|  | /* | 
|  | * Copyright 2022-2024 NXP | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | #define DT_DRV_COMPAT nxp_s32_spi | 
|  |  | 
|  | #include <zephyr/drivers/clock_control.h> | 
|  | #include <zephyr/drivers/pinctrl.h> | 
|  | #include "spi_nxp_s32.h" | 
|  |  | 
|  | static bool spi_nxp_s32_last_packet(struct spi_nxp_s32_data *data) | 
|  | { | 
|  | struct spi_context *ctx = &data->ctx; | 
|  |  | 
|  | if (ctx->tx_count <= 1U && ctx->rx_count <= 1U) { | 
|  | if (!spi_context_tx_on(ctx) && (data->transfer_len == ctx->rx_len)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!spi_context_rx_on(ctx) && (data->transfer_len == ctx->tx_len)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((ctx->rx_len == ctx->tx_len) && (data->transfer_len == ctx->tx_len)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool spi_nxp_s32_transfer_done(struct spi_context *ctx) | 
|  | { | 
|  | return !spi_context_tx_on(ctx) && !spi_context_rx_on(ctx); | 
|  | } | 
|  |  | 
|  | static int spi_nxp_s32_transfer_next_packet(const struct device *dev) | 
|  | { | 
|  | const struct spi_nxp_s32_config *config = dev->config; | 
|  | struct spi_nxp_s32_data *data = dev->data; | 
|  |  | 
|  | Spi_Ip_StatusType status; | 
|  | Spi_Ip_CallbackType data_cb; | 
|  | Spi_Ip_TransferAdjustmentType param; | 
|  |  | 
|  | #ifdef CONFIG_NXP_S32_SPI_INTERRUPT | 
|  | data_cb = config->cb; | 
|  | #else | 
|  | data_cb = NULL; | 
|  | #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ | 
|  |  | 
|  | data->transfer_len = spi_context_max_continuous_chunk(&data->ctx); | 
|  | data->transfer_len = MIN(data->transfer_len, | 
|  | SPI_NXP_S32_MAX_BYTES_PER_PACKAGE(data->bytes_per_frame)); | 
|  |  | 
|  | param.KeepCs = !spi_nxp_s32_last_packet(data); | 
|  | param.DeviceParams = NULL; | 
|  | Spi_Ip_UpdateTransferParam(&data->transfer_cfg, ¶m); | 
|  |  | 
|  | status = Spi_Ip_AsyncTransmit(&data->transfer_cfg, (uint8_t *)data->ctx.tx_buf, | 
|  | data->ctx.rx_buf, data->transfer_len, data_cb); | 
|  |  | 
|  | if (status) { | 
|  | LOG_ERR("Transfer could not start"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NXP_S32_SPI_INTERRUPT | 
|  | return 0; | 
|  | #else | 
|  |  | 
|  | while (Spi_Ip_GetStatus(config->spi_hw_cfg->Instance) == SPI_IP_BUSY) { | 
|  | Spi_Ip_ManageBuffers(config->spi_hw_cfg->Instance); | 
|  | } | 
|  |  | 
|  | if (Spi_Ip_GetStatus(config->spi_hw_cfg->Instance) == SPI_IP_FAULT) { | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The function to get Scaler and Prescaler for corresponding registers | 
|  | * to configure the baudrate for the transmission. The real frequency is | 
|  | * computated to ensure it will always equal or the nearest approximation | 
|  | * lower to the expected one. | 
|  | */ | 
|  | static void spi_nxp_s32_getbestfreq(uint32_t clock_frequency, | 
|  | uint32_t requested_baud, | 
|  | struct spi_nxp_s32_baudrate_param *best_baud) | 
|  | { | 
|  | uint8_t scaler; | 
|  | uint8_t prescaler; | 
|  |  | 
|  | uint32_t low, high; | 
|  | uint32_t curr_freq; | 
|  |  | 
|  | uint32_t best_freq = 0U; | 
|  |  | 
|  | static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {2U, 3U, 5U, 7U}; | 
|  |  | 
|  | static const uint16_t scaller_arr[SPI_NXP_S32_NUM_SCALER] = { | 
|  | 2U, 4U, 6U, 8U, 16U, 32U, 64U, 128U, 256U, 512U, 1024U, 2048U, | 
|  | 4096U, 8192U, 16384U, 32768U | 
|  | }; | 
