blob: 1816952e3bfc8023ed05026fc83cf9172ecb7d58 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <string.h>
#include <misc/__assert.h>
#include <misc/mempool_base.h>
#include <misc/mempool.h>
static bool level_empty(struct sys_mem_pool_base *p, int l)
{
return sys_dlist_is_empty(&p->levels[l].free_list);
}
static void *block_ptr(struct sys_mem_pool_base *p, size_t lsz, int block)
{
return p->buf + lsz * block;
}
static int block_num(struct sys_mem_pool_base *p, void *block, int sz)
{
return (block - p->buf) / sz;
}
/* Places a 32 bit output pointer in word, and an integer bit index
* within that word as the return value
*/
static int get_bit_ptr(struct sys_mem_pool_base *p, int level, int bn,
u32_t **word)
{
u32_t *bitarray = level <= p->max_inline_level ?
&p->levels[level].bits : p->levels[level].bits_p;
*word = &bitarray[bn / 32];
return bn & 0x1f;
}
static void set_free_bit(struct sys_mem_pool_base *p, int level, int bn)
{
u32_t *word;
int bit = get_bit_ptr(p, level, bn, &word);
*word |= (1<<bit);
}
static void clear_free_bit(struct sys_mem_pool_base *p, int level, int bn)
{
u32_t *word;
int bit = get_bit_ptr(p, level, bn, &word);
*word &= ~(1<<bit);
}
/* Returns all four of the free bits for the specified blocks
* "partners" in the bottom 4 bits of the return value
*/
static int partner_bits(struct sys_mem_pool_base *p, int level, int bn)
{
u32_t *word;
int bit = get_bit_ptr(p, level, bn, &word);
return (*word >> (4*(bit / 4))) & 0xf;
}
static size_t buf_size(struct sys_mem_pool_base *p)
{
return p->n_max * p->max_sz;
}
static bool block_fits(struct sys_mem_pool_base *p, void *block, size_t bsz)
{
return (block + bsz - 1 - p->buf) < buf_size(p);
}
void _sys_mem_pool_base_init(struct sys_mem_pool_base *p)
{
int i;
size_t buflen = p->n_max * p->max_sz, sz = p->max_sz;
u32_t *bits = p->buf + buflen;
for (i = 0; i < p->n_levels; i++) {
int nblocks = buflen / sz;
sys_dlist_init(&p->levels[i].free_list);
if (nblocks < 32) {
p->max_inline_level = i;
} else {
p->levels[i].bits_p = bits;
bits += (nblocks + 31)/32;
}
sz = _ALIGN4(sz / 4);
}
for (i = 0; i < p->n_max; i++) {
void *block = block_ptr(p, p->max_sz, i);
sys_dlist_append(&p->levels[0].free_list, block);
set_free_bit(p, 0, i);
}
}
/* A note on synchronization:
*
* For k_mem_pools which are interrupt safe, all manipulation of the actual
* pool data happens in one of alloc_block()/free_block() or break_block().
* All of these transition between a state where the caller "holds" a block
* pointer that is marked used in the store and one where she doesn't (or else
* they will fail, e.g. if there isn't a free block). So that is the basic
* operation that needs synchronization, which we can do piecewise as needed in
* small one-block chunks to preserve latency. At most (in free_block) a
* single locked operation consists of four bit sets and dlist removals. If the
* overall allocation operation fails, we just free the block we have (putting
* a block back into the list cannot fail) and return failure.
*
* For user mode compatible sys_mem_pool pools, a semaphore is used at the API
* level since using that does not introduce latency issues like locking
* interrupts does.
*/
static inline int pool_irq_lock(struct sys_mem_pool_base *p)
{
if (p->flags & SYS_MEM_POOL_KERNEL) {
return irq_lock();
} else {
return 0;
}
}
static inline void pool_irq_unlock(struct sys_mem_pool_base *p, int key)
{
if (p->flags & SYS_MEM_POOL_KERNEL) {
irq_unlock(key);
}
}
static void *block_alloc(struct sys_mem_pool_base *p, int l, size_t lsz)
{
sys_dnode_t *block;
int key = pool_irq_lock(p);
block = sys_dlist_get(&p->levels[l].free_list);
if (block) {
clear_free_bit(p, l, block_num(p, block, lsz));
}
pool_irq_unlock(p, key);
return block;
}
static void block_free(struct sys_mem_pool_base *p, int level,
size_t *lsizes, int bn)
{
int i, key, lsz = lsizes[level];
void *block = block_ptr(p, lsz, bn);
key = pool_irq_lock(p);
set_free_bit(p, level, bn);
if (level && partner_bits(p, level, bn) == 0xf) {
for (i = 0; i < 4; i++) {
int b = (bn & ~3) + i;
clear_free_bit(p, level, b);
if (b != bn &&
block_fits(p, block_ptr(p, lsz, b), lsz)) {
sys_dlist_remove(block_ptr(p, lsz, b));
}
}
pool_irq_unlock(p, key);
/* tail recursion! */
block_free(p, level-1, lsizes, bn / 4);
return;
}
if (block_fits(p, block, lsz)) {
sys_dlist_append(&p->levels[level].free_list, block);
}
pool_irq_unlock(p, key);
}
/* Takes a block of a given level, splits it into four blocks of the
* next smaller level, puts three into the free list as in
* block_free() but without the need to check adjacent bits or
* recombine, and returns the remaining smaller block.
