blob: 7dacb112a006af2f41d6427c7b07c638fba66c5a [file] [log] [blame]
/*
* Copyright (c) 2023 Intel Corporation
* Copyright (c) 2024 Arduino SA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/sys/util.h>
#include <zephyr/llext/elf.h>
#include <zephyr/llext/loader.h>
#include <zephyr/llext/llext.h>
#include <zephyr/llext/llext_internal.h>
#include <zephyr/kernel.h>
#include <zephyr/cache.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(llext, CONFIG_LLEXT_LOG_LEVEL);
#include <string.h>
#include "llext_priv.h"
#ifdef CONFIG_LLEXT_EXPORT_BUILTINS_BY_SLID
#define SYM_NAME_OR_SLID(name, slid) ((const char *) slid)
#else
#define SYM_NAME_OR_SLID(name, slid) name
#endif
__weak int arch_elf_relocate(elf_rela_t *rel, uintptr_t loc,
uintptr_t sym_base_addr, const char *sym_name, uintptr_t load_bias)
{
return -ENOTSUP;
}
__weak void arch_elf_relocate_local(struct llext_loader *ldr, struct llext *ext,
const elf_rela_t *rel, const elf_sym_t *sym, size_t got_offset,
const struct llext_load_param *ldr_parm)
{
}
__weak void arch_elf_relocate_global(struct llext_loader *ldr, struct llext *ext,
const elf_rela_t *rel, const elf_sym_t *sym, size_t got_offset,
const void *link_addr)
{
}
/*
* Find the memory region containing the supplied offset and return the
* corresponding file offset
*/
static size_t llext_file_offset(struct llext_loader *ldr, size_t offset)
{
unsigned int i;
for (i = 0; i < LLEXT_MEM_COUNT; i++) {
if (ldr->sects[i].sh_addr <= offset &&
ldr->sects[i].sh_addr + ldr->sects[i].sh_size > offset) {
return offset - ldr->sects[i].sh_addr + ldr->sects[i].sh_offset;
}
}
return offset;
}
/*
* We increment use-count every time a new dependent is added, and have to
* decrement it again, when one is removed. Ideally we should be able to add
* arbitrary numbers of dependencies, but using lists for this doesn't work,
* because multiple extensions can have common dependencies. Dynamically
* allocating dependency entries would be too wasteful. In this initial
* implementation we use an array of dependencies, if at some point we run out
* of array entries, we'll implement re-allocation.
* We add dependencies incrementally as we discover them, but we only ever
* expect them to be removed all at once, when their user is removed. So the
* dependency array is always "dense" - it cannot have NULL entries between
* valid ones.
*/
static int llext_dependency_add(struct llext *ext, struct llext *dependency)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ext->dependency); i++) {
if (ext->dependency[i] == dependency) {
return 0;
}
if (!ext->dependency[i]) {
ext->dependency[i] = dependency;
dependency->use_count++;
return 0;
}
}
return -ENOENT;
}
void llext_dependency_remove_all(struct llext *ext)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ext->dependency) && ext->dependency[i]; i++) {
/*
* The use-count of dependencies is tightly bound to dependent's
* life cycle, so it shouldn't underrun.