|  |  | 
|  | for (prescaler = 0U; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) { | 
|  | low = 0U; | 
|  | high = SPI_NXP_S32_NUM_SCALER - 1U; | 
|  |  | 
|  | /* Implement golden section search algorithm */ | 
|  | do { | 
|  | scaler = (low + high) / 2U; | 
|  |  | 
|  | curr_freq = clock_frequency * 1U / | 
|  | (prescaler_arr[prescaler] * scaller_arr[scaler]); | 
|  |  | 
|  | /* | 
|  | * If the scaler make current frequency higher than the | 
|  | * expected one, skip the next step | 
|  | */ | 
|  | if (curr_freq > requested_baud) { | 
|  | low = scaler; | 
|  | continue; | 
|  | } else { | 
|  | high = scaler; | 
|  | } | 
|  |  | 
|  | if ((requested_baud - best_freq) > (requested_baud - curr_freq)) { | 
|  | best_freq = curr_freq; | 
|  | best_baud->prescaler = prescaler; | 
|  | best_baud->scaler    = scaler; | 
|  | } | 
|  |  | 
|  | if (best_freq == requested_baud) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | } while ((high - low) > 1U); | 
|  |  | 
|  | if ((high - low) <= 1U) { | 
|  |  | 
|  | if (high == scaler) { | 
|  | /* use low value */ | 
|  | scaler = low; | 
|  | } else { | 
|  | scaler = high; | 
|  | } | 
|  |  | 
|  | curr_freq = clock_frequency * 1U / | 
|  | (prescaler_arr[prescaler] * scaller_arr[scaler]); | 
|  |  | 
|  | if (curr_freq <= requested_baud) { | 
|  |  | 
|  | if ((requested_baud - best_freq) > (requested_baud - curr_freq)) { | 
|  | best_freq = curr_freq; | 
|  | best_baud->prescaler = prescaler; | 
|  | best_baud->scaler    = scaler; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (best_freq == requested_baud) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | best_baud->frequency = best_freq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The function to get Scaler and Prescaler for corresponding registers | 
|  | * to configure the delay for the transmission. The real delay is computated | 
|  | * to ensure it will always equal or the nearest approximation higher to | 
|  | * the expected one. In the worst case, use the delay as much as possible. | 
|  | */ | 
|  | static void spi_nxp_s32_getbestdelay(uint32_t clock_frequency, uint32_t requested_delay, | 
|  | uint8_t *best_scaler, uint8_t *best_prescaler) | 
|  | { | 
|  | uint32_t current_delay; | 
|  | uint8_t scaler, prescaler; | 
|  | uint32_t low, high; | 
|  |  | 
|  | uint32_t best_delay = 0xFFFFFFFFU; | 
|  |  | 
|  | /* The scaler array is a power of two, so do not need to be defined */ | 
|  | static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {1U, 3U, 5U, 7U}; | 
|  |  | 
|  | clock_frequency = clock_frequency / MHZ(1); | 
|  |  | 
|  | for (prescaler = 0; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) { | 
|  | low = 0U; | 
|  | high = SPI_NXP_S32_NUM_SCALER - 1U; | 
|  |  | 
|  | do { | 
|  | scaler = (low + high) / 2U; | 
|  |  | 
|  | current_delay = NSEC_PER_USEC * prescaler_arr[prescaler] | 
|  | * (1U << (scaler + 1)) / clock_frequency; | 
|  |  | 
|  | /* | 
|  | * If the scaler make current delay smaller than | 
|  | * the expected one, skip the next step | 
|  | */ | 
|  | if (current_delay < requested_delay) { | 
|  | low = scaler; | 
|  | continue; | 
|  | } else { | 
|  | high = scaler; | 
|  | } | 
|  |  | 
|  | if ((best_delay - requested_delay) > (current_delay - requested_delay)) { | 
|  | best_delay = current_delay; | 
|  | *best_prescaler = prescaler; | 
