blob: 0f24fcdfe4f99d9806a58edb44b944d290ec42bd [file] [log] [blame]
/*
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ambiq_mspi
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(mspi_ambiq);
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include "spi_context.h"
#include <am_mcu_apollo.h>
#define SPI_WORD_SIZE 8
#define MSPI_MAX_FREQ 96000000
#define MSPI_TIMEOUT_US 1000000
#define PWRCTRL_MAX_WAIT_US 5
#define MSPI_BUSY BIT(2)
typedef int (*ambiq_mspi_pwr_func_t)(void);
struct mspi_ambiq_config {
uint32_t base;
int size;
uint32_t clock_freq;
const struct pinctrl_dev_config *pcfg;
ambiq_mspi_pwr_func_t pwr_func;
};
struct mspi_ambiq_data {
struct spi_context ctx;
void *mspiHandle;
am_hal_mspi_dev_config_t mspicfg;
};
static int mspi_set_freq(uint32_t freq)
{
uint32_t d = MSPI_MAX_FREQ / freq;
switch (d) {
case AM_HAL_MSPI_CLK_96MHZ:
case AM_HAL_MSPI_CLK_48MHZ:
case AM_HAL_MSPI_CLK_32MHZ:
case AM_HAL_MSPI_CLK_24MHZ:
case AM_HAL_MSPI_CLK_16MHZ:
case AM_HAL_MSPI_CLK_12MHZ:
case AM_HAL_MSPI_CLK_8MHZ:
case AM_HAL_MSPI_CLK_6MHZ:
case AM_HAL_MSPI_CLK_4MHZ:
case AM_HAL_MSPI_CLK_3MHZ:
break;
default:
LOG_ERR("Frequency not supported!");
d = AM_HAL_MSPI_CLK_INVALID;
break;
}
return d;
}
static int mspi_config(const struct device *dev, const struct spi_config *config)
{
struct mspi_ambiq_data *data = dev->data;
int ret;
am_hal_mspi_dev_config_t mspicfg = {0};
if (config->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
if (SPI_WORD_SIZE_GET(config->operation) != 8) {
LOG_ERR("Word size must be %d", SPI_WORD_SIZE);
return -ENOTSUP;
}
if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single mode is currently supported");
return -ENOTSUP;
}
if (config->operation & SPI_LOCK_ON) {
LOG_ERR("Lock On not supported");
return -ENOTSUP;
}
if (config->operation & SPI_TRANSFER_LSB) {
LOG_ERR("LSB first not supported");
return -ENOTSUP;
}
if (config->operation & (SPI_MODE_CPOL | SPI_MODE_CPHA)) {
if (config->operation & (SPI_MODE_CPOL && SPI_MODE_CPHA)) {
mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_3;
} else if (config->operation & SPI_MODE_CPOL) {
mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_2;
} else if (config->operation & SPI_MODE_CPHA) {
mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_1;
} else {
mspicfg.eSpiMode = AM_HAL_MSPI_SPI_MODE_0;
}
}
mspicfg.eClockFreq = mspi_set_freq(config->frequency);
if (mspicfg.eClockFreq == AM_HAL_MSPI_CLK_INVALID) {
return -ENOTSUP;
}
mspicfg.eDeviceConfig = AM_HAL_MSPI_FLASH_SERIAL_CE0;
ret = am_hal_mspi_disable(data->mspiHandle);
if (ret) {
return ret;
}
ret = am_hal_mspi_device_configure(data->mspiHandle, &mspicfg);
if (ret) {
return ret;
}
ret = am_hal_mspi_enable(data->mspiHandle);
return ret;
}
static int mspi_ambiq_xfer(const struct device *dev, const struct spi_config *config)
{
struct mspi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int ret;
am_hal_mspi_pio_transfer_t trans = {0};
trans.bSendAddr = true;
trans.bSendInstr = true;
trans.ui16DeviceInstr = *ctx->tx_buf;
spi_context_update_tx(ctx, 1, 1);
trans.ui32DeviceAddr = *ctx->tx_buf;
if (ctx->rx_buf != NULL) {
spi_context_update_rx(ctx, 1, ctx->rx_len);
trans.eDirection = AM_HAL_MSPI_RX;
trans.pui32Buffer = (uint32_t *)ctx->rx_buf;
trans.ui32NumBytes = ctx->rx_len;
} else if (ctx->tx_buf != NULL) {
spi_context_update_tx(ctx, 1, 1);
trans.eDirection = AM_HAL_MSPI_TX;
trans.pui32Buffer = (uint32_t *)ctx->tx_buf;
trans.ui32NumBytes = ctx->tx_len;
}
ret = am_hal_mspi_blocking_transfer(data->mspiHandle, &trans, MSPI_TIMEOUT_US);
spi_context_complete(ctx, dev, 0);
return ret;
}
static int mspi_ambiq_transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
struct mspi_ambiq_data *data = dev->data;
int ret = mspi_config(dev, config);
if (ret) {
return ret;
}
if (!tx_bufs && !rx_bufs) {
return 0;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
ret = mspi_ambiq_xfer(dev, config);
return ret;
}
static int mspi_ambiq_release(const struct device *dev, const struct spi_config *config)
{
const struct mspi_ambiq_config *cfg = dev->config;
if (sys_read32(cfg->base) & MSPI_BUSY) {
return -EBUSY;
}
return 0;
}
static const struct spi_driver_api mspi_ambiq_driver_api = {
.transceive = mspi_ambiq_transceive,
.release = mspi_ambiq_release,
};
static int mspi_ambiq_init(const struct device *dev)
{
struct mspi_ambiq_data *data = dev->data;
const struct mspi_ambiq_config *cfg = dev->config;
am_hal_mspi_config_t mspiCfg = {0};
mspiCfg.pTCB = NULL;
int ret = am_hal_mspi_initialize((cfg->base - REG_MSPI_BASEADDR) / (cfg->size * 4),
&data->mspiHandle);
if (ret) {
return ret;
}
ret = cfg->pwr_func();
ret = am_hal_mspi_configure(data->mspiHandle, &mspiCfg);
if (ret) {
return ret;
}
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
return ret;
}
#define AMBIQ_MSPI_DEFINE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static int pwr_on_ambiq_mspi_##n(void) \
{ \
uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \
DT_INST_PHA(n, ambiq_pwrcfg, offset); \
sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \
k_busy_wait(PWRCTRL_MAX_WAIT_US); \
return 0; \
} \
static struct mspi_ambiq_data mspi_ambiq_data##n = { \
SPI_CONTEXT_INIT_SYNC(mspi_ambiq_data##n, ctx)}; \
static const struct mspi_ambiq_config mspi_ambiq_config##n = { \
.base = DT_INST_REG_ADDR(n), \
.size = DT_INST_REG_SIZE(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.pwr_func = pwr_on_ambiq_mspi_##n, \
}; \
DEVICE_DT_INST_DEFINE(n, mspi_ambiq_init, NULL, &mspi_ambiq_data##n, \
&mspi_ambiq_config##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&mspi_ambiq_driver_api);
DT_INST_FOREACH_STATUS_OKAY(AMBIQ_MSPI_DEFINE)