blob: b17b9a497400a6f5d201e9fa8e3a95af545f3a7c [file] [log] [blame]
/*
* Copyright (c) 2017 Intel Corporation
* Copyright (c) 2020 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <stdlib.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/iterable_sections.h>
#include <zephyr/net_buf.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/mesh.h>
#include "common/bt_str.h"
#include "crypto.h"
#include "mesh.h"
#include "net.h"
#include "lpn.h"
#include "friend.h"
#include "proxy.h"
#include "transport.h"
#include "access.h"
#include "foundation.h"
#include "beacon.h"
#include "rpl.h"
#include "settings.h"
#include "prov.h"
#define LOG_LEVEL CONFIG_BT_MESH_KEYS_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_mesh_net_keys);
/* Tracking of what storage changes are pending for Net Keys. We track this in
* a separate array here instead of within the respective bt_mesh_subnet
* struct itself, since once a key gets deleted its struct becomes invalid
* and may be reused for other keys.
*/
struct net_key_update {
uint16_t key_idx:12, /* NetKey Index */
valid:1, /* 1 if this entry is valid, 0 if not */
clear:1; /* 1 if key needs clearing, 0 if storing */
};
/* NetKey storage information */
struct net_key_val {
uint8_t unused:1,
kr_phase:7;
struct bt_mesh_key val[2];
} __packed;
static struct net_key_update net_key_updates[CONFIG_BT_MESH_SUBNET_COUNT];
static struct bt_mesh_subnet subnets[CONFIG_BT_MESH_SUBNET_COUNT] = {
[0 ... (CONFIG_BT_MESH_SUBNET_COUNT - 1)] = {
.net_idx = BT_MESH_KEY_UNUSED,
},
};
static void subnet_evt(struct bt_mesh_subnet *sub, enum bt_mesh_key_evt evt)
{
STRUCT_SECTION_FOREACH(bt_mesh_subnet_cb, cb) {
cb->evt_handler(sub, evt);
}
}
static void clear_net_key(uint16_t net_idx)
{
char path[20];
int err;
LOG_DBG("NetKeyIndex 0x%03x", net_idx);
snprintk(path, sizeof(path), "bt/mesh/NetKey/%x", net_idx);
err = settings_delete(path);
if (err) {
LOG_ERR("Failed to clear NetKeyIndex 0x%03x", net_idx);
} else {
LOG_DBG("Cleared NetKeyIndex 0x%03x", net_idx);
}
}
static void store_subnet(uint16_t net_idx)
{
const struct bt_mesh_subnet *sub;
struct net_key_val key;
char path[20];
int err;
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
LOG_WRN("NetKeyIndex 0x%03x not found", net_idx);
return;
}
LOG_DBG("NetKeyIndex 0x%03x", net_idx);
snprintk(path, sizeof(path), "bt/mesh/NetKey/%x", net_idx);
memcpy(&key.val[0], &sub->keys[0].net, sizeof(struct bt_mesh_key));
memcpy(&key.val[1], &sub->keys[1].net, sizeof(struct bt_mesh_key));
key.unused = 0U;
key.kr_phase = sub->kr_phase;
err = settings_save_one(path, &key, sizeof(key));
if (err) {
LOG_ERR("Failed to store NetKey value");
} else {
LOG_DBG("Stored NetKey value");
}
}
static struct net_key_update *net_key_update_find(uint16_t key_idx,
