blob: c931c637d7a99fdecf8fa972ff344ad39f74487e [file] [log] [blame]
/*
* Copyright (c) 2015 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT snps_designware_spi
/* spi_dw.c - Designware SPI driver implementation */
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_dw);
#if (CONFIG_SPI_LOG_LEVEL == 4)
#define DBG_COUNTER_INIT() \
uint32_t __cnt = 0
#define DBG_COUNTER_INC() \
(__cnt++)
#define DBG_COUNTER_RESULT() \
(__cnt)
#else
#define DBG_COUNTER_INIT() {; }
#define DBG_COUNTER_INC() {; }
#define DBG_COUNTER_RESULT() 0
#endif
#include <errno.h>
#include <kernel.h>
#include <arch/cpu.h>
#include <soc.h>
#include <device.h>
#include <init.h>
#include <pm/device.h>
#include <sys/sys_io.h>
#include <sys/util.h>
#ifdef CONFIG_IOAPIC
#include <drivers/interrupt_controller/ioapic.h>
#endif
#include <drivers/spi.h>
#include "spi_dw.h"
#include "spi_context.h"
static inline bool spi_dw_is_slave(struct spi_dw_data *spi)
{
return (IS_ENABLED(CONFIG_SPI_SLAVE) &&
spi_context_is_slave(&spi->ctx));
}
static void completed(const struct device *dev, int error)
{
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
if (error) {
goto out;
}
if (spi_context_tx_on(&spi->ctx) ||
spi_context_rx_on(&spi->ctx)) {
return;
}
out:
/* need to give time for FIFOs to drain before issuing more commands */
while (test_bit_sr_busy(info->regs)) {
}
/* Disabling interrupts */
write_imr(DW_SPI_IMR_MASK, info->regs);
/* Disabling the controller */
clear_bit_ssienr(info->regs);
spi_context_cs_control(&spi->ctx, false);
LOG_DBG("SPI transaction completed %s error",
error ? "with" : "without");
spi_context_complete(&spi->ctx, error);
}
static void push_data(const struct device *dev)
{
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
uint32_t data = 0U;
uint32_t f_tx;
DBG_COUNTER_INIT();
if (spi_context_rx_on(&spi->ctx)) {
f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs) -
read_rxflr(info->regs);
if ((int)f_tx < 0) {
f_tx = 0U; /* if rx-fifo is full, hold off tx */
}
} else {
f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs);
}
while (f_tx) {
if (spi_context_tx_buf_on(&spi->ctx)) {
switch (spi->dfs) {
case 1:
data = UNALIGNED_GET((uint8_t *)
(spi->ctx.tx_buf));
break;
case 2:
data = UNALIGNED_GET((uint16_t *)
(spi->ctx.tx_buf));
break;
#ifndef CONFIG_ARC
case 4:
data = UNALIGNED_GET((uint32_t *)
(spi->ctx.tx_buf));
break;
#endif
}
} else if (spi_context_rx_on(&spi->ctx)) {
/* No need to push more than necessary */
if ((int)(spi->ctx.rx_len - spi->fifo_diff) <= 0) {
break;
}
data = 0U;
} else if (spi_context_tx_on(&spi->ctx)) {
data = 0U;
} else {
/* Nothing to push anymore */
break;
}
write_dr(data, info->regs);
spi_context_update_tx(&spi->ctx, spi->dfs, 1);
spi->fifo_diff++;
f_tx--;
DBG_COUNTER_INC();
}
if (!spi_context_tx_on(&spi->ctx)) {
/* prevents any further interrupts demanding TX fifo fill */
write_txftlr(0, info->regs);
}
LOG_DBG("Pushed: %d", DBG_COUNTER_RESULT());
}
