| /* |
| * Copyright (c) 2022 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/device.h> |
| #include <zephyr/devicetree.h> |
| #include <zephyr/irq_nextlevel.h> |
| #include <zephyr/arch/xtensa/irq.h> |
| #ifdef CONFIG_DYNAMIC_INTERRUPTS |
| #include <zephyr/sw_isr_table.h> |
| #endif |
| #include <zephyr/drivers/interrupt_controller/dw_ace.h> |
| #include <soc.h> |
| #include <adsp_interrupt.h> |
| #include <zephyr/irq.h> |
| #include "intc_dw.h" |
| |
| /* ACE device interrupts are all packed into a single line on Xtensa's |
| * architectural IRQ 4 (see below), run by a Designware interrupt |
| * controller with 28 lines instantiated. They get numbered |
| * immediately after the Xtensa interrupt space in the numbering |
| * (i.e. interrupts 0-31 are Xtensa IRQs, 32 represents DW input 0, |
| * etc...). |
| * |
| * That IRQ 4 indeed has an interrupt type of "EXTERN_LEVEL" and an |
| * interrupt level of 2. The CPU has a level 1 external interrupt on |
| * IRQ 1 and a level 3 on IRQ 6, but nothing seems wired there. Note |
| * that this level 2 ISR is also shared with the CCOUNT timer on IRQ3. |
| * This interrupt is a very busy place! |
| * |
| * But, because there can never be a situation where all interrupts on |
| * the Synopsys controller are disabled (such a system would halt |
| * forever if it reached idle!), we at least can take advantage to |
| * implement a simplified masking architecture. Xtensa INTENABLE |
| * always has the line active, and we do all masking of external |
| * interrupts on the single controller. |
| * |
| * Finally: note that there is an extra layer of masking on ACE. The |
| * ACE_DINT registers provide separately maskable interrupt delivery |
| * for each core, and with some devices for different internal |
| * interrupt sources. Responsibility for these mask bits is left with |
| * the driver. |
| * |
| * Thus, the masking architecture picked here is: |
| * |
| * + Drivers manage ACE_DINT themselves, as there are device-specific |
| * mask indexes that only the driver can interpret. If |
| * core-asymmetric interrupt routing needs to happen, it happens |
| * here. |
| * |
| * + The DW layer is en/disabled uniformly across all cores. This is |
| * the layer toggled by arch_irq_en/disable(). |
| * |
| * + Index 4 in the INTENABLE SR is set at core startup and stays |
| * enabled always. |
| */ |
| |
| /* ACE also has per-core instantiations of a Synopsys interrupt |
| * controller. These inputs (with the same indices as ACE_INTL_* |
| * above) are downstream of the DINT layer, and must be independently |
| * masked/enabled. The core Zephyr intc_dw driver unfortunately |
| * doesn't understand this kind of MP implementation. Note also that |
| * as instantiated (there are only 28 sources), the high 32 bit |
| * registers don't exist and aren't named here. Access via e.g.: |
| * |
| * ACE_INTC[core_id].irq_inten_l |= interrupt_bit; |
| */ |
| |
| #define ACE_INTC ((volatile struct dw_ictl_registers *)DT_REG_ADDR(DT_NODELABEL(ace_intc))) |