struct net_key_update **free_slot)
{
struct net_key_update *match;
int i;
match = NULL;
*free_slot = NULL;
for (i = 0; i < ARRAY_SIZE(net_key_updates); i++) {
struct net_key_update *update = &net_key_updates[i];
if (!update->valid) {
*free_slot = update;
continue;
}
if (update->key_idx == key_idx) {
match = update;
}
}
return match;
}
uint8_t bt_mesh_net_flags(struct bt_mesh_subnet *sub)
{
uint8_t flags = 0x00;
if (sub && (sub->kr_phase == BT_MESH_KR_PHASE_2)) {
flags |= BT_MESH_NET_FLAG_KR;
}
if (atomic_test_bit(bt_mesh.flags, BT_MESH_IVU_IN_PROGRESS)) {
flags |= BT_MESH_NET_FLAG_IVU;
}
return flags;
}
static void update_subnet_settings(uint16_t net_idx, bool store)
{
struct net_key_update *update, *free_slot;
uint8_t clear = store ? 0U : 1U;
LOG_DBG("NetKeyIndex 0x%03x", net_idx);
update = net_key_update_find(net_idx, &free_slot);
if (update) {
update->clear = clear;
bt_mesh_settings_store_schedule(
BT_MESH_SETTINGS_NET_KEYS_PENDING);
return;
}
if (!free_slot) {
if (store) {
store_subnet(net_idx);
} else {
clear_net_key(net_idx);
}
return;
}
free_slot->valid = 1U;
free_slot->key_idx = net_idx;
free_slot->clear = clear;
bt_mesh_settings_store_schedule(BT_MESH_SETTINGS_NET_KEYS_PENDING);
}
void bt_mesh_subnet_store(uint16_t net_idx)
{
update_subnet_settings(net_idx, true);
}
static void subnet_keys_destroy(struct bt_mesh_subnet_keys *key)
{
bt_mesh_key_destroy(&key->net);
bt_mesh_key_destroy(&key->msg.enc);
bt_mesh_key_destroy(&key->msg.privacy);
bt_mesh_key_destroy(&key->beacon);
#if defined(CONFIG_BT_MESH_GATT_PROXY)
bt_mesh_key_destroy(&key->identity);
#endif
#if defined(CONFIG_BT_MESH_V1d1)
bt_mesh_key_destroy(&key->priv_beacon);
#endif
}
static void key_refresh(struct bt_mesh_subnet *sub, uint8_t new_phase)
{
LOG_DBG("Phase 0x%02x -> 0x%02x", sub->kr_phase, new_phase);
switch (new_phase) {
/* Added second set of keys */
case BT_MESH_KR_PHASE_1:
sub->kr_phase = new_phase;
subnet_evt(sub, BT_MESH_KEY_UPDATED);
break;
/* Now using new keys for TX */
case BT_MESH_KR_PHASE_2:
sub->kr_phase = new_phase;
subnet_evt(sub, BT_MESH_KEY_SWAPPED);
break;
/* Revoking keys */
case BT_MESH_KR_PHASE_3:
if (sub->kr_phase == BT_MESH_KR_NORMAL) {
return;
}
__fallthrough;
case BT_MESH_KR_NORMAL:
sub->kr_phase = BT_MESH_KR_NORMAL;
subnet_keys_destroy(&sub->keys[0]);
memcpy(&sub->keys[0], &sub->keys[1], sizeof(sub->keys[0]));
sub->keys[1].valid = 0U;
subnet_evt(sub, BT_MESH_KEY_REVOKED);
break;
}
if (IS_ENABLED(CONFIG_BT_SETTINGS)) {
LOG_DBG("Storing Updated NetKey persistently");
bt_mesh_subnet_store(sub->net_idx);
}
}
void bt_mesh_kr_update(struct bt_mesh_subnet *sub, bool kr_flag, bool new_key)
{
if (!new_key) {
return;
}
if (sub->kr_phase == BT_MESH_KR_PHASE_1) {
/* MshPRTv1.1: 3.11.4.1:
* Can skip phase 2 if we get KR=0 on new key.
