
thread->base.prio = prio;
}
update_cache(1);
} else {
thread->base.prio = prio;
}
}
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio);
return need_sched;
}
void z_thread_priority_set(struct k_thread *thread, int prio)
{
bool need_sched = z_set_prio(thread, prio);
flag_ipi();
if (need_sched && _current->base.sched_locked == 0U) {
z_reschedule_unlocked();
}
}
static inline bool resched(uint32_t key)
{
#ifdef CONFIG_SMP
_current_cpu->swap_ok = 0;
#endif
return arch_irq_unlocked(key) && !arch_is_in_isr();
}
/*
* Check if the next ready thread is the same as the current thread
* and save the trip if true.
*/
static inline bool need_swap(void)
{
/* the SMP case will be handled in C based z_swap() */
#ifdef CONFIG_SMP
return true;
#else
struct k_thread *new_thread;
/* Check if the next ready thread is the same as the current thread */
new_thread = _kernel.ready_q.cache;
return new_thread != _current;
#endif
}
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
{
if (resched(key.key) && need_swap()) {
z_swap(lock, key);
} else {
k_spin_unlock(lock, key);
signal_pending_ipi();
}
}
void z_reschedule_irqlock(uint32_t key)
{
if (resched(key)) {
z_swap_irqlock(key);
} else {
irq_unlock(key);
signal_pending_ipi();
}
}
void k_sched_lock(void)
{
LOCKED(&sched_spinlock) {
SYS_PORT_TRACING_FUNC(k_thread, sched_lock);
z_sched_lock();
}
}
void k_sched_unlock(void)
{
LOCKED(&sched_spinlock) {
__ASSERT(_current->base.sched_locked != 0U, "");
__ASSERT(!arch_is_in_isr(), "");
++_current->base.sched_locked;
update_cache(0);
}
LOG_DBG("scheduler unlocked (%p:%d)",
_current, _current->base.sched_locked);
SYS_PORT_TRACING_FUNC(k_thread, sched_unlock);
z_reschedule_unlocked();
}
struct k_thread *z_swap_next_thread(void)
{
#ifdef CONFIG_SMP
struct k_thread *ret = next_up();
if (ret == _current) {
/* When not swapping, have to signal IPIs here. In
* the context switch case it must happen later, after
* _current gets requeued.
*/
signal_pending_ipi();
}
return ret;
#else
return _kernel.ready_q.cache;
#endif
}
#ifdef CONFIG_USE_SWITCH
/* Just a wrapper around _current = xxx with tracing */
static inline void set_current(struct k_thread *new_thread)
{
z_thread_mark_switched_out();
_current_cpu->current = new_thread;
}
/**
* @brief Determine next thread to execute upon completion of an interrupt
*
* Thread preemption is performed by context switching after the completion
* of a non-recursed interrupt. This function determines which thread to
* switch to if any. This function accepts as @p interrupted either:
*
* - The handle for the interrupted thread in which case the thread's context
* must already be fully saved and ready to be picked up by a different CPU.
*
* - NULL if more work is required to fully save the thread's state after
* it is known that a new thread is to be scheduled. It is up to the caller
* to store the handle resulting from the thread that is being switched out
* in that thread's "switch_handle" field after its
* context has fully been saved, following the same requirements as with
* the @ref arch_switch() function.
*
* If a new thread needs to be scheduled then its handle is returned.
* Otherwise the same value provided as @p interrupted is returned back.
* Those handles are the same opaque types used by the @ref arch_switch()
* function.
*
* @warning
* The @ref _current value may have changed after this call and not refer
* to the interrupted thread anymore. It might be necessary to make a local
* copy before calling this function.
*
* @param interrupted Handle for the thread that was interrupted or NULL.
* @retval Handle for the next thread to execute, or @p interrupted when
* no new thread is to be scheduled.