| |
| static inline bool is_dw_irq(uint32_t irq) |
| { |
| if (((irq & XTENSA_IRQ_NUM_MASK) == ACE_INTC_IRQ) |
| && ((irq & ~XTENSA_IRQ_NUM_MASK) != 0)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void dw_ace_irq_enable(const struct device *dev, uint32_t irq) |
| { |
| ARG_UNUSED(dev); |
| |
| if (is_dw_irq(irq)) { |
| unsigned int num_cpus = arch_num_cpus(); |
| |
| for (int i = 0; i < num_cpus; i++) { |
| ACE_INTC[i].irq_inten_l |= BIT(ACE_IRQ_FROM_ZEPHYR(irq)); |
| ACE_INTC[i].irq_intmask_l &= ~BIT(ACE_IRQ_FROM_ZEPHYR(irq)); |
| } |
| } else if ((irq & ~XTENSA_IRQ_NUM_MASK) == 0U) { |
| xtensa_irq_enable(XTENSA_IRQ_NUMBER(irq)); |
| } |
| } |
| |
| void dw_ace_irq_disable(const struct device *dev, uint32_t irq) |
| { |
| ARG_UNUSED(dev); |
| |
| if (is_dw_irq(irq)) { |
| unsigned int num_cpus = arch_num_cpus(); |
| |
| for (int i = 0; i < num_cpus; i++) { |
| ACE_INTC[i].irq_inten_l &= ~BIT(ACE_IRQ_FROM_ZEPHYR(irq)); |
| ACE_INTC[i].irq_intmask_l |= BIT(ACE_IRQ_FROM_ZEPHYR(irq)); |
| } |
| } else if ((irq & ~XTENSA_IRQ_NUM_MASK) == 0U) { |
| xtensa_irq_disable(XTENSA_IRQ_NUMBER(irq)); |
| } |
| } |
| |
| int dw_ace_irq_is_enabled(const struct device *dev, unsigned int irq) |
| { |
| ARG_UNUSED(dev); |
| |
| if (is_dw_irq(irq)) { |
| return ACE_INTC[0].irq_inten_l & BIT(ACE_IRQ_FROM_ZEPHYR(irq)); |
| } else if ((irq & ~XTENSA_IRQ_NUM_MASK) == 0U) { |
| return xtensa_irq_is_enabled(XTENSA_IRQ_NUMBER(irq)); |
| } |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_DYNAMIC_INTERRUPTS |
| int dw_ace_irq_connect_dynamic(const struct device *dev, unsigned int irq, |
| unsigned int priority, |
| void (*routine)(const void *parameter), |
| const void *parameter, uint32_t flags) |
| { |
| /* Simple architecture means that the Zephyr irq number and |
| * the index into the ISR table are identical. |
| */ |
| ARG_UNUSED(dev); |
| ARG_UNUSED(flags); |
| ARG_UNUSED(priority); |
| z_isr_install(irq, routine, parameter); |
| return irq; |
| } |
| #endif |
| |
| static void dwint_isr(const void *arg) |
| { |
| uint32_t fs = ACE_INTC[arch_proc_id()].irq_finalstatus_l; |
| |
| while (fs) { |
| uint32_t bit = find_lsb_set(fs) - 1; |
| uint32_t offset = CONFIG_2ND_LVL_ISR_TBL_OFFSET + bit; |
| struct _isr_table_entry *ent = &_sw_isr_table[offset]; |
| |
| fs &= ~BIT(bit); |
| ent->isr(ent->arg); |
| } |
| } |
| |
| static int dw_ace_init(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| IRQ_CONNECT(ACE_INTC_IRQ, 0, dwint_isr, 0, 0); |
| xtensa_irq_enable(ACE_INTC_IRQ); |
| |
| return 0; |
| } |
| |
| static const struct dw_ace_v1_ictl_driver_api dw_ictl_ace_v1x_apis = { |
| .intr_enable = dw_ace_irq_enable, |
| .intr_disable = dw_ace_irq_disable, |
| .intr_is_enabled = dw_ace_irq_is_enabled, |
| #ifdef CONFIG_DYNAMIC_INTERRUPTS |
| .intr_connect_dynamic = dw_ace_irq_connect_dynamic, |
| #endif |
| }; |
| |
| DEVICE_DT_DEFINE(DT_NODELABEL(ace_intc), dw_ace_init, NULL, NULL, NULL, |
| PRE_KERNEL_1, CONFIG_INTC_INIT_PRIORITY, |
| &dw_ictl_ace_v1x_apis); |