static void pull_data(const struct device *dev)
{
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
DBG_COUNTER_INIT();
while (read_rxflr(info->regs)) {
uint32_t data = read_dr(info->regs);
DBG_COUNTER_INC();
if (spi_context_rx_buf_on(&spi->ctx)) {
switch (spi->dfs) {
case 1:
UNALIGNED_PUT(data, (uint8_t *)spi->ctx.rx_buf);
break;
case 2:
UNALIGNED_PUT(data, (uint16_t *)spi->ctx.rx_buf);
break;
#ifndef CONFIG_ARC
case 4:
UNALIGNED_PUT(data, (uint32_t *)spi->ctx.rx_buf);
break;
#endif
}
}
spi_context_update_rx(&spi->ctx, spi->dfs, 1);
spi->fifo_diff--;
}
if (!spi->ctx.rx_len && spi->ctx.tx_len < DW_SPI_FIFO_DEPTH) {
write_rxftlr(spi->ctx.tx_len - 1, info->regs);
} else if (read_rxftlr(info->regs) >= spi->ctx.rx_len) {
write_rxftlr(spi->ctx.rx_len - 1, info->regs);
}
LOG_DBG("Pulled: %d", DBG_COUNTER_RESULT());
}
static int spi_dw_configure(const struct spi_dw_config *info,
struct spi_dw_data *spi,
const struct spi_config *config)
{
uint32_t ctrlr0 = 0U;
LOG_DBG("%p (prev %p)", config, spi->ctx.config);
if (spi_context_configured(&spi->ctx, config)) {
/* Nothing to do */
return 0;
}
if (config->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
/* Verify if requested op mode is relevant to this controller */
if (config->operation & SPI_OP_MODE_SLAVE) {
if (!(info->op_modes & SPI_CTX_RUNTIME_OP_MODE_SLAVE)) {
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
} else {
if (!(info->op_modes & SPI_CTX_RUNTIME_OP_MODE_MASTER)) {
LOG_ERR("Master mode not supported");
return -ENOTSUP;
}
}
if ((config->operation & SPI_TRANSFER_LSB) ||
(IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(config->operation & (SPI_LINES_DUAL |
SPI_LINES_QUAD | SPI_LINES_OCTAL)))) {
LOG_ERR("Unsupported configuration");
return -EINVAL;
}
/* Word size */
ctrlr0 |= DW_SPI_CTRLR0_DFS(SPI_WORD_SIZE_GET(config->operation));
/* Determine how many bytes are required per-frame */
spi->dfs = SPI_WS_TO_DFS(SPI_WORD_SIZE_GET(config->operation));
/* SPI mode */
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
ctrlr0 |= DW_SPI_CTRLR0_SCPOL;
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
ctrlr0 |= DW_SPI_CTRLR0_SCPH;
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) {
ctrlr0 |= DW_SPI_CTRLR0_SRL;
}
/* Installing the configuration */
write_ctrlr0(ctrlr0, info->regs);
/* At this point, it's mandatory to set this on the context! */
spi->ctx.config = config;
if (!spi_dw_is_slave(spi)) {
/* Baud rate and Slave select, for master only */
write_baudr(SPI_DW_CLK_DIVIDER(info->clock_frequency,
config->frequency), info->regs);
write_ser(1 << config->slave, info->regs);
}
if (spi_dw_is_slave(spi)) {
LOG_DBG("Installed slave config %p:"
" ws/dfs %u/%u, mode %u/%u/%u",
config,
SPI_WORD_SIZE_GET(config->operation), spi->dfs,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPOL) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPHA) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_LOOP) ? 1 : 0);
} else {