*/
void *z_get_next_switch_handle(void *interrupted)
{
z_check_stack_sentinel();
#ifdef CONFIG_SMP
void *ret = NULL;
LOCKED(&sched_spinlock) {
struct k_thread *old_thread = _current, *new_thread;
if (IS_ENABLED(CONFIG_SMP)) {
old_thread->switch_handle = NULL;
}
new_thread = next_up();
z_sched_usage_switch(new_thread);
if (old_thread != new_thread) {
update_metairq_preempt(new_thread);
wait_for_switch(new_thread);
arch_cohere_stacks(old_thread, interrupted, new_thread);
_current_cpu->swap_ok = 0;
set_current(new_thread);
#ifdef CONFIG_TIMESLICING
z_reset_time_slice(new_thread);
#endif
#ifdef CONFIG_SPIN_VALIDATE
/* Changed _current! Update the spinlock
* bookkeeping so the validation doesn't get
* confused when the "wrong" thread tries to
* release the lock.
*/
z_spin_lock_set_owner(&sched_spinlock);
#endif
/* A queued (runnable) old/current thread
* needs to be added back to the run queue
* here, and atomically with its switch handle
* being set below. This is safe now, as we
* will not return into it.
*/
if (z_is_thread_queued(old_thread)) {
runq_add(old_thread);
}
}
old_thread->switch_handle = interrupted;
ret = new_thread->switch_handle;
if (IS_ENABLED(CONFIG_SMP)) {
/* Active threads MUST have a null here */
new_thread->switch_handle = NULL;
}
}
signal_pending_ipi();
return ret;
#else
z_sched_usage_switch(_kernel.ready_q.cache);
_current->switch_handle = interrupted;
set_current(_kernel.ready_q.cache);
return _current->switch_handle;
#endif
}
#endif
void z_priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
{
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
sys_dlist_remove(&thread->base.qnode_dlist);
}
struct k_thread *z_priq_dumb_best(sys_dlist_t *pq)
{
struct k_thread *thread = NULL;
sys_dnode_t *n = sys_dlist_peek_head(pq);
if (n != NULL) {
thread = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
}
return thread;
}
bool z_priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
{
struct k_thread *thread_a, *thread_b;
int32_t cmp;
thread_a = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
thread_b = CONTAINER_OF(b, struct k_thread, base.qnode_rb);
cmp = z_sched_prio_cmp(thread_a, thread_b);
if (cmp > 0) {
return true;
} else if (cmp < 0) {
return false;
} else {
return thread_a->base.order_key < thread_b->base.order_key
? 1 : 0;
}
}
void z_priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
thread->base.order_key = pq->next_order_key++;
/* Renumber at wraparound. This is tiny code, and in practice
* will almost never be hit on real systems. BUT on very
* long-running systems where a priq never completely empties
* AND that contains very large numbers of threads, it can be
* a latency glitch to loop over all the threads like this.
*/
if (!pq->next_order_key) {
RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
t->base.order_key = pq->next_order_key++;
}
}
rb_insert(&pq->tree, &thread->base.qnode_rb);
}
void z_priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
{
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
rb_remove(&pq->tree, &thread->base.qnode_rb);
if (!pq->tree.root) {
pq->next_order_key = 0;
}
}
struct k_thread *z_priq_rb_best(struct _priq_rb *pq)
{
struct k_thread *thread = NULL;
struct rbnode *n = rb_get_min(&pq->tree);
if (n != NULL) {
thread = CONTAINER_OF(n, struct k_thread, base.qnode_rb);
}
return thread;
}
#ifdef CONFIG_SCHED_MULTIQ
# if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31
# error Too many priorities for multiqueue scheduler (max 32)
# endif
static ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq,