*/
static void *block_break(struct sys_mem_pool_base *p, void *block, int l,
size_t *lsizes)
{
int i, bn, key;
key = pool_irq_lock(p);
bn = block_num(p, block, lsizes[l]);
for (i = 1; i < 4; i++) {
int lbn = 4*bn + i;
int lsz = lsizes[l + 1];
void *block2 = (lsz * i) + (char *)block;
set_free_bit(p, l + 1, lbn);
if (block_fits(p, block2, lsz)) {
sys_dlist_append(&p->levels[l + 1].free_list, block2);
}
}
pool_irq_unlock(p, key);
return block;
}
int _sys_mem_pool_block_alloc(struct sys_mem_pool_base *p, size_t size,
u32_t *level_p, u32_t *block_p, void **data_p)
{
int i, from_l;
int alloc_l = -1, free_l = -1;
void *data;
size_t lsizes[p->n_levels];
/* Walk down through levels, finding the one from which we
* want to allocate and the smallest one with a free entry
* from which we can split an allocation if needed. Along the
* way, we populate an array of sizes for each level so we
* don't need to waste RAM storing it.
*/
lsizes[0] = _ALIGN4(p->max_sz);
for (i = 0; i < p->n_levels; i++) {
if (i > 0) {
lsizes[i] = _ALIGN4(lsizes[i-1] / 4);
}
if (lsizes[i] < size) {
break;
}
alloc_l = i;
if (!level_empty(p, i)) {
free_l = i;
}
}
if (alloc_l < 0 || free_l < 0) {
*data_p = NULL;
return -ENOMEM;
}
/* Iteratively break the smallest enclosing block... */
data = block_alloc(p, free_l, lsizes[free_l]);
if (!data) {
/* This can happen if we race with another allocator.
* It's OK, just back out and the timeout code will
* retry. Note mild overloading: -EAGAIN isn't for
* propagation to the caller, it's to tell the loop in
* k_mem_pool_alloc() to try again synchronously. But
* it means exactly what it says.
*
* This doesn't happen for user mode memory pools as this
* entire function runs with a semaphore held.
*/
return -EAGAIN;
}
for (from_l = free_l; from_l < alloc_l; from_l++) {
data = block_break(p, data, from_l, lsizes);
}
*level_p = alloc_l;
*block_p = block_num(p, data, lsizes[alloc_l]);
*data_p = data;
return 0;
}
void _sys_mem_pool_block_free(struct sys_mem_pool_base *p, u32_t level,
u32_t block)
{
size_t lsizes[p->n_levels];
int i;
/* As in _sys_mem_pool_block_alloc(), we build a table of level sizes
* to avoid having to store it in precious RAM bytes.
* Overhead here is somewhat higher because block_free()
* doesn't inherently need to traverse all the larger
* sublevels.
*/
lsizes[0] = _ALIGN4(p->max_sz);
for (i = 1; i <= level; i++) {
lsizes[i] = _ALIGN4(lsizes[i-1] / 4);
}
block_free(p, level, lsizes, block);
}
/*
* Functions specific to user-mode blocks
*/
void *sys_mem_pool_alloc(struct sys_mem_pool *p, size_t size)
{
struct sys_mem_pool_block *blk;
int level, block;
char *ret;
k_mutex_lock(p->mutex, K_FOREVER);
size += sizeof(struct sys_mem_pool_block);
if (_sys_mem_pool_block_alloc(&p->base, size, &level, &block,
(void **)&ret)) {
ret = NULL;
goto out;
}
blk = (struct sys_mem_pool_block *)ret;
blk->level = level;
blk->block = block;
blk->pool = p;
ret += sizeof(*blk);
out:
k_mutex_unlock(p->mutex);
return ret;
}
void sys_mem_pool_free(void *ptr)
{
struct sys_mem_pool_block *blk;
struct sys_mem_pool *p;
if (!ptr) {
return;
}
blk = (struct sys_mem_pool_block *)((char *)ptr - sizeof(*blk));
p = blk->pool;
k_mutex_lock(p->mutex, K_FOREVER);
_sys_mem_pool_block_free(&p->base, blk->level, blk->block);
k_mutex_unlock(p->mutex);
}