| /* |
| * Copyright (c) 2018 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <kernel.h> |
| #include <string.h> |
| #include <misc/__assert.h> |
| #include <misc/mempool_base.h> |
| #include <misc/mempool.h> |
| |
| static bool level_empty(struct sys_mem_pool_base *p, int l) |
| { |
| return sys_dlist_is_empty(&p->levels[l].free_list); |
| } |
| |
| static void *block_ptr(struct sys_mem_pool_base *p, size_t lsz, int block) |
| { |
| return p->buf + lsz * block; |
| } |
| |
| static int block_num(struct sys_mem_pool_base *p, void *block, int sz) |
| { |
| return (block - p->buf) / sz; |
| } |
| |
| /* Places a 32 bit output pointer in word, and an integer bit index |
| * within that word as the return value |
| */ |
| static int get_bit_ptr(struct sys_mem_pool_base *p, int level, int bn, |
| u32_t **word) |
| { |
| u32_t *bitarray = level <= p->max_inline_level ? |
| &p->levels[level].bits : p->levels[level].bits_p; |
| |
| *word = &bitarray[bn / 32]; |
| |
| return bn & 0x1f; |
| } |
| |
| static void set_free_bit(struct sys_mem_pool_base *p, int level, int bn) |
| { |
| u32_t *word; |
| int bit = get_bit_ptr(p, level, bn, &word); |
| |
| *word |= (1<<bit); |
| } |
| |
| static void clear_free_bit(struct sys_mem_pool_base *p, int level, int bn) |
| { |
| u32_t *word; |
| int bit = get_bit_ptr(p, level, bn, &word); |
| |
| *word &= ~(1<<bit); |
| } |
| |
| /* Returns all four of the free bits for the specified blocks |
| * "partners" in the bottom 4 bits of the return value |
| */ |
| static int partner_bits(struct sys_mem_pool_base *p, int level, int bn) |
| { |
| u32_t *word; |
| int bit = get_bit_ptr(p, level, bn, &word); |
| |
| return (*word >> (4*(bit / 4))) & 0xf; |
| } |
| |
| static size_t buf_size(struct sys_mem_pool_base *p) |
| { |
| return p->n_max * p->max_sz; |
| } |
| |
| static bool block_fits(struct sys_mem_pool_base *p, void *block, size_t bsz) |
| { |
| return (block + bsz - 1 - p->buf) < buf_size(p); |
| } |
| |
| void _sys_mem_pool_base_init(struct sys_mem_pool_base *p) |
| { |
| int i; |
| size_t buflen = p->n_max * p->max_sz, sz = p->max_sz; |
| u32_t *bits = p->buf + buflen; |
| |
| for (i = 0; i < p->n_levels; i++) { |
| int nblocks = buflen / sz; |
| |
| sys_dlist_init(&p->levels[i].free_list); |
| |
| if (nblocks < 32) { |
| p->max_inline_level = i; |
| } else { |
| p->levels[i].bits_p = bits; |
| bits += (nblocks + 31)/32; |
| } |
| |
| sz = _ALIGN4(sz / 4); |
| } |
| |
| for (i = 0; i < p->n_max; i++) { |
| void *block = block_ptr(p, p->max_sz, i); |
| |
| sys_dlist_append(&p->levels[0].free_list, block); |
| set_free_bit(p, 0, i); |
| } |
| } |
| |
| /* A note on synchronization: |
| * |
| * For k_mem_pools which are interrupt safe, all manipulation of the actual |
| * pool data happens in one of alloc_block()/free_block() or break_block(). |
| * All of these transition between a state where the caller "holds" a block |
| * pointer that is marked used in the store and one where she doesn't (or else |
| * they will fail, e.g. if there isn't a free block). So that is the basic |
| * operation that needs synchronization, which we can do piecewise as needed in |
| * small one-block chunks to preserve latency. At most (in free_block) a |
| * single locked operation consists of four bit sets and dlist removals. If the |
| * overall allocation operation fails, we just free the block we have (putting |
| * a block back into the list cannot fail) and return failure. |
| * |
| * For user mode compatible sys_mem_pool pools, a semaphore is used at the API |
| * level since using that does not introduce latency issues like locking |
| * interrupts does. |
| */ |
| |
| static inline int pool_irq_lock(struct sys_mem_pool_base *p) |
| { |
| if (p->flags & SYS_MEM_POOL_KERNEL) { |
| return irq_lock(); |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline void pool_irq_unlock(struct sys_mem_pool_base *p, int key) |
| { |
| if (p->flags & SYS_MEM_POOL_KERNEL) { |
| irq_unlock(key); |
| } |
| } |
| |
| static void *block_alloc(struct sys_mem_pool_base *p, int l, size_t lsz) |
| { |
| sys_dnode_t *block; |
| int key = pool_irq_lock(p); |
| |
| block = sys_dlist_get(&p->levels[l].free_list); |
| if (block) { |
| clear_free_bit(p, l, block_num(p, block, lsz)); |
| } |
| pool_irq_unlock(p, key); |
| |
| return block; |
| } |
| |
| static void block_free(struct sys_mem_pool_base *p, int level, |
| size_t *lsizes, int bn) |
| { |
| int i, key, lsz = lsizes[level]; |
| void *block = block_ptr(p, lsz, bn); |
| |
| key = pool_irq_lock(p); |
| |
| set_free_bit(p, level, bn); |
| |
| if (level && partner_bits(p, level, bn) == 0xf) { |