struct k_thread *thread)
{
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist);
pq->bitmask |= BIT(priority_bit);
}
static ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq,
struct k_thread *thread)
{
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
sys_dlist_remove(&thread->base.qnode_dlist);
if (sys_dlist_is_empty(&pq->queues[priority_bit])) {
pq->bitmask &= ~BIT(priority_bit);
}
}
#endif
struct k_thread *z_priq_mq_best(struct _priq_mq *pq)
{
if (!pq->bitmask) {
return NULL;
}
struct k_thread *thread = NULL;
sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)];
sys_dnode_t *n = sys_dlist_peek_head(l);
if (n != NULL) {
thread = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
}
return thread;
}
int z_unpend_all(_wait_q_t *wait_q)
{
int need_sched = 0;
struct k_thread *thread;
while ((thread = z_waitq_head(wait_q)) != NULL) {
z_unpend_thread(thread);
z_ready_thread(thread);
need_sched = 1;
}
return need_sched;
}
void init_ready_q(struct _ready_q *rq)
{
#if defined(CONFIG_SCHED_SCALABLE)
rq->runq = (struct _priq_rb) {
.tree = {
.lessthan_fn = z_priq_rb_lessthan,
}
};
#elif defined(CONFIG_SCHED_MULTIQ)
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
sys_dlist_init(&rq->runq.queues[i]);
}
#else
sys_dlist_init(&rq->runq);
#endif
}
void z_sched_init(void)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) {
init_ready_q(&_kernel.cpus[i].ready_q);
}
#else
init_ready_q(&_kernel.ready_q);
#endif
#ifdef CONFIG_TIMESLICING
k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE,
CONFIG_TIMESLICE_PRIORITY);
#endif
}
int z_impl_k_thread_priority_get(k_tid_t thread)
{
return thread->base.prio;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_priority_get(k_tid_t thread)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
return z_impl_k_thread_priority_get(thread);
}
#include <syscalls/k_thread_priority_get_mrsh.c>
#endif
void z_impl_k_thread_priority_set(k_tid_t thread, int prio)
{
/*
* Use NULL, since we cannot know what the entry point is (we do not
* keep track of it) and idle cannot change its priority.
*/
Z_ASSERT_VALID_PRIO(prio, NULL);
__ASSERT(!arch_is_in_isr(), "");
struct k_thread *th = (struct k_thread *)thread;
z_thread_priority_set(th, prio);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
"invalid thread priority %d", prio));
Z_OOPS(Z_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio,
"thread priority may only be downgraded (%d < %d)",
prio, thread->base.prio));
z_impl_k_thread_priority_set(thread, prio);
}
#include <syscalls/k_thread_priority_set_mrsh.c>
#endif
#ifdef CONFIG_SCHED_DEADLINE
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline)
{
struct k_thread *thread = tid;
LOCKED(&sched_spinlock) {
thread->base.prio_deadline = k_cycle_get_32() + deadline;
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
queue_thread(thread);
}
}
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline)
{
struct k_thread *thread = tid;
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0,
"invalid thread deadline %d",
(int)deadline));
z_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
}
#include <syscalls/k_thread_deadline_set_mrsh.c>
#endif
#endif
bool k_can_yield(void)
{
return !(k_is_pre_kernel() || k_is_in_isr() ||
z_is_idle_thread_object(_current));
}
void z_impl_k_yield(void)
{
__ASSERT(!arch_is_in_isr(), "");
SYS_PORT_TRACING_FUNC(k_thread, yield);
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