*/
key_refresh(sub, (kr_flag ? BT_MESH_KR_PHASE_2 :
BT_MESH_KR_PHASE_3));
} else if (sub->kr_phase == BT_MESH_KR_PHASE_2 && !kr_flag) {
key_refresh(sub, BT_MESH_KR_PHASE_3);
}
}
static struct bt_mesh_subnet *subnet_alloc(uint16_t net_idx)
{
struct bt_mesh_subnet *sub = NULL;
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
/* Check for already existing subnet */
if (subnets[i].net_idx == net_idx) {
return &subnets[i];
}
if (!sub && subnets[i].net_idx == BT_MESH_KEY_UNUSED) {
sub = &subnets[i];
}
}
return sub;
}
static void subnet_del(struct bt_mesh_subnet *sub)
{
if (IS_ENABLED(CONFIG_BT_SETTINGS)) {
update_subnet_settings(sub->net_idx, false);
}
for (int i = 0; i < ARRAY_SIZE(sub->keys); i++) {
if (sub->keys[i].valid) {
subnet_keys_destroy(&sub->keys[i]);
}
}
bt_mesh_net_loopback_clear(sub->net_idx);
subnet_evt(sub, BT_MESH_KEY_DELETED);
(void)memset(sub, 0, sizeof(*sub));
sub->net_idx = BT_MESH_KEY_UNUSED;
}
static int msg_cred_create(struct bt_mesh_net_cred *cred, const uint8_t *p,
size_t p_len, const uint8_t key[16])
{
return bt_mesh_k2(key, p, p_len, &cred->nid, &cred->enc, &cred->privacy);
}
static int net_keys_create(struct bt_mesh_subnet_keys *keys, bool import, const uint8_t key[16])
{
uint8_t p = 0;
int err;
err = msg_cred_create(&keys->msg, &p, 1, key);
if (err) {
LOG_ERR("Unable to generate NID, EncKey & PrivacyKey");
return err;
}
if (import) {
err = bt_mesh_key_import(BT_MESH_KEY_TYPE_NET, key, &keys->net);
if (err) {
LOG_ERR("Unable to import network key");
return err;
}
}
LOG_DBG("NID 0x%02x EncKey %s", keys->msg.nid,
bt_hex(&keys->msg.enc, sizeof(struct bt_mesh_key)));
LOG_DBG("PrivacyKey %s", bt_hex(&keys->msg.privacy, sizeof(struct bt_mesh_key)));
err = bt_mesh_k3(key, keys->net_id);
if (err) {
LOG_ERR("Unable to generate Net ID");
return err;
}
LOG_DBG("NetID %s", bt_hex(keys->net_id, 8));
#if defined(CONFIG_BT_MESH_GATT_PROXY)
err = bt_mesh_identity_key(key, &keys->identity);
if (err) {
LOG_ERR("Unable to generate IdentityKey");
return err;
}
LOG_DBG("IdentityKey %s", bt_hex(&keys->identity, sizeof(struct bt_mesh_key)));
#endif /* GATT_PROXY */
err = bt_mesh_beacon_key(key, &keys->beacon);
if (err) {
LOG_ERR("Unable to generate beacon key");
return err;
}
LOG_DBG("BeaconKey %s", bt_hex(&keys->beacon, sizeof(struct bt_mesh_key)));
#if defined(CONFIG_BT_MESH_PRIV_BEACONS)
err = bt_mesh_private_beacon_key(key, &keys->priv_beacon);
if (err) {
LOG_ERR("Unable to generate private beacon key");
return err;
}
LOG_DBG("PrivateBeaconKey %s", bt_hex(&keys->priv_beacon, sizeof(struct bt_mesh_key)));
#endif
keys->valid = 1U;
return 0;
}
uint8_t bt_mesh_subnet_add(uint16_t net_idx, const uint8_t key[16])
{
struct bt_mesh_subnet *sub = NULL;
int err;
LOG_DBG("0x%03x", net_idx);
sub = subnet_alloc(net_idx);
if (!sub) {
return STATUS_INSUFF_RESOURCES;
}
if (sub->net_idx == net_idx) {
if (bt_mesh_key_compare(key, &sub->keys[0].net)) {
return STATUS_IDX_ALREADY_STORED;
}
return STATUS_SUCCESS;
}
err = net_keys_create(&sub->keys[0], true, key);
if (err) {
return STATUS_UNSPECIFIED;
}
sub->net_idx = net_idx;
sub->kr_phase = BT_MESH_KR_NORMAL;
if (IS_ENABLED(CONFIG_BT_MESH_GATT_PROXY)) {
sub->node_id = BT_MESH_NODE_IDENTITY_STOPPED;
} else {
sub->node_id = BT_MESH_NODE_IDENTITY_NOT_SUPPORTED;
}
subnet_evt(sub, BT_MESH_KEY_ADDED);
if (IS_ENABLED(CONFIG_BT_SETTINGS)) {
LOG_DBG("Storing NetKey persistently");
bt_mesh_subnet_store(sub->net_idx);
}
return STATUS_SUCCESS;
}
bool bt_mesh_subnet_exists(uint16_t net_idx)
{
return !!bt_mesh_subnet_get(net_idx);
}
uint8_t bt_mesh_subnet_update(uint16_t net_idx, const uint8_t key[16])
{
struct bt_mesh_subnet *sub;
int err;
LOG_DBG("0x%03x", net_idx);
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
return STATUS_INVALID_NETKEY;
}
/* The node shall successfully process a NetKey Update message on a
* valid NetKeyIndex when the NetKey value is different and the Key
* Refresh procedure has not been started, or when the NetKey value is
* the same in Phase 1. The NetKey Update message shall generate an
* error when the node is in Phase 2, or Phase 3.