|  | *best_scaler = scaler; | 
|  | } | 
|  |  | 
|  | if (best_delay == requested_delay) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | } while ((high - low) > 1U); | 
|  |  | 
|  | if ((high - low) <= 1U) { | 
|  |  | 
|  | if (high == scaler) { | 
|  | /* use low value */ | 
|  | scaler = low; | 
|  | } else { | 
|  | scaler = high; | 
|  | } | 
|  |  | 
|  | current_delay = NSEC_PER_USEC * prescaler_arr[prescaler] | 
|  | * (1U << (scaler + 1)) / clock_frequency; | 
|  |  | 
|  | if (current_delay >= requested_delay) { | 
|  | if ((best_delay - requested_delay) > | 
|  | (current_delay - requested_delay)) { | 
|  |  | 
|  | best_delay = current_delay; | 
|  | *best_prescaler = prescaler; | 
|  | *best_scaler = scaler; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (best_delay == requested_delay) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (best_delay == 0xFFFFFFFFU) { | 
|  | /* Use the delay as much as possible */ | 
|  | *best_prescaler = SPI_NXP_S32_NUM_PRESCALER - 1U; | 
|  | *best_scaler = SPI_NXP_S32_NUM_SCALER - 1U; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int spi_nxp_s32_configure(const struct device *dev, | 
|  | const struct spi_config *spi_cfg) | 
|  | { | 
|  | const struct spi_nxp_s32_config *config = dev->config; | 
|  | struct spi_nxp_s32_data *data = dev->data; | 
|  |  | 
|  | bool clk_phase, clk_polarity; | 
|  | bool lsb, hold_cs; | 
|  | bool slave_mode, cs_active_high; | 
|  |  | 
|  | uint8_t frame_size; | 
|  |  | 
|  | struct spi_nxp_s32_baudrate_param best_baud = {0}; | 
|  | uint32_t clock_rate; | 
|  | int err; | 
|  |  | 
|  | if (spi_context_configured(&data->ctx, spi_cfg)) { | 
|  | /* This configuration is already in use */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate); | 
|  | if (err) { | 
|  | LOG_ERR("Failed to get clock frequency"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | clk_phase	= !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA); | 
|  | clk_polarity	= !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL); | 
|  |  | 
|  | hold_cs		= !!(spi_cfg->operation & SPI_HOLD_ON_CS); | 
|  | lsb		= !!(spi_cfg->operation & SPI_TRANSFER_LSB); | 
|  |  | 
|  | slave_mode	= !!(SPI_OP_MODE_GET(spi_cfg->operation)); | 
|  | frame_size	= SPI_WORD_SIZE_GET(spi_cfg->operation); | 
|  | cs_active_high	= !!(spi_cfg->operation & SPI_CS_ACTIVE_HIGH); | 
|  |  | 
|  | if (slave_mode == (!!(config->spi_hw_cfg->Mcr & SPI_MCR_MSTR_MASK))) { | 
|  | LOG_ERR("SPI mode (master/slave) must be same as configured in DT"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (slave_mode && !IS_ENABLED(CONFIG_SPI_SLAVE)) { | 
|  | LOG_ERR("Kconfig for enable SPI in slave mode is not enabled"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (slave_mode && lsb) { | 
|  | LOG_ERR("SPI does not support to shifting out with LSB in slave mode"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (spi_cfg->slave >= config->num_cs) { | 
|  | LOG_ERR("Slave %d excess the allowed maximum value (%d)", | 
|  | spi_cfg->slave, config->num_cs - 1); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (frame_size > 32U) { | 
|  | LOG_ERR("Unsupported frame size %d bits", frame_size); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if ((spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { | 
|  | LOG_ERR("Only single line mode is supported"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (spi_cfg->operation & SPI_MODE_LOOP) { | 