if (!IS_ENABLED(CONFIG_SMP) ||
z_is_thread_queued(_current)) {
dequeue_thread(_current);
}
queue_thread(_current);
update_cache(1);
z_swap(&sched_spinlock, key);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_yield(void)
{
z_impl_k_yield();
}
#include <syscalls/k_yield_mrsh.c>
#endif
static int32_t z_tick_sleep(k_ticks_t ticks)
{
#ifdef CONFIG_MULTITHREADING
uint32_t expected_wakeup_ticks;
__ASSERT(!arch_is_in_isr(), "");
#ifndef CONFIG_TIMEOUT_64BIT
/* LOG subsys does not handle 64-bit values
* https://github.com/zephyrproject-rtos/zephyr/issues/26246
*/
LOG_DBG("thread %p for %u ticks", _current, ticks);
#endif
/* wait of 0 ms is treated as a 'yield' */
if (ticks == 0) {
k_yield();
return 0;
}
k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks);
if (Z_TICK_ABS(ticks) <= 0) {
expected_wakeup_ticks = ticks + sys_clock_tick_get_32();
} else {
expected_wakeup_ticks = Z_TICK_ABS(ticks);
}
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif
unready_thread(_current);
z_add_thread_timeout(_current, timeout);
z_mark_thread_as_suspended(_current);
(void)z_swap(&sched_spinlock, key);
__ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), "");
ticks = (k_ticks_t)expected_wakeup_ticks - sys_clock_tick_get_32();
if (ticks > 0) {
return ticks;
}
#endif
return 0;
}
int32_t z_impl_k_sleep(k_timeout_t timeout)
{
k_ticks_t ticks;
__ASSERT(!arch_is_in_isr(), "");
SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout);
/* in case of K_FOREVER, we suspend */
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
k_thread_suspend(_current);
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, (int32_t) K_TICKS_FOREVER);
return (int32_t) K_TICKS_FOREVER;
}
ticks = timeout.ticks;
ticks = z_tick_sleep(ticks);
int32_t ret = k_ticks_to_ms_floor64(ticks);
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout)
{
return z_impl_k_sleep(timeout);
}
#include <syscalls/k_sleep_mrsh.c>
#endif
int32_t z_impl_k_usleep(int us)
{
int32_t ticks;
SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us);
ticks = k_us_to_ticks_ceil64(us);
ticks = z_tick_sleep(ticks);
SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, k_ticks_to_us_floor64(ticks));
return k_ticks_to_us_floor64(ticks);
}
#ifdef CONFIG_USERSPACE
static inline int32_t z_vrfy_k_usleep(int us)
{
return z_impl_k_usleep(us);
}
#include <syscalls/k_usleep_mrsh.c>
#endif
void z_impl_k_wakeup(k_tid_t thread)
{
SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread);
if (z_is_thread_pending(thread)) {
return;
}
if (z_abort_thread_timeout(thread) < 0) {
/* Might have just been sleeping forever */
if (thread->base.thread_state != _THREAD_SUSPENDED) {
return;
}
}
z_mark_thread_as_not_suspended(thread);
z_ready_thread(thread);
flag_ipi();
if (!arch_is_in_isr()) {
z_reschedule_unlocked();
}
}
#ifdef CONFIG_TRACE_SCHED_IPI
extern void z_trace_sched_ipi(void);
#endif
#ifdef CONFIG_SMP
void z_sched_ipi(void)
{
/* NOTE: When adding code to this, make sure this is called
* at appropriate location when !CONFIG_SCHED_IPI_SUPPORTED.
*/
#ifdef CONFIG_TRACE_SCHED_IPI
z_trace_sched_ipi();
#endif
}
#endif
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_wakeup(k_tid_t thread)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
z_impl_k_wakeup(thread);
}
#include <syscalls/k_wakeup_mrsh.c>
#endif
k_tid_t z_impl_z_current_get(void)
{
#ifdef CONFIG_SMP
/* In SMP, _current is a field read from _current_cpu, which
* can race with preemption before it is read. We must lock
* local interrupts when reading it.