*/
switch (sub->kr_phase) {
case BT_MESH_KR_NORMAL:
if (!bt_mesh_key_compare(key, &sub->keys[0].net)) {
return STATUS_IDX_ALREADY_STORED;
}
break;
case BT_MESH_KR_PHASE_1:
if (!bt_mesh_key_compare(key, &sub->keys[1].net)) {
return STATUS_SUCCESS;
}
__fallthrough;
case BT_MESH_KR_PHASE_2:
case BT_MESH_KR_PHASE_3:
return STATUS_CANNOT_UPDATE;
}
err = net_keys_create(&sub->keys[1], true, key);
if (err) {
return STATUS_CANNOT_UPDATE;
}
key_refresh(sub, BT_MESH_KR_PHASE_1);
return STATUS_SUCCESS;
}
uint8_t bt_mesh_subnet_del(uint16_t net_idx)
{
struct bt_mesh_subnet *sub;
LOG_DBG("0x%03x", net_idx);
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
/* This could be a retry of a previous attempt that had its
* response lost, so pretend that it was a success.
*/
return STATUS_INVALID_NETKEY;
}
subnet_del(sub);
return STATUS_SUCCESS;
}
int bt_mesh_friend_cred_create(struct bt_mesh_net_cred *cred, uint16_t lpn_addr,
uint16_t frnd_addr, uint16_t lpn_counter,
uint16_t frnd_counter, const struct bt_mesh_key *key)
{
uint8_t p[9];
uint8_t raw_key[16];
int err;
p[0] = 0x01;
sys_put_be16(lpn_addr, p + 1);
sys_put_be16(frnd_addr, p + 3);
sys_put_be16(lpn_counter, p + 5);
sys_put_be16(frnd_counter, p + 7);
err = bt_mesh_key_export(raw_key, key);
if (err) {
return err;
}
return msg_cred_create(cred, p, sizeof(p), raw_key);
}
void bt_mesh_friend_cred_destroy(struct bt_mesh_net_cred *cred)
{
bt_mesh_key_destroy(&cred->enc);
bt_mesh_key_destroy(&cred->privacy);
}
uint8_t bt_mesh_subnet_kr_phase_set(uint16_t net_idx, uint8_t *phase)
{
/* Table in MshPRTv1.1: 4.2.15: */
const uint8_t valid_transitions[] = {
BIT(BT_MESH_KR_PHASE_3), /* Normal phase: KR is started by key update */
BIT(BT_MESH_KR_PHASE_2) | BIT(BT_MESH_KR_PHASE_3), /* Phase 1 */
BIT(BT_MESH_KR_PHASE_3), /* Phase 2 */
/* Subnet is never in Phase 3 */
};
struct bt_mesh_subnet *sub;
LOG_DBG("0x%03x", net_idx);
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
*phase = 0x00;
return STATUS_INVALID_NETKEY;
}
if (*phase == sub->kr_phase) {
return STATUS_SUCCESS;
}
if (sub->kr_phase < ARRAY_SIZE(valid_transitions) &&
valid_transitions[sub->kr_phase] & BIT(*phase)) {
key_refresh(sub, *phase);
*phase = sub->kr_phase;
return STATUS_SUCCESS;
}
LOG_WRN("Invalid KR transition: 0x%02x -> 0x%02x", sub->kr_phase, *phase);
*phase = sub->kr_phase;
return STATUS_CANNOT_UPDATE;
}
uint8_t bt_mesh_subnet_kr_phase_get(uint16_t net_idx, uint8_t *phase)
{
struct bt_mesh_subnet *sub;
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
*phase = BT_MESH_KR_NORMAL;
return STATUS_INVALID_NETKEY;
}
*phase = sub->kr_phase;
return STATUS_SUCCESS;
}
uint8_t bt_mesh_subnet_node_id_set(uint16_t net_idx,
enum bt_mesh_feat_state node_id)
{
struct bt_mesh_subnet *sub;
if (node_id == BT_MESH_FEATURE_NOT_SUPPORTED) {
return STATUS_CANNOT_SET;
}
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
return STATUS_INVALID_NETKEY;
}
if (!IS_ENABLED(CONFIG_BT_MESH_GATT_PROXY)) {
return STATUS_FEAT_NOT_SUPP;
}
#if defined(CONFIG_BT_MESH_PRIV_BEACONS)
/* Implements binding from MshPRTv1.1: 4.2.46.1. When enabling non-private node
* identity state, disable its private counterpart.