|  | LOG_ERR("Loopback mode is not supported"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (cs_active_high && !spi_cs_is_gpio(spi_cfg)) { | 
|  | LOG_ERR("For CS has active state is high, a GPIO pin must be used to" | 
|  | " control CS line instead"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (!slave_mode) { | 
|  |  | 
|  | if ((spi_cfg->frequency < SPI_NXP_S32_MIN_FREQ) || | 
|  | (spi_cfg->frequency > SPI_NXP_S32_MAX_FREQ)) { | 
|  |  | 
|  | LOG_ERR("The frequency is out of range"); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | spi_nxp_s32_getbestfreq(clock_rate, spi_cfg->frequency, &best_baud); | 
|  |  | 
|  | data->transfer_cfg.Ctar &= ~(SPI_CTAR_BR_MASK | SPI_CTAR_PBR_MASK); | 
|  | data->transfer_cfg.Ctar |= SPI_CTAR_BR(best_baud.scaler) | | 
|  | SPI_CTAR_PBR(best_baud.prescaler); | 
|  |  | 
|  | data->transfer_cfg.PushrCmd &= ~((SPI_PUSHR_CONT_MASK | SPI_PUSHR_PCS_MASK) >> 16U); | 
|  |  | 
|  | if (!spi_cs_is_gpio(spi_cfg)) { | 
|  | /* Use inner CS signal from SPI module */ | 
|  | data->transfer_cfg.PushrCmd |= hold_cs << 15U; | 
|  | data->transfer_cfg.PushrCmd |= (1U << spi_cfg->slave); | 
|  | } | 
|  | } | 
|  |  | 
|  | data->transfer_cfg.Ctar &= ~(SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK); | 
|  | data->transfer_cfg.Ctar |= SPI_CTAR_CPHA(clk_phase) | SPI_CTAR_CPOL(clk_polarity); | 
|  |  | 
|  | Spi_Ip_UpdateFrameSize(&data->transfer_cfg, frame_size); | 
|  | Spi_Ip_UpdateLsb(&data->transfer_cfg, lsb); | 
|  |  | 
|  | data->ctx.config	= spi_cfg; | 
|  | data->bytes_per_frame	= SPI_NXP_S32_BYTE_PER_FRAME(frame_size); | 
|  |  | 
|  | if (slave_mode) { | 
|  | LOG_DBG("SPI configuration: cpol = %u, cpha = %u," | 
|  | " lsb = %u, frame_size = %u, mode: slave", | 
|  | clk_polarity, clk_phase, lsb, frame_size); | 
|  | } else { | 
|  | LOG_DBG("SPI configuration: frequency = %uHz, cpol = %u," | 
|  | " cpha = %u, lsb = %u, hold_cs = %u, frame_size = %u," | 
|  | " mode: master, CS = %u\n", | 
|  | best_baud.frequency, clk_polarity, clk_phase, | 
|  | lsb, hold_cs, frame_size, spi_cfg->slave); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int transceive(const struct device *dev, | 
|  | const struct spi_config *spi_cfg, | 
|  | const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs, | 
|  | bool asynchronous, | 
|  | spi_callback_t cb, | 
|  | void *userdata) | 
|  | { | 
|  | struct spi_nxp_s32_data *data = dev->data; | 
|  | struct spi_context *context = &data->ctx; | 
|  | int ret; | 
|  |  | 
|  | if (!tx_bufs && !rx_bufs) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NXP_S32_SPI_INTERRUPT | 
|  | if (asynchronous) { | 
|  | return -ENOTSUP; | 
|  | } | 
|  | #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ | 
|  |  | 
|  | spi_context_lock(context, asynchronous, cb, userdata, spi_cfg); | 
|  |  | 
|  | ret = spi_nxp_s32_configure(dev, spi_cfg); | 
|  | if (ret) { | 
|  | LOG_ERR("An error occurred in the SPI configuration"); | 
|  | spi_context_release(context, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | spi_context_buffers_setup(context, tx_bufs, rx_bufs, 1U); | 
|  |  | 
|  | if (spi_nxp_s32_transfer_done(context)) { | 
|  | spi_context_release(context, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spi_context_cs_control(context, true); | 
|  |  | 
|  | #ifdef CONFIG_NXP_S32_SPI_INTERRUPT | 