*/
ext->dependency[i]->use_count--;
__ASSERT(ext->dependency[i]->use_count, "LLEXT dependency use-count underrun!");
/* No need to NULL-ify the pointer - ext is freed after this */
}
}
struct llext_extension_sym {
struct llext *ext;
const char *sym;
const void *addr;
};
static int llext_find_extension_sym_iterate(struct llext *ext, void *arg)
{
struct llext_extension_sym *se = arg;
const void *addr = llext_find_sym(&ext->exp_tab, se->sym);
if (addr) {
se->addr = addr;
se->ext = ext;
return 1;
}
return 0;
}
static const void *llext_find_extension_sym(const char *sym_name, struct llext **ext)
{
struct llext_extension_sym se = {.sym = sym_name};
llext_iterate(llext_find_extension_sym_iterate, &se);
if (ext) {
*ext = se.ext;
}
return se.addr;
}
static void llext_link_plt(struct llext_loader *ldr, struct llext *ext, elf_shdr_t *shdr,
const struct llext_load_param *ldr_parm, elf_shdr_t *tgt)
{
unsigned int sh_cnt = shdr->sh_size / shdr->sh_entsize;
/*
* CPU address where the .text section is stored, we use .text just as a
* reference point
*/
uint8_t *text = ext->mem[LLEXT_MEM_TEXT];
LOG_DBG("Found %p in PLT %u size %zu cnt %u text %p",
(void *)llext_string(ldr, ext, LLEXT_MEM_SHSTRTAB, shdr->sh_name),
shdr->sh_type, (size_t)shdr->sh_entsize, sh_cnt, (void *)text);
const elf_shdr_t *sym_shdr = ldr->sects + LLEXT_MEM_SYMTAB;
unsigned int sym_cnt = sym_shdr->sh_size / sym_shdr->sh_entsize;
for (unsigned int i = 0; i < sh_cnt; i++) {
elf_rela_t rela;
int ret = llext_seek(ldr, shdr->sh_offset + i * shdr->sh_entsize);
if (!ret) {
ret = llext_read(ldr, &rela, sizeof(rela));
}
if (ret < 0) {
LOG_ERR("PLT: failed to read RELA #%u, trying to continue", i);
continue;
}
/* Index in the symbol table */
unsigned int j = ELF_R_SYM(rela.r_info);
if (j >= sym_cnt) {
LOG_WRN("PLT: idx %u >= %u", j, sym_cnt);
continue;
}
elf_sym_t sym;
ret = llext_seek(ldr, sym_shdr->sh_offset + j * sizeof(elf_sym_t));
if (!ret) {
ret = llext_read(ldr, &sym, sizeof(sym));
}
if (ret < 0) {
LOG_ERR("PLT: failed to read symbol table #%u RELA #%u, trying to continue",
j, i);
continue;
}
uint32_t stt = ELF_ST_TYPE(sym.st_info);
if (stt != STT_FUNC &&
stt != STT_SECTION &&
stt != STT_OBJECT &&
(stt != STT_NOTYPE || sym.st_shndx != SHN_UNDEF)) {
continue;
}
const char *name = llext_string(ldr, ext, LLEXT_MEM_STRTAB, sym.st_name);
/*
* Both r_offset and sh_addr are addresses for which the extension
* has been built.
*
* NOTE: The calculations below assumes offsets from the
* beginning of the .text section in the ELF file can be
* applied to the memory location of mem[LLEXT_MEM_TEXT].
*
* This is valid only when CONFIG_LLEXT_STORAGE_WRITABLE=y
* and peek() is usable on the source ELF file.
*/
size_t got_offset;
if (tgt) {
got_offset = rela.r_offset + tgt->sh_offset -
ldr->sects[LLEXT_MEM_TEXT].sh_offset;
} else {
got_offset = llext_file_offset(ldr, rela.r_offset) -
ldr->sects[LLEXT_MEM_TEXT].sh_offset;
}
uint32_t stb = ELF_ST_BIND(sym.st_info);
const void *link_addr;
switch (stb) {
case STB_GLOBAL:
/* First try the global symbol table */
link_addr = llext_find_sym(NULL,
SYM_NAME_OR_SLID(name, sym.st_value));
if (!link_addr) {
/* Next try internal tables */
link_addr = llext_find_sym(&ext->sym_tab, name);
}
if (!link_addr) {
/* Finally try any loaded tables */
struct llext *dep;