*/
unsigned int k = arch_irq_lock();
#endif
k_tid_t ret = _current_cpu->current;
#ifdef CONFIG_SMP
arch_irq_unlock(k);
#endif
return ret;
}
#ifdef CONFIG_USERSPACE
static inline k_tid_t z_vrfy_z_current_get(void)
{
return z_impl_z_current_get();
}
#include <syscalls/z_current_get_mrsh.c>
#endif
int z_impl_k_is_preempt_thread(void)
{
return !arch_is_in_isr() && is_preempt(_current);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_is_preempt_thread(void)
{
return z_impl_k_is_preempt_thread();
}
#include <syscalls/k_is_preempt_thread_mrsh.c>
#endif
#ifdef CONFIG_SCHED_CPU_MASK
# ifdef CONFIG_SMP
/* Right now we use a single byte for this mask */
BUILD_ASSERT(CONFIG_MP_NUM_CPUS <= 8, "Too many CPUs for mask word");
# endif
static int cpu_mask_mod(k_tid_t thread, uint32_t enable_mask, uint32_t disable_mask)
{
int ret = 0;
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
__ASSERT((thread->base.thread_state != _THREAD_PRESTART),
"Only PRESTARTED threads can change CPU pin");
#endif
LOCKED(&sched_spinlock) {
if (z_is_thread_prevented_from_running(thread)) {
thread->base.cpu_mask |= enable_mask;
thread->base.cpu_mask &= ~disable_mask;
} else {
ret = -EINVAL;
}
}
#if defined(CONFIG_ASSERT) && defined(CONFIG_SCHED_CPU_MASK_PIN_ONLY)
int m = thread->base.cpu_mask;
__ASSERT((m == 0) || ((m & (m - 1)) == 0),
"Only one CPU allowed in mask when PIN_ONLY");
#endif
return ret;
}
int k_thread_cpu_mask_clear(k_tid_t thread)
{
return cpu_mask_mod(thread, 0, 0xffffffff);
}
int k_thread_cpu_mask_enable_all(k_tid_t thread)
{
return cpu_mask_mod(thread, 0xffffffff, 0);
}
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
{
return cpu_mask_mod(thread, BIT(cpu), 0);
}
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
{
return cpu_mask_mod(thread, 0, BIT(cpu));
}
int k_thread_cpu_pin(k_tid_t thread, int cpu)
{
int ret;
ret = k_thread_cpu_mask_clear(thread);
if (ret == 0) {
return k_thread_cpu_mask_enable(thread, cpu);
}
return ret;
}
#endif /* CONFIG_SCHED_CPU_MASK */
static inline void unpend_all(_wait_q_t *wait_q)
{
struct k_thread *thread;
while ((thread = z_waitq_head(wait_q)) != NULL) {
unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
arch_thread_return_value_set(thread, 0);
ready_thread(thread);
}
}
#ifdef CONFIG_CMSIS_RTOS_V1
extern void z_thread_cmsis_status_mask_clear(struct k_thread *thread);
#endif
static void end_thread(struct k_thread *thread)
{
/* We hold the lock, and the thread is known not to be running
* anywhere.
*/
if ((thread->base.thread_state & _THREAD_DEAD) == 0U) {
thread->base.thread_state |= _THREAD_DEAD;
thread->base.thread_state &= ~_THREAD_ABORTING;
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
}
if (thread->base.pended_on != NULL) {
unpend_thread_no_timeout(thread);
}
(void)z_abort_thread_timeout(thread);
unpend_all(&thread->join_queue);
update_cache(1);
SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread);
z_thread_monitor_exit(thread);
#ifdef CONFIG_CMSIS_RTOS_V1
z_thread_cmsis_status_mask_clear(thread);
#endif
#ifdef CONFIG_USERSPACE
z_mem_domain_exit_thread(thread);
z_thread_perms_all_clear(thread);
z_object_uninit(thread->stack_obj);
z_object_uninit(thread);
#endif
}
}
void z_thread_abort(struct k_thread *thread)
{
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
if ((thread->base.user_options & K_ESSENTIAL) != 0) {
k_spin_unlock(&sched_spinlock, key);
__ASSERT(false, "aborting essential thread %p", thread);
k_panic();
return;
}
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
k_spin_unlock(&sched_spinlock, key);
return;
}
#ifdef CONFIG_SMP
if (is_aborting(thread) && thread == _current && arch_is_in_isr()) {
/* Another CPU is spinning for us, don't deadlock */
end_thread(thread);
}
bool active = thread_active_elsewhere(thread);
if (active) {
/* It's running somewhere else, flag and poke */
thread->base.thread_state |= _THREAD_ABORTING;
/* We're going to spin, so need a true synchronous IPI
* here, not deferred!