LOG_DBG("Installed master config %p: freq %uHz (div = %u),"
" ws/dfs %u/%u, mode %u/%u/%u, slave %u",
config, config->frequency,
SPI_DW_CLK_DIVIDER(info->clock_frequency,
config->frequency),
SPI_WORD_SIZE_GET(config->operation), spi->dfs,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPOL) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_CPHA) ? 1 : 0,
(SPI_MODE_GET(config->operation) &
SPI_MODE_LOOP) ? 1 : 0,
config->slave);
}
return 0;
}
static uint32_t spi_dw_compute_ndf(const struct spi_buf *rx_bufs,
size_t rx_count, uint8_t dfs)
{
uint32_t len = 0U;
for (; rx_count; rx_bufs++, rx_count--) {
if (len > (UINT16_MAX - rx_bufs->len)) {
goto error;
}
len += rx_bufs->len;
}
if (len) {
return (len / dfs) - 1;
}
error:
return UINT32_MAX;
}
static void spi_dw_update_txftlr(const struct spi_dw_config *info,
struct spi_dw_data *spi)
{
uint32_t reg_data = DW_SPI_TXFTLR_DFLT;
if (spi_dw_is_slave(spi)) {
if (!spi->ctx.tx_len) {
reg_data = 0U;
} else if (spi->ctx.tx_len < DW_SPI_TXFTLR_DFLT) {
reg_data = spi->ctx.tx_len - 1;
}
}
LOG_DBG("TxFTLR: %u", reg_data);
write_txftlr(reg_data, info->regs);
}
static int transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
struct k_poll_signal *signal)
{
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
uint32_t tmod = DW_SPI_CTRLR0_TMOD_TX_RX;
uint32_t reg_data;
int ret;
spi_context_lock(&spi->ctx, asynchronous, signal, config);
#ifdef CONFIG_PM_DEVICE
if (!pm_device_is_busy(dev)) {
pm_device_busy_set(dev);
}
#endif /* CONFIG_PM_DEVICE */
/* Configure */
ret = spi_dw_configure(info, spi, config);
if (ret) {
goto out;
}
if (!rx_bufs || !rx_bufs->buffers) {
tmod = DW_SPI_CTRLR0_TMOD_TX;
} else if (!tx_bufs || !tx_bufs->buffers) {
tmod = DW_SPI_CTRLR0_TMOD_RX;
}
/* ToDo: add a way to determine EEPROM mode */
if (tmod >= DW_SPI_CTRLR0_TMOD_RX &&
!spi_dw_is_slave(spi)) {
reg_data = spi_dw_compute_ndf(rx_bufs->buffers,
rx_bufs->count,
spi->dfs);
if (reg_data == UINT32_MAX) {
ret = -EINVAL;
goto out;
}
write_ctrlr1(reg_data, info->regs);
} else {
write_ctrlr1(0, info->regs);
}
if (spi_dw_is_slave(spi)) {
/* Enabling MISO line relevantly */
if (tmod == DW_SPI_CTRLR0_TMOD_RX) {
tmod |= DW_SPI_CTRLR0_SLV_OE;
} else {
tmod &= ~DW_SPI_CTRLR0_SLV_OE;
}
}
/* Updating TMOD in CTRLR0 register */
reg_data = read_ctrlr0(info->regs);
reg_data &= ~DW_SPI_CTRLR0_TMOD_RESET;
reg_data |= tmod;
write_ctrlr0(reg_data, info->regs);
/* Set buffers info */
spi_context_buffers_setup(&spi->ctx, tx_bufs, rx_bufs, spi->dfs);
spi->fifo_diff = 0U;
/* Tx Threshold */
spi_dw_update_txftlr(info, spi);
/* Does Rx thresholds needs to be lower? */
reg_data = DW_SPI_RXFTLR_DFLT;
if (spi_dw_is_slave(spi)) {
if (spi->ctx.rx_len &&
spi->ctx.rx_len < DW_SPI_RXFTLR_DFLT) {
reg_data = spi->ctx.rx_len - 1;
}
} else {
if (spi->ctx.rx_len && spi->ctx.rx_len < DW_SPI_FIFO_DEPTH) {
reg_data = spi->ctx.rx_len - 1;
}
}
/* Rx Threshold */
write_rxftlr(reg_data, info->regs);
/* Enable interrupts */
reg_data = !rx_bufs ?