| for (i = 0; i < 4; i++) { |
| int b = (bn & ~3) + i; |
| |
| clear_free_bit(p, level, b); |
| if (b != bn && |
| block_fits(p, block_ptr(p, lsz, b), lsz)) { |
| sys_dlist_remove(block_ptr(p, lsz, b)); |
| } |
| } |
| |
| pool_irq_unlock(p, key); |
| |
| /* tail recursion! */ |
| block_free(p, level-1, lsizes, bn / 4); |
| return; |
| } |
| |
| if (block_fits(p, block, lsz)) { |
| sys_dlist_append(&p->levels[level].free_list, block); |
| } |
| |
| pool_irq_unlock(p, key); |
| } |
| |
| /* Takes a block of a given level, splits it into four blocks of the |
| * next smaller level, puts three into the free list as in |
| * block_free() but without the need to check adjacent bits or |
| * recombine, and returns the remaining smaller block. |
| */ |
| static void *block_break(struct sys_mem_pool_base *p, void *block, int l, |
| size_t *lsizes) |
| { |
| int i, bn, key; |
| |
| key = pool_irq_lock(p); |
| |
| bn = block_num(p, block, lsizes[l]); |
| |
| for (i = 1; i < 4; i++) { |
| int lbn = 4*bn + i; |
| int lsz = lsizes[l + 1]; |
| void *block2 = (lsz * i) + (char *)block; |
| |
| set_free_bit(p, l + 1, lbn); |
| if (block_fits(p, block2, lsz)) { |
| sys_dlist_append(&p->levels[l + 1].free_list, block2); |
| } |
| } |
| |
| pool_irq_unlock(p, key); |
| |
| return block; |
| } |
| |
| int _sys_mem_pool_block_alloc(struct sys_mem_pool_base *p, size_t size, |
| u32_t *level_p, u32_t *block_p, void **data_p) |
| { |
| int i, from_l; |
| int alloc_l = -1, free_l = -1; |
| void *data; |
| size_t lsizes[p->n_levels]; |
| |
| /* Walk down through levels, finding the one from which we |
| * want to allocate and the smallest one with a free entry |
| * from which we can split an allocation if needed. Along the |
| * way, we populate an array of sizes for each level so we |
| * don't need to waste RAM storing it. |
| */ |
| lsizes[0] = _ALIGN4(p->max_sz); |
| for (i = 0; i < p->n_levels; i++) { |
| if (i > 0) { |
| lsizes[i] = _ALIGN4(lsizes[i-1] / 4); |
| } |
| |
| if (lsizes[i] < size) { |
| break; |
| } |
| |
| alloc_l = i; |
| if (!level_empty(p, i)) { |
| free_l = i; |
| } |
| } |
| |
| if (alloc_l < 0 || free_l < 0) { |
| *data_p = NULL; |
| return -ENOMEM; |
| } |
| |
| /* Iteratively break the smallest enclosing block... */ |
| data = block_alloc(p, free_l, lsizes[free_l]); |
| |
| if (!data) { |
| /* This can happen if we race with another allocator. |
| * It's OK, just back out and the timeout code will |
| * retry. Note mild overloading: -EAGAIN isn't for |
| * propagation to the caller, it's to tell the loop in |
| * k_mem_pool_alloc() to try again synchronously. But |
| * it means exactly what it says. |
| * |
| * This doesn't happen for user mode memory pools as this |
| * entire function runs with a semaphore held. |
| */ |
| return -EAGAIN; |
| } |
| |
| for (from_l = free_l; from_l < alloc_l; from_l++) { |
| data = block_break(p, data, from_l, lsizes); |
| } |
| |
| *level_p = alloc_l; |
| *block_p = block_num(p, data, lsizes[alloc_l]); |
| *data_p = data; |
| |
| return 0; |
| } |
| |
| void _sys_mem_pool_block_free(struct sys_mem_pool_base *p, u32_t level, |
| u32_t block) |
| { |
| size_t lsizes[p->n_levels]; |
| int i; |
| |
| /* As in _sys_mem_pool_block_alloc(), we build a table of level sizes |
| * to avoid having to store it in precious RAM bytes. |
| * Overhead here is somewhat higher because block_free() |
| * doesn't inherently need to traverse all the larger |
| * sublevels. |
| */ |
| lsizes[0] = _ALIGN4(p->max_sz); |
| for (i = 1; i <= level; i++) { |
| lsizes[i] = _ALIGN4(lsizes[i-1] / 4); |
| } |
| |
| block_free(p, level, lsizes, block); |
| } |
| |
| /* |
| * Functions specific to user-mode blocks |
| */ |
| |
| void *sys_mem_pool_alloc(struct sys_mem_pool *p, size_t size) |
| { |
| struct sys_mem_pool_block *blk; |
| int level, block; |
| char *ret; |
| |
| k_mutex_lock(p->mutex, K_FOREVER); |
| |
| size += sizeof(struct sys_mem_pool_block); |
| if (_sys_mem_pool_block_alloc(&p->base, size, &level, &block, |
| (void **)&ret)) { |
| ret = NULL; |
| goto out; |
| } |
| |
| blk = (struct sys_mem_pool_block *)ret; |
| blk->level = level; |
| blk->block = block; |
| blk->pool = p; |
| ret += sizeof(*blk); |
| out: |
| k_mutex_unlock(p->mutex); |
| return ret; |
| } |
| |
| void sys_mem_pool_free(void *ptr) |
| { |
| struct sys_mem_pool_block *blk; |
| struct sys_mem_pool *p; |
| |
| if (!ptr) { |
| return; |
| } |
| |
| blk = (struct sys_mem_pool_block *)((char *)ptr - sizeof(*blk)); |
| p = blk->pool; |
| |
| k_mutex_lock(p->mutex, K_FOREVER); |
| _sys_mem_pool_block_free(&p->base, blk->level, blk->block); |
| k_mutex_unlock(p->mutex); |
| } |
| |