link_addr = llext_find_extension_sym(name, &dep);
if (link_addr) {
llext_dependency_add(ext, dep);
}
}
if (!link_addr) {
LOG_WRN("PLT: cannot find idx %u name %s", j, name);
continue;
}
/* Resolve the symbol */
arch_elf_relocate_global(ldr, ext, &rela, &sym, got_offset, link_addr);
break;
case STB_LOCAL:
arch_elf_relocate_local(ldr, ext, &rela, &sym, got_offset, ldr_parm);
}
LOG_DBG("symbol %s offset %#zx r-offset %#zx .text offset %#zx stb %u",
name, got_offset,
(size_t)rela.r_offset, (size_t)ldr->sects[LLEXT_MEM_TEXT].sh_offset, stb);
}
}
int llext_link(struct llext_loader *ldr, struct llext *ext, const struct llext_load_param *ldr_parm)
{
uintptr_t sect_base = 0;
elf_rela_t rel;
elf_sym_t sym;
elf_word rel_cnt = 0;
const char *name;
int i, ret;
for (i = 0; i < ext->sect_cnt; ++i) {
elf_shdr_t *shdr = ext->sect_hdrs + i;
/* find proper relocation sections */
switch (shdr->sh_type) {
case SHT_REL:
if (shdr->sh_entsize != sizeof(elf_rel_t)) {
LOG_ERR("Invalid entry size %zd for SHT_REL section %d",
(size_t)shdr->sh_entsize, i);
return -ENOEXEC;
}
break;
case SHT_RELA:
if (IS_ENABLED(CONFIG_ARM)) {
LOG_ERR("Found unsupported SHT_RELA section %d", i);
return -ENOTSUP;
}
if (shdr->sh_entsize != sizeof(elf_rela_t)) {
LOG_ERR("Invalid entry size %zd for SHT_RELA section %d",
(size_t)shdr->sh_entsize, i);
return -ENOEXEC;
}
break;
default:
/* ignore this section */
continue;
}
if (shdr->sh_info >= ext->sect_cnt ||
shdr->sh_size % shdr->sh_entsize != 0) {
LOG_ERR("Sanity checks failed for section %d "
"(info %zd, size %zd, entsize %zd)", i,
(size_t)shdr->sh_info,
(size_t)shdr->sh_size,
(size_t)shdr->sh_entsize);
return -ENOEXEC;
}
rel_cnt = shdr->sh_size / shdr->sh_entsize;
name = llext_string(ldr, ext, LLEXT_MEM_SHSTRTAB, shdr->sh_name);
/*
* FIXME: The Xtensa port is currently using a different way of
* handling relocations that ultimately results in separate
* arch-specific code paths. This code should be merged with
* the logic below once the differences are resolved.
*/
if (IS_ENABLED(CONFIG_XTENSA)) {
elf_shdr_t *tgt;
if (strcmp(name, ".rela.plt") == 0 ||
strcmp(name, ".rela.dyn") == 0) {
tgt = NULL;
} else {
/*
* Entries in .rel.X and .rela.X sections describe references in
* section .X to local or global symbols. They point to entries
* in the symbol table, describing respective symbols
*/
tgt = ext->sect_hdrs + shdr->sh_info;
}
llext_link_plt(ldr, ext, shdr, ldr_parm, tgt);
continue;
}
LOG_DBG("relocation section %s (%d) acting on section %d has %zd relocations",
name, i, shdr->sh_info, (size_t)rel_cnt);
enum llext_mem mem_idx = ldr->sect_map[shdr->sh_info].mem_idx;
if (mem_idx == LLEXT_MEM_COUNT) {
LOG_ERR("Section %d not loaded in any memory region", shdr->sh_info);
return -ENOEXEC;
}
sect_base = (uintptr_t)llext_loaded_sect_ptr(ldr, ext, shdr->sh_info);
for (int j = 0; j < rel_cnt; j++) {
/* get each relocation entry */
ret = llext_seek(ldr, shdr->sh_offset + j * shdr->sh_entsize);
if (ret != 0) {
return ret;
}
ret = llext_read(ldr, &rel, shdr->sh_entsize);
if (ret != 0) {
return ret;
}
/* get corresponding symbol */
ret = llext_seek(ldr, ldr->sects[LLEXT_MEM_SYMTAB].sh_offset
+ ELF_R_SYM(rel.r_info) * sizeof(elf_sym_t));
if (ret != 0) {
return ret;
}
ret = llext_read(ldr, &sym, sizeof(elf_sym_t));
if (ret != 0) {
return ret;
}
name = llext_string(ldr, ext, LLEXT_MEM_STRTAB, sym.st_name);