|  | ret = spi_nxp_s32_transfer_next_packet(dev); | 
|  |  | 
|  | if (!ret) { | 
|  | ret = spi_context_wait_for_completion(context); | 
|  | } else { | 
|  | spi_context_cs_control(context, false); | 
|  | } | 
|  | #else | 
|  | do { | 
|  | ret = spi_nxp_s32_transfer_next_packet(dev); | 
|  |  | 
|  | if (!ret) { | 
|  | spi_context_update_tx(context, 1U, data->transfer_len); | 
|  | spi_context_update_rx(context, 1U, data->transfer_len); | 
|  | } | 
|  | } while (!ret && !spi_nxp_s32_transfer_done(context)); | 
|  |  | 
|  | spi_context_cs_control(context, false); | 
|  |  | 
|  | #ifdef CONFIG_SPI_SLAVE | 
|  | if (spi_context_is_slave(context) && !ret) { | 
|  | ret = data->ctx.recv_frames; | 
|  | } | 
|  | #endif /* CONFIG_SPI_SLAVE */ | 
|  | #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ | 
|  |  | 
|  | spi_context_release(context, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spi_nxp_s32_transceive(const struct device *dev, | 
|  | const struct spi_config *spi_cfg, | 
|  | const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs) | 
|  | { | 
|  | return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); | 
|  | } | 
|  | #ifdef CONFIG_SPI_ASYNC | 
|  | static int spi_nxp_s32_transceive_async(const struct device *dev, | 
|  | const struct spi_config *spi_cfg, | 
|  | const struct spi_buf_set *tx_bufs, | 
|  | const struct spi_buf_set *rx_bufs, | 
|  | spi_callback_t callback, | 
|  | void *userdata) | 
|  | { | 
|  | return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, callback, userdata); | 
|  | } | 
|  | #endif /* CONFIG_SPI_ASYNC */ | 
|  |  | 
|  | static int spi_nxp_s32_release(const struct device *dev, | 
|  | const struct spi_config *spi_cfg) | 
|  | { | 
|  | struct spi_nxp_s32_data *data = dev->data; | 
|  |  | 
|  | (void)spi_cfg; | 
|  |  | 
|  | spi_context_unlock_unconditionally(&data->ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_nxp_s32_init(const struct device *dev) | 
|  | { | 
|  | const struct spi_nxp_s32_config *config = dev->config; | 
|  | struct spi_nxp_s32_data *data = dev->data; | 
|  | uint32_t clock_rate; | 
|  | uint8_t scaler, prescaler; | 
|  |  | 
|  | uint32_t ctar = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!device_is_ready(config->clock_dev)) { | 
|  | LOG_ERR("Clock control device not ready"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ret = clock_control_on(config->clock_dev, config->clock_subsys); | 
|  | if (ret) { | 
|  | LOG_ERR("Failed to enable clock"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate); | 
|  | if (ret) { | 
|  | LOG_ERR("Failed to get clock frequency"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (Spi_Ip_Init(config->spi_hw_cfg)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NXP_S32_SPI_INTERRUPT | 
|  | if (Spi_Ip_UpdateTransferMode(config->spi_hw_cfg->Instance, SPI_IP_INTERRUPT)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | config->irq_config_func(dev); | 
|  | #endif /* CONFIG_NXP_S32_SPI_INTERRUPT */ | 
|  |  | 
|  | /* | 
|  | * Update the delay timings configuration that are | 
|  | * applied for all inner CS signals of SPI module. | 
|  | */ | 
|  | spi_nxp_s32_getbestdelay(clock_rate, config->sck_cs_delay, &scaler, &prescaler); | 
|  |  | 
|  | ctar |= SPI_CTAR_ASC(scaler) | SPI_CTAR_PASC(prescaler); | 
|  |  | 
|  | spi_nxp_s32_getbestdelay(clock_rate, config->cs_sck_delay, &scaler, &prescaler); | 