DW_SPI_IMR_UNMASK & DW_SPI_IMR_MASK_RX :
DW_SPI_IMR_UNMASK;
write_imr(reg_data, info->regs);
spi_context_cs_control(&spi->ctx, true);
LOG_DBG("Enabling controller");
set_bit_ssienr(info->regs);
ret = spi_context_wait_for_completion(&spi->ctx);
out:
spi_context_release(&spi->ctx, ret);
pm_device_busy_clear(dev);
return ret;
}
static int spi_dw_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
LOG_DBG("%p, %p, %p", dev, tx_bufs, rx_bufs);
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_dw_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
LOG_DBG("%p, %p, %p, %p", dev, tx_bufs, rx_bufs, async);
return transceive(dev, config, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_dw_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_dw_data *spi = dev->data;
if (!spi_context_configured(&spi->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&spi->ctx);
return 0;
}
void spi_dw_isr(const struct device *dev)
{
const struct spi_dw_config *info = dev->config;
uint32_t int_status;
int error;
int_status = read_isr(info->regs);
LOG_DBG("SPI %p int_status 0x%x - (tx: %d, rx: %d)", dev,
int_status, read_txflr(info->regs), read_rxflr(info->regs));
if (int_status & DW_SPI_ISR_ERRORS_MASK) {
error = -EIO;
goto out;
}
error = 0;
if (int_status & DW_SPI_ISR_RXFIS) {
pull_data(dev);
}
if (int_status & DW_SPI_ISR_TXEIS) {
push_data(dev);
}
out:
clear_interrupts(info->regs);
completed(dev, error);
}
static const struct spi_driver_api dw_spi_api = {
.transceive = spi_dw_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_dw_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
.release = spi_dw_release,
};
int spi_dw_init(const struct device *dev)
{
int err;
const struct spi_dw_config *info = dev->config;
struct spi_dw_data *spi = dev->data;
info->config_func();
/* Masking interrupt and making sure controller is disabled */
write_imr(DW_SPI_IMR_MASK, info->regs);
clear_bit_ssienr(info->regs);
LOG_DBG("Designware SPI driver initialized on device: %p", dev);
err = spi_context_cs_configure_all(&spi->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&spi->ctx);
return 0;
}
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
void spi_config_0_irq(void);
struct spi_dw_data spi_dw_data_port_0 = {
SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_0, ctx),
SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_0, ctx),
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(0), ctx)
};
#if DT_NODE_HAS_PROP(DT_INST_PHANDLE(0, clocks), clock_frequency)
#define INST_0_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP_BY_PHANDLE(0, clocks, clock_frequency)
#else
#define INST_0_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP(0, clock_frequency)
#endif
const struct spi_dw_config spi_dw_config_0 = {
.regs = DT_INST_REG_ADDR(0),
.clock_frequency = INST_0_SNPS_DESIGNWARE_SPI_CLOCK_FREQ,
.config_func = spi_config_0_irq,
.op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER
};
DEVICE_DT_INST_DEFINE(0, spi_dw_init, NULL,
&spi_dw_data_port_0, &spi_dw_config_0,
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
&dw_spi_api);
void spi_config_0_irq(void)
{
#if DT_NUM_IRQS(DT_DRV_INST(0)) == 1
#if DT_INST_IRQ_HAS_NAME(0, flags)
#define INST_0_IRQ_FLAGS DT_INST_IRQ_BY_NAME(0, flags, irq)
#else
#define INST_0_IRQ_FLAGS 0
#endif
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
spi_dw_isr, DEVICE_DT_INST_GET(0),
INST_0_IRQ_FLAGS);
irq_enable(DT_INST_IRQN(0));
#else
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, rx_avail, irq),