LOG_DBG("relocation %d:%d info 0x%zx (type %zd, sym %zd) offset %zd "
"sym_name %s sym_type %d sym_bind %d sym_ndx %d",
i, j, (size_t)rel.r_info, (size_t)ELF_R_TYPE(rel.r_info),
(size_t)ELF_R_SYM(rel.r_info), (size_t)rel.r_offset,
name, ELF_ST_TYPE(sym.st_info),
ELF_ST_BIND(sym.st_info), sym.st_shndx);
uintptr_t link_addr, op_loc;
op_loc = sect_base + rel.r_offset;
if (ELF_R_SYM(rel.r_info) == 0) {
/* no symbol ex: R_ARM_V4BX relocation, R_ARM_RELATIVE */
link_addr = 0;
} else if (sym.st_shndx == SHN_UNDEF) {
/* If symbol is undefined, then we need to look it up */
link_addr = (uintptr_t)llext_find_sym(NULL,
SYM_NAME_OR_SLID(name, sym.st_value));
if (link_addr == 0) {
/* Try loaded tables */
struct llext *dep;
link_addr = (uintptr_t)llext_find_extension_sym(name, &dep);
if (link_addr) {
llext_dependency_add(ext, dep);
}
}
if (link_addr == 0) {
LOG_ERR("Undefined symbol with no entry in "
"symbol table %s, offset %zd, link section %d",
name, (size_t)rel.r_offset, shdr->sh_link);
return -ENODATA;
}
LOG_INF("found symbol %s at 0x%lx", name, link_addr);
} else if (sym.st_shndx == SHN_ABS) {
/* Absolute symbol */
link_addr = sym.st_value;
} else if ((sym.st_shndx < ldr->hdr.e_shnum) &&
!IN_RANGE(sym.st_shndx, SHN_LORESERVE, SHN_HIRESERVE)) {
/* This check rejects all relocations whose target symbol
* has a section index higher than the maximum possible
* in this ELF file, or belongs in the reserved range:
* they will be caught by the `else` below and cause an
* error to be returned. This aborts the LLEXT's loading
* and prevents execution of improperly relocated code,
* which is dangerous.
*
* Note that the unsupported SHN_COMMON section is rejected
* as part of this check. Also note that SHN_ABS would be
* rejected as well, but we want to handle it properly:
* for this reason, this check must come AFTER handling
* the case where the symbol's section index is SHN_ABS!
*
*
* For regular symbols, the link address is obtained by
* adding st_value to the start address of the section
* in which the target symbol resides.
*/
link_addr = (uintptr_t)llext_loaded_sect_ptr(ldr, ext,
sym.st_shndx)
+ sym.st_value;
} else {
LOG_ERR("rela section %d, entry %d: cannot apply relocation: "
"target symbol has unexpected section index %d (0x%X)",
i, j, sym.st_shndx, sym.st_shndx);
return -ENOEXEC;
}
LOG_INF("writing relocation symbol %s type %zd sym %zd at addr 0x%lx "
"addr 0x%lx",
name, (size_t)ELF_R_TYPE(rel.r_info), (size_t)ELF_R_SYM(rel.r_info),
op_loc, link_addr);
/* relocation */
ret = arch_elf_relocate(&rel, op_loc, link_addr, name,
(uintptr_t)ext->mem[LLEXT_MEM_TEXT]);
if (ret != 0) {
return ret;
}
}
}
#ifdef CONFIG_CACHE_MANAGEMENT
/* Make sure changes to memory regions are flushed to RAM */
for (i = 0; i < LLEXT_MEM_COUNT; ++i) {
if (ext->mem[i]) {
sys_cache_data_flush_range(ext->mem[i], ext->mem_size[i]);
sys_cache_instr_invd_range(ext->mem[i], ext->mem_size[i]);
}
}
/* Detached section caches should be synchronized in place */
if (ldr_parm->section_detached) {
for (i = 0; i < ext->sect_cnt; ++i) {
elf_shdr_t *shdr = ext->sect_hdrs + i;
if (ldr_parm->section_detached(shdr)) {
void *base = llext_peek(ldr, shdr->sh_offset);
sys_cache_data_flush_range(base, shdr->sh_size);
sys_cache_instr_invd_range(base, shdr->sh_size);
}
}
}
#endif
return 0;
}