|  |  | 
|  | ctar |= SPI_CTAR_CSSCK(scaler) | SPI_CTAR_PCSSCK(prescaler); | 
|  |  | 
|  | spi_nxp_s32_getbestdelay(clock_rate, config->cs_cs_delay, &scaler, &prescaler); | 
|  |  | 
|  | ctar |= SPI_CTAR_DT(scaler) | SPI_CTAR_PDT(prescaler); | 
|  |  | 
|  | data->transfer_cfg.Ctar |= ctar; | 
|  | data->transfer_cfg.DeviceParams = &data->transfer_params; | 
|  |  | 
|  | ret = spi_context_cs_configure_all(&data->ctx); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | spi_context_unlock_unconditionally(&data->ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_NXP_S32_SPI_INTERRUPT | 
|  | void spi_nxp_s32_isr(const struct device *dev) | 
|  | { | 
|  | const struct spi_nxp_s32_config *config = dev->config; | 
|  |  | 
|  | Spi_Ip_IrqHandler(config->spi_hw_cfg->Instance); | 
|  | } | 
|  |  | 
|  | static void spi_nxp_s32_transfer_callback(const struct device *dev, Spi_Ip_EventType event) | 
|  | { | 
|  | struct spi_nxp_s32_data *data = dev->data; | 
|  | int ret = 0; | 
|  |  | 
|  | if (event == SPI_IP_EVENT_END_TRANSFER) { | 
|  | spi_context_update_tx(&data->ctx, 1U, data->transfer_len); | 
|  | spi_context_update_rx(&data->ctx, 1U, data->transfer_len); | 
|  |  | 
|  | if (spi_nxp_s32_transfer_done(&data->ctx)) { | 
|  | spi_context_complete(&data->ctx, dev, 0); | 
|  | spi_context_cs_control(&data->ctx, false); | 
|  | } else { | 
|  | ret = spi_nxp_s32_transfer_next_packet(dev); | 
|  | } | 
|  | } else { | 
|  | LOG_ERR("Failing in transfer_callback"); | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | spi_context_complete(&data->ctx, dev, ret); | 
|  | spi_context_cs_control(&data->ctx, false); | 
|  | } | 
|  | } | 
|  | #endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/ | 
|  |  | 
|  | static DEVICE_API(spi, spi_nxp_s32_driver_api) = { | 
|  | .transceive = spi_nxp_s32_transceive, | 
|  | #ifdef CONFIG_SPI_ASYNC | 
|  | .transceive_async = spi_nxp_s32_transceive_async, | 
|  | #endif | 
|  | #ifdef CONFIG_SPI_RTIO | 
|  | .iodev_submit = spi_rtio_iodev_default_submit, | 
|  | #endif | 
|  | .release = spi_nxp_s32_release, | 
|  | }; | 
|  |  | 
|  | #define SPI_NXP_S32_HW_INSTANCE_CHECK(i, n) \ | 
|  | ((DT_INST_REG_ADDR(n) == IP_SPI_##i##_BASE) ? i : 0) | 
|  |  | 
|  | #define SPI_NXP_S32_HW_INSTANCE(n) \ | 
|  | LISTIFY(__DEBRACKET SPI_INSTANCE_COUNT, SPI_NXP_S32_HW_INSTANCE_CHECK, (|), n) | 
|  |  | 
|  | #define SPI_NXP_S32_NUM_CS(n)		DT_INST_PROP(n, num_cs) | 
|  | #define SPI_NXP_S32_IS_MASTER(n)	!DT_INST_PROP(n, slave) | 
|  |  | 
|  | #ifdef CONFIG_SPI_SLAVE | 
|  | #define SPI_NXP_S32_SET_SLAVE(n)	.SlaveMode = DT_INST_PROP(n, slave), | 
|  | #else | 
|  | #define SPI_NXP_S32_SET_SLAVE(n) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NXP_S32_SPI_INTERRUPT | 
|  |  | 
|  | #define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n)						\ | 
|  | .irq_config_func = spi_nxp_s32_config_func_##n, | 
|  |  | 
|  | #define SPI_NXP_S32_INTERRUPT_DEFINE(n)							\ | 
|  | static void spi_nxp_s32_config_func_##n(const struct device *dev)		\ | 
|  | {										\ | 
|  | IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority),			\ | 
|  | spi_nxp_s32_isr, DEVICE_DT_INST_GET(n),		\ | 
|  | DT_INST_IRQ(n, flags));						\ | 
|  | irq_enable(DT_INST_IRQN(n));						\ | 
|  | } | 
|  |  | 
|  | #define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n)						\ | 