DT_INST_IRQ_BY_NAME(0, rx_avail_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(0),
DT_INST_IRQ_BY_NAME(0, rx_avail, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, tx_req, irq),
DT_INST_IRQ_BY_NAME(0, tx_req_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(0),
DT_INST_IRQ_BY_NAME(0, tx_req, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, err_int, irq),
DT_INST_IRQ_BY_NAME(0, err_int_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(0),
DT_INST_IRQ_BY_NAME(0, err_int, flags));
irq_enable(DT_INST_IRQ_BY_NAME(0, rx_avail, irq));
irq_enable(DT_INST_IRQ_BY_NAME(0, tx_req, irq));
irq_enable(DT_INST_IRQ_BY_NAME(0, err_int, irq));
#endif
}
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
void spi_config_1_irq(void);
struct spi_dw_data spi_dw_data_port_1 = {
SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_1, ctx),
SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_1, ctx),
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(1), ctx)
};
#if DT_NODE_HAS_PROP(DT_INST_PHANDLE(1, clocks), clock_frequency)
#define INST_1_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP_BY_PHANDLE(1, clocks, clock_frequency)
#else
#define INST_1_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP(1, clock_frequency)
#endif
static const struct spi_dw_config spi_dw_config_1 = {
.regs = DT_INST_REG_ADDR(1),
.clock_frequency = INST_1_SNPS_DESIGNWARE_SPI_CLOCK_FREQ,
.config_func = spi_config_1_irq,
.op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER
};
DEVICE_DT_INST_DEFINE(1, spi_dw_init, NULL,
&spi_dw_data_port_1, &spi_dw_config_1,
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
&dw_spi_api);
void spi_config_1_irq(void)
{
#if DT_NUM_IRQS(DT_DRV_INST(1)) == 1
#if DT_INST_IRQ_HAS_NAME(1, flags)
#define INST_1_IRQ_FLAGS DT_INST_IRQ_BY_NAME(1, flags, irq)
#else
#define INST_1_IRQ_FLAGS 0
#endif
IRQ_CONNECT(DT_INST_IRQN(1),
DT_INST_IRQ(1, priority),
spi_dw_isr, DEVICE_DT_INST_GET(1),
INST_1_IRQ_FLAGS);
irq_enable(DT_INST_IRQN(1));
#else
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, rx_avail, irq),
DT_INST_IRQ_BY_NAME(1, rx_avail_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(1),
DT_INST_IRQ_BY_NAME(1, rx_avail, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, tx_req, irq),
DT_INST_IRQ_BY_NAME(1, tx_req_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(1),
DT_INST_IRQ_BY_NAME(1, tx_req, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, err_int, irq),
DT_INST_IRQ_BY_NAME(1, err_int_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(1),
DT_INST_IRQ_BY_NAME(1, err_int, flags));
irq_enable(DT_INST_IRQ_BY_NAME(1, rx_avail, irq));
irq_enable(DT_INST_IRQ_BY_NAME(1, tx_req, irq));
irq_enable(DT_INST_IRQ_BY_NAME(1, err_int, irq));
#endif
}
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(2), okay)
void spi_config_2_irq(void);
struct spi_dw_data spi_dw_data_port_2 = {
SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_2, ctx),
SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_2, ctx),
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(2), ctx)
};
#if DT_NODE_HAS_PROP(DT_INST_PHANDLE(2, clocks), clock_frequency)
#define INST_2_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP_BY_PHANDLE(2, clocks, clock_frequency)
#else
#define INST_2_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP(2, clock_frequency)
#endif
static const struct spi_dw_config spi_dw_config_2 = {
.regs = DT_INST_REG_ADDR(2),
.clock_frequency = INST_2_SNPS_DESIGNWARE_SPI_CLOCK_FREQ,
.config_func = spi_config_2_irq,