*/
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
if (subnets[i].net_idx != BT_MESH_KEY_UNUSED &&
subnets[i].node_id == BT_MESH_FEATURE_ENABLED &&
subnets[i].priv_beacon_ctx.node_id) {
bt_mesh_proxy_identity_stop(&subnets[i]);
}
}
#endif
if (node_id) {
bt_mesh_proxy_identity_start(sub, false);
} else {
bt_mesh_proxy_identity_stop(sub);
}
bt_mesh_adv_gatt_update();
return STATUS_SUCCESS;
}
uint8_t bt_mesh_subnet_node_id_get(uint16_t net_idx,
enum bt_mesh_feat_state *node_id)
{
struct bt_mesh_subnet *sub;
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
*node_id = 0x00;
return STATUS_INVALID_NETKEY;
}
*node_id = sub->node_id;
#if defined(CONFIG_BT_MESH_PRIV_BEACONS)
*node_id &= !sub->priv_beacon_ctx.node_id;
#endif
return STATUS_SUCCESS;
}
uint8_t bt_mesh_subnet_priv_node_id_set(uint16_t net_idx,
enum bt_mesh_feat_state priv_node_id)
{
struct bt_mesh_subnet *sub;
if (priv_node_id == BT_MESH_FEATURE_NOT_SUPPORTED) {
return STATUS_CANNOT_SET;
}
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
return STATUS_INVALID_NETKEY;
}
if (!IS_ENABLED(CONFIG_BT_MESH_GATT_PROXY) ||
!IS_ENABLED(CONFIG_BT_MESH_PRIV_BEACONS)) {
return STATUS_FEAT_NOT_SUPP;
}
#if defined(CONFIG_BT_MESH_PRIV_BEACONS)
/* Reverse binding from MshPRTv1.1: 4.2.46.1 doesn't
* allow to set private state if non-private state is enabled.
*/
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
if (subnets[i].net_idx != BT_MESH_KEY_UNUSED &&
subnets[i].node_id == BT_MESH_FEATURE_ENABLED &&
!subnets[i].priv_beacon_ctx.node_id) {
return STATUS_CANNOT_SET;
}
}
#endif
if (priv_node_id) {
bt_mesh_proxy_identity_start(sub, true);
} else {
bt_mesh_proxy_identity_stop(sub);
}
bt_mesh_adv_gatt_update();
return STATUS_SUCCESS;
}
uint8_t bt_mesh_subnet_priv_node_id_get(uint16_t net_idx,
enum bt_mesh_feat_state *priv_node_id)
{
struct bt_mesh_subnet *sub;
sub = bt_mesh_subnet_get(net_idx);
if (!sub) {
*priv_node_id = 0x00;
return STATUS_INVALID_NETKEY;
}
#if CONFIG_BT_MESH_GATT_PROXY && CONFIG_BT_MESH_PRIV_BEACONS
if (sub->node_id == BT_MESH_FEATURE_ENABLED && sub->priv_beacon_ctx.node_id) {
*priv_node_id = sub->node_id;
} else {
*priv_node_id = BT_MESH_FEATURE_DISABLED;
}
#else
*priv_node_id = BT_MESH_FEATURE_NOT_SUPPORTED;
#endif
return STATUS_SUCCESS;
}
enum bt_mesh_subnets_node_id_state bt_mesh_subnets_node_id_state_get(void)
{
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
if (subnets[i].node_id) {
#if CONFIG_BT_MESH_PRIV_BEACONS
if (subnets[i].priv_beacon_ctx.node_id) {
return BT_MESH_SUBNETS_NODE_ID_STATE_ENABLED_PRIVATE;
}
#endif
return BT_MESH_SUBNETS_NODE_ID_STATE_ENABLED;
}
}
return BT_MESH_SUBNETS_NODE_ID_STATE_NONE;
}
ssize_t bt_mesh_subnets_get(uint16_t net_idxs[], size_t max, off_t skip)