|  | .cb = spi_nxp_s32_##n##_callback, | 
|  |  | 
|  | #define SPI_NXP_S32_CALLBACK_DEFINE(n)							\ | 
|  | static void spi_nxp_s32_##n##_callback(uint8 instance, Spi_Ip_EventType event)	\ | 
|  | {										\ | 
|  | ARG_UNUSED(instance);							\ | 
|  | const struct device *dev = DEVICE_DT_INST_GET(n);			\ | 
|  | \ | 
|  | spi_nxp_s32_transfer_callback(dev, event);				\ | 
|  | } | 
|  | #else | 
|  | #define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) | 
|  | #define SPI_NXP_S32_INTERRUPT_DEFINE(n) | 
|  | #define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) | 
|  | #define SPI_NXP_S32_CALLBACK_DEFINE(n) | 
|  | #endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/ | 
|  |  | 
|  | /* | 
|  | * Declare the default configuration for SPI driver, no DMA | 
|  | * support, all inner module Chip Selects are active low. | 
|  | */ | 
|  | #define SPI_NXP_S32_INSTANCE_CONFIG(n)							\ | 
|  | static const Spi_Ip_ConfigType spi_nxp_s32_default_config_##n = {		\ | 
|  | .Instance = SPI_NXP_S32_HW_INSTANCE(n),					\ | 
|  | .Mcr = (SPI_MCR_MSTR(SPI_NXP_S32_IS_MASTER(n)) |			\ | 
|  | SPI_MCR_CONT_SCKE(0U) |	SPI_MCR_FRZ(0U) |			\ | 
|  | SPI_MCR_MTFE(0U) | SPI_MCR_SMPL_PT(0U) |			\ | 
|  | SPI_MCR_PCSIS(BIT_MASK(SPI_NXP_S32_NUM_CS(n))) |		\ | 
|  | SPI_MCR_MDIS(0U) | SPI_MCR_XSPI(1U) | SPI_MCR_HALT(1U)),	\ | 
|  | .TransferMode = SPI_IP_POLLING,						\ | 
|  | .StateIndex   = n,							\ | 
|  | SPI_NXP_S32_SET_SLAVE(n)						\ | 
|  | } | 
|  |  | 
|  | #define SPI_NXP_S32_TRANSFER_CONFIG(n)							\ | 
|  | .transfer_cfg = {								\ | 
|  | .Instance = SPI_NXP_S32_HW_INSTANCE(n),					\ | 
|  | .Ctare = SPI_CTARE_FMSZE(0U) | SPI_CTARE_DTCP(1U),			\ | 
|  | } | 
|  |  | 
|  | #define SPI_NXP_S32_DEVICE(n)								\ | 
|  | PINCTRL_DT_INST_DEFINE(n);							\ | 
|  | SPI_NXP_S32_CALLBACK_DEFINE(n)							\ | 
|  | SPI_NXP_S32_INTERRUPT_DEFINE(n)							\ | 
|  | SPI_NXP_S32_INSTANCE_CONFIG(n);							\ | 
|  | static const struct spi_nxp_s32_config spi_nxp_s32_config_##n = {		\ | 
|  | .num_cs	      = SPI_NXP_S32_NUM_CS(n),					\ | 
|  | .clock_dev    = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)),			\ | 
|  | .clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),	\ | 
|  | .sck_cs_delay = DT_INST_PROP_OR(n, spi_sck_cs_delay, 0U),		\ | 
|  | .cs_sck_delay = DT_INST_PROP_OR(n, spi_cs_sck_delay, 0U),		\ | 
|  | .cs_cs_delay  = DT_INST_PROP_OR(n, spi_cs_cs_delay, 0U),		\ | 
|  | .spi_hw_cfg = (Spi_Ip_ConfigType *)&spi_nxp_s32_default_config_##n,	\ | 
|  | .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),				\ | 
|  | SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n)					\ | 
|  | SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n)					\ | 
|  | };										\ | 
|  | static struct spi_nxp_s32_data spi_nxp_s32_data_##n = {				\ | 
|  | SPI_NXP_S32_TRANSFER_CONFIG(n),						\ | 
|  | SPI_CONTEXT_INIT_LOCK(spi_nxp_s32_data_##n, ctx),			\ | 
|  | SPI_CONTEXT_INIT_SYNC(spi_nxp_s32_data_##n, ctx),			\ | 
|  | SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx)			\ | 
|  | };										\ | 
|  | SPI_DEVICE_DT_INST_DEFINE(n,							\ | 
|  | spi_nxp_s32_init, NULL,						\ | 
|  | &spi_nxp_s32_data_##n, &spi_nxp_s32_config_##n,			\ | 
|  | POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,				\ | 
|  | &spi_nxp_s32_driver_api); | 
|  |  | 
|  | DT_INST_FOREACH_STATUS_OKAY(SPI_NXP_S32_DEVICE) |