blob: 1fd94e87113af298b8f6a21660ac889ecde86aa4 [file] [log] [blame]
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <string.h>
#include <misc/printk.h>
#include <kernel_structs.h>
#include <sys_io.h>
#include <ksched.h>
#include <syscall.h>
/**
* Kernel object validation function
*
* Retrieve metadata for a kernel object. This function is implemented in
* the gperf script footer, see gen_kobject_list.py
*
* @param obj Address of kernel object to get metadata
* @return Kernel object's metadata, or NULL if the parameter wasn't the
* memory address of a kernel object
*/
extern struct _k_object *_k_object_find(void *obj);
const char *otype_to_str(enum k_objects otype)
{
/* -fdata-sections doesn't work right except in very very recent
* GCC and these literal strings would appear in the binary even if
* otype_to_str was omitted by the linker
*/
#ifdef CONFIG_PRINTK
switch (otype) {
/* Core kernel objects */
case K_OBJ_ALERT:
return "k_alert";
case K_OBJ_MSGQ:
return "k_msgq";
case K_OBJ_MUTEX:
return "k_mutex";
case K_OBJ_PIPE:
return "k_pipe";
case K_OBJ_SEM:
return "k_sem";
case K_OBJ_STACK:
return "k_stack";
case K_OBJ_THREAD:
return "k_thread";
case K_OBJ_TIMER:
return "k_timer";
/* Driver subsystems */
case K_OBJ_DRIVER_ADC:
return "adc driver";
case K_OBJ_DRIVER_AIO_CMP:
return "aio comparator driver";
case K_OBJ_DRIVER_CLOCK_CONTROL:
return "clock control driver";
case K_OBJ_DRIVER_COUNTER:
return "counter driver";
case K_OBJ_DRIVER_CRYPTO:
return "crypto driver";
case K_OBJ_DRIVER_DMA:
return "dma driver";
case K_OBJ_DRIVER_ETH:
return "ethernet driver";
case K_OBJ_DRIVER_FLASH:
return "flash driver";
case K_OBJ_DRIVER_GPIO:
return "gpio driver";
case K_OBJ_DRIVER_I2C:
return "i2c driver";
case K_OBJ_DRIVER_I2S:
return "i2s driver";
case K_OBJ_DRIVER_IPM:
return "ipm driver";
case K_OBJ_DRIVER_PINMUX:
return "pinmux driver";
case K_OBJ_DRIVER_PWM:
return "pwm driver";
case K_OBJ_DRIVER_RANDOM:
return "random driver";
case K_OBJ_DRIVER_RTC:
return "realtime clock driver";
case K_OBJ_DRIVER_SENSOR:
return "sensor driver";
case K_OBJ_DRIVER_SHARED_IRQ:
return "shared irq driver";
case K_OBJ_DRIVER_SPI:
return "spi driver";
case K_OBJ_DRIVER_UART:
return "uart driver";
case K_OBJ_DRIVER_WDT:
return "watchdog timer driver";
default:
return "?";
}
#else
ARG_UNUSED(otype);
return NULL;
#endif
}
/* Stub functions, to be filled in forthcoming patch sets */
static void set_thread_perms(struct _k_object *ko, struct k_thread *thread)
{
if (thread->base.perm_index < 8 * CONFIG_MAX_THREAD_BYTES) {
sys_bitfield_set_bit((mem_addr_t)&ko->perms,
thread->base.perm_index);
}
}
static int test_thread_perms(struct _k_object *ko)
{
if (_current->base.perm_index < 8 * CONFIG_MAX_THREAD_BYTES) {
return sys_bitfield_test_bit((mem_addr_t)&ko->perms,
_current->base.perm_index);
}
return 0;
}
/**
* Kernek object permission modification check
*
* Check that the caller has sufficient perms to modify access permissions for
* a particular kernel object. oops() if a user thread is trying to something
* forbidden.
*
* @param object to be modified
* @return NULL if the caller is a kernel thread and the object was not found
*/
static struct _k_object *access_check(void *object)
{
struct _k_object *ko = _k_object_find(object);
if (!ko) {
if (_is_thread_user()) {
printk("granting access to non-existent kernel object %p\n",
object);
k_oops();
} else {
/* Supervisor threads may at times instantiate objects
* that ignore rules on where they can live. Such
* objects won't ever be usable from userspace, but
* we shouldn't explode.
*/
return NULL;
}
}
/* userspace can't grant access to objects unless it already has
* access to that object
*/
if (_is_thread_user() && !test_thread_perms(ko)) {
printk("insufficient permissions in current thread %p\n",
_current);
printk("Cannot grant access to %s %p\n",
otype_to_str(ko->type), object);
k_oops();
}
return ko;
}
void _impl_k_object_access_grant(void *object, struct k_thread *thread)
{
struct _k_object *ko = access_check(object);
if (ko) {
set_thread_perms(ko, thread);
}
}
void _impl_k_object_access_all_grant(void *object)
{
struct _k_object *ko = access_check(object);
if (ko) {
memset(ko->perms, 0xFF, CONFIG_MAX_THREAD_BYTES);
}
}
int _k_object_validate(void *obj, enum k_objects otype, int init)
{
struct _k_object *ko;
ko = _k_object_find(obj);
if (!ko || ko->type != otype) {
printk("%p is not a %s\n", obj, otype_to_str(otype));
return -EBADF;
}
/* Uninitialized objects are not owned by anyone. However if an
* object is initialized, and the caller is from userspace, then
* we need to assert that the user thread has sufficient permissions
* to re-initialize.
*/
if (ko->flags & K_OBJ_FLAG_INITIALIZED && _is_thread_user() &&
!test_thread_perms(ko)) {
printk("thread %p (%d) does not have permission on %s %p [",
_current, _current->base.perm_index, otype_to_str(otype),
obj);
for (int i = CONFIG_MAX_THREAD_BYTES - 1; i >= 0; i--) {
printk("%02x", ko->perms[i]);
}
printk("]\n");
return -EPERM;
}
/* If we are not initializing an object, and the object is not
* initialized, we should freak out
*/
if (!init && !(ko->flags & K_OBJ_FLAG_INITIALIZED)) {
printk("%p used before initialization\n", obj);
return -EINVAL;
}
return 0;
}
void _k_object_init(void *object)
{
struct _k_object *ko;
/* By the time we get here, if the caller was from userspace, all the
* necessary checks have been done in _k_object_validate(), which takes
* place before the object is initialized.
*
* This function runs after the object has been initialized and
* finalizes it
*/
ko = _k_object_find(object);
if (!ko) {
/* Supervisor threads can ignore rules about kernel objects
* and may declare them on stacks, etc. Such objects will never
* be usable from userspace, but we shouldn't explode.
*/
return;
}
memset(ko->perms, 0, CONFIG_MAX_THREAD_BYTES);
set_thread_perms(ko, _current);
ko->flags |= K_OBJ_FLAG_INITIALIZED;
}
static u32_t _handler_bad_syscall(u32_t bad_id, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Bad system call id %u invoked\n", bad_id);
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
static u32_t _handler_no_syscall(u32_t arg1, u32_t arg2, u32_t arg3,
u32_t arg4, u32_t arg5, u32_t arg6, void *ssf)
{
printk("Unimplemented system call\n");
_arch_syscall_oops(ssf);
CODE_UNREACHABLE;
}
#include <syscall_dispatch.c>