{
size_t count = 0;
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
struct bt_mesh_subnet *sub = &subnets[i];
if (sub->net_idx == BT_MESH_KEY_UNUSED) {
continue;
}
if (skip) {
skip--;
continue;
}
if (count >= max) {
return -ENOMEM;
}
net_idxs[count++] = sub->net_idx;
}
return count;
}
struct bt_mesh_subnet *bt_mesh_subnet_get(uint16_t net_idx)
{
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
struct bt_mesh_subnet *sub = &subnets[i];
if (sub->net_idx == net_idx) {
return sub;
}
}
return NULL;
}
static int subnet_key_set(struct bt_mesh_subnet *sub, int key_idx, const struct bt_mesh_key *key)
{
uint8_t raw_key[16];
int err;
err = bt_mesh_key_export(raw_key, key);
if (err) {
return err;
}
bt_mesh_key_assign(&sub->keys[key_idx].net, key);
err = net_keys_create(&sub->keys[key_idx], false, raw_key);
if (err) {
return err;
}
return 0;
}
int bt_mesh_subnet_set(uint16_t net_idx, uint8_t kr_phase, const struct bt_mesh_key *old_key,
const struct bt_mesh_key *new_key)
{
struct bt_mesh_subnet *sub;
int err;
sub = subnet_alloc(net_idx);
if (!sub) {
return -ENOMEM;
}
if (sub->net_idx == net_idx) {
return -EALREADY;
}
if (old_key != NULL) {
err = subnet_key_set(sub, 0, old_key);
if (err) {
return err;
}
}
if (new_key != NULL) {
err = subnet_key_set(sub, 1, new_key);
if (err) {
return err;
}
}
sub->net_idx = net_idx;
sub->kr_phase = kr_phase;
if (IS_ENABLED(CONFIG_BT_MESH_GATT_PROXY)) {
sub->node_id = BT_MESH_NODE_IDENTITY_STOPPED;
} else {
sub->node_id = BT_MESH_NODE_IDENTITY_NOT_SUPPORTED;
}
/* Make sure we have valid beacon data to be sent */
bt_mesh_beacon_update(sub);
return 0;
}
struct bt_mesh_subnet *bt_mesh_subnet_find(bool (*cb)(struct bt_mesh_subnet *sub, void *cb_data),
void *cb_data)
{
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
if (subnets[i].net_idx == BT_MESH_KEY_UNUSED) {
continue;
}
if (!cb || cb(&subnets[i], cb_data)) {
return &subnets[i];
}
}
return NULL;
}
size_t bt_mesh_subnet_foreach(void (*cb)(struct bt_mesh_subnet *sub))
{
size_t count = 0;
for (int i = 0; i < ARRAY_SIZE(subnets); i++) {
if (subnets[i].net_idx == BT_MESH_KEY_UNUSED) {
continue;
}
cb(&subnets[i]);
count++;
}
return count;
}
struct bt_mesh_subnet *bt_mesh_subnet_next(struct bt_mesh_subnet *sub)
{
if (sub) {
sub++;
} else {
sub = &subnets[0];
}
for (int i = 0; i < ARRAY_SIZE(subnets); i++, sub++) {
/* Roll over once we reach the end */
if (sub == &subnets[ARRAY_SIZE(subnets)]) {
sub = &subnets[0];
}
if (sub->net_idx != BT_MESH_KEY_UNUSED) {
return sub;
}
}
return NULL;
}
void bt_mesh_net_keys_reset(void)
{
int i;
/* Delete all net keys, which also takes care of all app keys which
* are associated with each net key.
