blob: f0a5895394f2e4a7f043195963e57aca5bad736d [file] [log] [blame]
/*
* Copyright (c) 2025, Qingsong Gou <gouqs@hotmail.com>
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT sifli_sf32lb_gpadc
#include <zephyr/kernel.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/clock_control/sf32lb.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <register.h>
LOG_MODULE_REGISTER(adc_sf32lb, CONFIG_ADC_LOG_LEVEL);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#define ADC_CFG_REG1 offsetof(GPADC_TypeDef, ADC_CFG_REG1)
#define ADC_SLOT_REG offsetof(GPADC_TypeDef, ADC_SLOT0_REG)
#define ADC_RDATA offsetof(GPADC_TypeDef, ADC_RDATA0)
#define ADC_CTRL_REG offsetof(GPADC_TypeDef, ADC_CTRL_REG)
#define GPADC_IRQ offsetof(GPADC_TypeDef, GPADC_IRQ)
#define SYS_CFG_ANAU_CR offsetof(HPSYS_CFG_TypeDef, ANAU_CR)
#define ADC_MAX_CH (8U)
#define ADC_RDATAX(n) (ADC_RDATA + (((n) >> 1) * 4U))
#define ADC_SLOT_REGX(n) (ADC_SLOT_REG + (n) * 4U)
struct adc_sf32lb_data {
struct adc_context ctx;
const struct device *dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint32_t channels;
};
struct adc_sf32lb_config {
uintptr_t base;
uintptr_t cfg_base;
const struct pinctrl_dev_config *pcfg;
struct sf32lb_clock_dt_spec clock;
void (*irq_config_func)(void);
};
static void adc_sf32lb_isr(const struct device *dev)
{
const struct adc_sf32lb_config *config = dev->config;
struct adc_sf32lb_data *data = dev->data;
uint16_t channel;
uint32_t adc_data;
if (!sys_test_bit(config->base + GPADC_IRQ, GPADC_GPADC_IRQ_GPADC_IRSR_Pos)) {
return;
}
sys_set_bit(config->base + GPADC_IRQ, GPADC_GPADC_IRQ_GPADC_ICR_Pos);
while (data->channels) {
channel = find_lsb_set(data->channels) - 1;
adc_data = sys_read32(config->base + ADC_RDATAX(channel));
if (channel & 1) {
*data->buffer++ = FIELD_GET(GPADC_ADC_RDATA0_SLOT1_RDATA, adc_data);
} else {
*data->buffer++ = FIELD_GET(GPADC_ADC_RDATA0_SLOT0_RDATA, adc_data);
}
data->channels &= ~BIT(channel);
}
adc_context_on_sampling_done(&data->ctx, dev);
}
static int adc_sf32lb_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_sf32lb_config *config = dev->config;
uint8_t channel_id;
uint32_t adc_slot = 0;
channel_id = channel_cfg->channel_id;
if (channel_cfg->channel_id >= ADC_MAX_CH) {
LOG_ERR("Channel %d is not valid", channel_cfg->channel_id);
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Acquisition time is not supported");
return -ENOTSUP;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Gain is not supported");
return -ENOTSUP;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("External reference is not supported");
return -ENOTSUP;
}
if (channel_cfg->differential) {
adc_slot |= FIELD_PREP(GPADC_ADC_SLOT0_REG_PCHNL_SEL, channel_id);
adc_slot |= FIELD_PREP(GPADC_ADC_SLOT0_REG_NCHNL_SEL, channel_id);
} else {
adc_slot |= FIELD_PREP(GPADC_ADC_SLOT0_REG_PCHNL_SEL, channel_id);
}
adc_slot |= GPADC_ADC_SLOT0_REG_SLOT_EN;
sys_write32(adc_slot, config->base + ADC_SLOT_REGX(channel_id));
return 0;
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
{
struct adc_sf32lb_data *data =
CONTAINER_OF(ctx, struct adc_sf32lb_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int check_buffer_size(const struct adc_sequence *sequence,
uint8_t active_channels)
{
size_t needed_buffer_size;
needed_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
needed_buffer_size *= (1U + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static void adc_sf32lb_start_conversion(const struct device *dev)
{