.op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER
};
DEVICE_DT_INST_DEFINE(2, spi_dw_init, NULL,
&spi_dw_data_port_2, &spi_dw_config_2,
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
&dw_spi_api);
void spi_config_2_irq(void)
{
#if DT_NUM_IRQS(DT_DRV_INST(2)) == 1
#if DT_INST_IRQ_HAS_NAME(2, flags)
#define INST_2_IRQ_FLAGS DT_INST_IRQ_BY_NAME(2, flags, irq)
#else
#define INST_2_IRQ_FLAGS 0
#endif
IRQ_CONNECT(DT_INST_IRQN(2),
DT_INST_IRQ(2, priority),
spi_dw_isr, DEVICE_DT_INST_GET(2),
INST_2_IRQ_FLAGS);
irq_enable(DT_INST_IRQN(2));
#else
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, rx_avail, irq),
DT_INST_IRQ_BY_NAME(2, rx_avail_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(2),
DT_INST_IRQ_BY_NAME(2, rx_avail, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, tx_req, irq),
DT_INST_IRQ_BY_NAME(2, tx_req_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(2),
DT_INST_IRQ_BY_NAME(2, tx_req, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, err_int, irq),
DT_INST_IRQ_BY_NAME(2, err_int_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(2),
DT_INST_IRQ_BY_NAME(2, err_int, flags));
irq_enable(DT_INST_IRQ_BY_NAME(2, rx_avail, irq));
irq_enable(DT_INST_IRQ_BY_NAME(2, tx_req, irq));
irq_enable(DT_INST_IRQ_BY_NAME(2, err_int, irq));
#endif
}
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(2), okay) */
#if DT_NODE_HAS_STATUS(DT_DRV_INST(3), okay)
void spi_config_3_irq(void);
struct spi_dw_data spi_dw_data_port_3 = {
SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_3, ctx),
SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_3, ctx),
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(3), ctx)
};
#if DT_NODE_HAS_PROP(DT_INST_PHANDLE(3, clocks), clock_frequency)
#define INST_3_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP_BY_PHANDLE(3, clocks, clock_frequency)
#else
#define INST_3_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \
DT_INST_PROP(3, clock_frequency)
#endif
static const struct spi_dw_config spi_dw_config_3 = {
.regs = DT_INST_REG_ADDR(3),
.clock_frequency = INST_3_SNPS_DESIGNWARE_SPI_CLOCK_FREQ,
.config_func = spi_config_3_irq,
.op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER
};
DEVICE_DT_INST_DEFINE(3, spi_dw_init, NULL,
&spi_dw_data_port_3, &spi_dw_config_3,
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
&dw_spi_api);
void spi_config_3_irq(void)
{
#if DT_NUM_IRQS(DT_DRV_INST(3)) == 1
#if DT_INST_IRQ_HAS_NAME(3, flags)
#define INST_3_IRQ_FLAGS DT_INST_IRQ_BY_NAME(3, flags, irq)
#else
#define INST_3_IRQ_FLAGS 0
#endif
IRQ_CONNECT(DT_INST_IRQN(3),
DT_INST_IRQ(3, priority),
spi_dw_isr, DEVICE_DT_INST_GET(3),
INST_3_IRQ_FLAGS);
irq_enable(DT_INST_IRQN(3));
#else
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, rx_avail, irq),
DT_INST_IRQ_BY_NAME(3, rx_avail_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(3),
DT_INST_IRQ_BY_NAME(3, rx_avail, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, tx_req, irq),
DT_INST_IRQ_BY_NAME(3, tx_req_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(3),
DT_INST_IRQ_BY_NAME(3, tx_req, flags));
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, err_int, irq),
DT_INST_IRQ_BY_NAME(3, err_int_pri, irq),
spi_dw_isr, DEVICE_DT_INST_GET(3),
DT_INST_IRQ_BY_NAME(3, err_int, flags));
irq_enable(DT_INST_IRQ_BY_NAME(3, rx_avail, irq));
irq_enable(DT_INST_IRQ_BY_NAME(3, tx_req, irq));
irq_enable(DT_INST_IRQ_BY_NAME(3, err_int, irq));
#endif
}
#endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(3), okay) */