*/
for (i = 0; i < ARRAY_SIZE(subnets); i++) {
struct bt_mesh_subnet *sub = &subnets[i];
if (sub->net_idx != BT_MESH_KEY_UNUSED) {
subnet_del(sub);
}
}
}
bool bt_mesh_net_cred_find(struct bt_mesh_net_rx *rx, struct net_buf_simple *in,
struct net_buf_simple *out,
bool (*cb)(struct bt_mesh_net_rx *rx,
struct net_buf_simple *in,
struct net_buf_simple *out,
const struct bt_mesh_net_cred *cred))
{
int i, j;
LOG_DBG("");
#if defined(CONFIG_BT_MESH_LOW_POWER)
if (bt_mesh_lpn_waiting_update()) {
rx->sub = bt_mesh.lpn.sub;
for (j = 0; j < ARRAY_SIZE(bt_mesh.lpn.cred); j++) {
if (!rx->sub->keys[j].valid) {
continue;
}
if (cb(rx, in, out, &bt_mesh.lpn.cred[j])) {
rx->new_key = (j > 0);
rx->friend_cred = 1U;
rx->ctx.net_idx = rx->sub->net_idx;
return true;
}
}
/* LPN Should only receive on the friendship credentials when in
* a friendship.
*/
return false;
}
#endif
#if defined(CONFIG_BT_MESH_FRIEND)
/** Each friendship has unique friendship credentials */
for (i = 0; i < ARRAY_SIZE(bt_mesh.frnd); i++) {
struct bt_mesh_friend *frnd = &bt_mesh.frnd[i];
if (!frnd->subnet) {
continue;
}
rx->sub = frnd->subnet;
for (j = 0; j < ARRAY_SIZE(frnd->cred); j++) {
if (!rx->sub->keys[j].valid) {
continue;
}
if (cb(rx, in, out, &frnd->cred[j])) {
rx->new_key = (j > 0);
rx->friend_cred = 1U;
rx->ctx.net_idx = rx->sub->net_idx;
return true;
}
}
}
#endif
for (i = 0; i < ARRAY_SIZE(subnets); i++) {
rx->sub = &subnets[i];
if (rx->sub->net_idx == BT_MESH_KEY_UNUSED) {
continue;
}
for (j = 0; j < ARRAY_SIZE(rx->sub->keys); j++) {
if (!rx->sub->keys[j].valid) {
continue;
}
if (cb(rx, in, out, &rx->sub->keys[j].msg)) {
rx->new_key = (j > 0);
rx->friend_cred = 0U;
rx->ctx.net_idx = rx->sub->net_idx;
return true;
}
}
}
return false;
}
static int net_key_set(const char *name, size_t len_rd,
settings_read_cb read_cb, void *cb_arg)
{
struct net_key_val key;
struct bt_mesh_key val[2];
int err;
uint16_t net_idx;
if (!name) {
LOG_ERR("Insufficient number of arguments");
return -ENOENT;
}
net_idx = strtol(name, NULL, 16);
err = bt_mesh_settings_set(read_cb, cb_arg, &key, sizeof(key));
if (err) {
LOG_ERR("Failed to set \'net-key\'");
return err;
}
/* One extra copying since key.val array is from packed structure
* and might be unaligned.
*/
memcpy(val, key.val, sizeof(key.val));
LOG_DBG("NetKeyIndex 0x%03x recovered from storage", net_idx);
return bt_mesh_subnet_set(
net_idx, key.kr_phase, &val[0],
(key.kr_phase != BT_MESH_KR_NORMAL) ? &val[1] : NULL);
}
BT_MESH_SETTINGS_DEFINE(subnet, "NetKey", net_key_set);
void bt_mesh_subnet_pending_store(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(net_key_updates); i++) {
struct net_key_update *update = &net_key_updates[i];
if (!update->valid) {
continue;
}
update->valid = 0U;
if (update->clear) {
clear_net_key(update->key_idx);
} else {
store_subnet(update->key_idx);
}
}
}