const struct adc_sf32lb_config *const cfg = dev->config;
sys_set_bit(cfg->base + ADC_CTRL_REG, GPADC_ADC_CTRL_REG_ADC_START_Pos);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_sf32lb_data *data = CONTAINER_OF(ctx, struct adc_sf32lb_data, ctx);
adc_sf32lb_start_conversion(data->dev);
}
static int start_read(const struct device *dev, const struct adc_sequence *sequence)
{
struct adc_sf32lb_data *data = dev->data;
uint8_t num_active_channels;
int error;
data->channels = sequence->channels;
num_active_channels = sys_count_bits(&data->channels, sizeof(data->channels));
error = check_buffer_size(sequence, num_active_channels);
if (error < 0) {
return error;
}
data->buffer = sequence->buffer;
data->repeat_buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
return error;
}
static int adc_sf32lb_read(const struct device *dev, const struct adc_sequence *sequence)
{
struct adc_sf32lb_data *data = dev->data;
int error;
if (sequence->resolution != 12U) {
LOG_ERR("Resolution %d is not supported", sequence->resolution);
return -ENOTSUP;
}
if (sequence->oversampling) {
LOG_ERR("Oversampling is not supported");
return -ENOTSUP;
}
if (sequence->calibrate) {
LOG_ERR("Calibration is not supported");
return -ENOTSUP;
}
adc_context_lock(&data->ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static DEVICE_API(adc, adc_sf32lb_driver_api) = {
.channel_setup = adc_sf32lb_channel_setup,
.read = adc_sf32lb_read,
};
static int adc_sf32lb_init(const struct device *dev)
{
const struct adc_sf32lb_config *config = dev->config;
struct adc_sf32lb_data *data = dev->data;
int ret;
if (!sf32lb_clock_is_ready_dt(&config->clock)) {
return -ENODEV;
}
ret = sf32lb_clock_control_on_dt(&config->clock);
if (ret < 0) {
return ret;
}
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* enable bandgap*/
sys_set_bit(config->cfg_base + SYS_CFG_ANAU_CR, HPSYS_CFG_ANAU_CR_EN_BG_Pos);
sys_clear_bits(config->base + ADC_CTRL_REG, GPADC_ADC_CTRL_REG_TIMER_TRIG_EN |
GPADC_ADC_CTRL_REG_DMA_EN);
sys_set_bits(config->base + ADC_CTRL_REG, GPADC_ADC_CTRL_REG_FRC_EN_ADC |
GPADC_ADC_CTRL_REG_CHNL_SEL_FRC_EN);
/* enable ref ldo */
sys_set_bits(config->base + ADC_CFG_REG1, GPADC_ADC_CFG_REG1_ANAU_GPADC_SE |
GPADC_ADC_CFG_REG1_ANAU_GPADC_LDOREF_EN);
/* disable all slots */
for (uint8_t i = 0; i < 8U; i++) {
sys_clear_bit(config->base + ADC_SLOT_REGX(i), GPADC_ADC_SLOT0_REG_SLOT_EN_Pos);
}
config->irq_config_func();
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return ret;
}
#define ADC_SF32LB_DEFINE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static void adc_sf32lb_irq_config_func_##n(void); \
static struct adc_sf32lb_data adc_sf32lb_data_##n = { \
ADC_CONTEXT_INIT_TIMER(adc_sf32lb_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_sf32lb_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_sf32lb_data_##n, ctx), \
}; \
static const struct adc_sf32lb_config adc_sf32lb_config_##n = { \
.base = DT_INST_REG_ADDR(n), \
.cfg_base = DT_REG_ADDR(DT_INST_PHANDLE(n, sifli_cfg)), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.clock = SF32LB_CLOCK_DT_INST_SPEC_GET(n), \
.irq_config_func = adc_sf32lb_irq_config_func_##n, \
}; \
DEVICE_DT_INST_DEFINE(n, adc_sf32lb_init, NULL, &adc_sf32lb_data_##n, \
&adc_sf32lb_config_##n, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&adc_sf32lb_driver_api); \
static void adc_sf32lb_irq_config_func_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), adc_sf32lb_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(ADC_SF32LB_DEFINE)