*/
#ifdef CONFIG_SCHED_IPI_SUPPORTED
arch_sched_ipi();
#endif
}
if (is_aborting(thread) && thread != _current) {
if (arch_is_in_isr()) {
/* ISRs can only spin waiting another CPU */
k_spin_unlock(&sched_spinlock, key);
while (is_aborting(thread)) {
}
} else if (active) {
/* Threads can join */
add_to_waitq_locked(_current, &thread->join_queue);
z_swap(&sched_spinlock, key);
}
return; /* lock has been released */
}
#endif
end_thread(thread);
if (thread == _current && !arch_is_in_isr()) {
z_swap(&sched_spinlock, key);
__ASSERT(false, "aborted _current back from dead");
}
k_spin_unlock(&sched_spinlock, key);
}
#if !defined(CONFIG_ARCH_HAS_THREAD_ABORT)
void z_impl_k_thread_abort(struct k_thread *thread)
{
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread);
z_thread_abort(thread);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread);
}
#endif
int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout)
{
k_spinlock_key_t key = k_spin_lock(&sched_spinlock);
int ret = 0;
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout);
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
ret = 0;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
ret = -EBUSY;
} else if ((thread == _current) ||
(thread->base.pended_on == &_current->join_queue)) {
ret = -EDEADLK;
} else {
__ASSERT(!arch_is_in_isr(), "cannot join in ISR");
add_to_waitq_locked(_current, &thread->join_queue);
add_thread_timeout(_current, timeout);
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout);
ret = z_swap(&sched_spinlock, key);
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
return ret;
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
k_spin_unlock(&sched_spinlock, key);
return ret;
}
#ifdef CONFIG_USERSPACE
/* Special case: don't oops if the thread is uninitialized. This is because
* the initialization bit does double-duty for thread objects; if false, means
* the thread object is truly uninitialized, or the thread ran and exited for
* some reason.
*
* Return true in this case indicating we should just do nothing and return
* success to the caller.
*/
static bool thread_obj_validate(struct k_thread *thread)
{
struct z_object *ko = z_object_find(thread);
int ret = z_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE);
switch (ret) {
case 0:
return false;
case -EINVAL:
return true;
default:
#ifdef CONFIG_LOG
z_dump_object_error(ret, thread, ko, K_OBJ_THREAD);
#endif
Z_OOPS(Z_SYSCALL_VERIFY_MSG(ret, "access denied"));
}
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
static inline int z_vrfy_k_thread_join(struct k_thread *thread,
k_timeout_t timeout)
{
if (thread_obj_validate(thread)) {
return 0;
}
return z_impl_k_thread_join(thread, timeout);
}
#include <syscalls/k_thread_join_mrsh.c>
static inline void z_vrfy_k_thread_abort(k_tid_t thread)
{
if (thread_obj_validate(thread)) {
return;
}
Z_OOPS(Z_SYSCALL_VERIFY_MSG(!(thread->base.user_options & K_ESSENTIAL),
"aborting essential thread %p", thread));
z_impl_k_thread_abort((struct k_thread *)thread);
}
#include <syscalls/k_thread_abort_mrsh.c>
#endif /* CONFIG_USERSPACE */
/*
* future scheduler.h API implementations
*/
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data)
{
struct k_thread *thread;
bool ret = false;
LOCKED(&sched_spinlock) {
thread = _priq_wait_best(&wait_q->waitq);
if (thread != NULL) {
z_thread_return_value_set_with_data(thread,
swap_retval,
swap_data);
unpend_thread_no_timeout(thread);
(void)z_abort_thread_timeout(thread);
ready_thread(thread);
ret = true;
}
}
return ret;
}
int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
_wait_q_t *wait_q, k_timeout_t timeout, void **data)
{
int ret = z_pend_curr(lock, key, wait_q, timeout);
if (data != NULL) {
*data = _current->base.swap_data;
}
return ret;
}